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Abstract

Proposed method is dealing with multi-dimensional data modeling, extrapolation and interpolation using the set of high-
dimensional feature vectors. Identification of handwriting, signature, faces or fingerprints need data modeling and each model 
of the pattern is built by a choice of characteristic key points and multi-dimensional modeling functions. Novel modeling via 
nodes combination and parameter γ as N-dimensional function enables data parameterization and interpolation for feature 
vectors. Multi-dimensional data is modelled and interpolated via different functions for each feature: polynomial, sine, cosine, 
tangent, cotangent, logarithm, exponent, arc sin, arc cos, arc tan, arc cot or power function.
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Introduction

The idea of paper is connected with different curve 
modeling for the same set of curve points (nodes). The 
problem of multidimensional data modeling appears in 
many branches of science and industry. Image retrieval, data 
reconstruction objects identification or pattern recognition 
is still the open problems in artificial intelligence and 
computer vision. The paper is dealing with these questions 
via modeling of high-dimensional data for applications of 
image segmentation in image retrieval and recognition 
tasks. Handwriting based author recognition offers a huge 
number of significant implementations which make it an 
important research area in pattern recognition. There are 
so many possibilities and applications of the recognition 
algorithms that implemented methods have to be concerned 
on a single problem: retrieval, identification, verification 
or recognition. This paper is concerned with two parts: 
image retrieval and recognition tasks. Image retrieval is 
based on modeling of unknown features via combination 
of N-dimensional functions for each feature. In the case of 
biometric writer recognition, each person is represented 

by the set of modelled letters or symbols. The sketch of 
proposed method consists of three steps: first handwritten 
letter or symbol must be modelled by a vector of features 
(N-dimensional data), then compared with unknown 
letter and finally there is a decision of identification. 
Author recognition of handwriting and signature is based 
on the choice of feature vectors and modeling functions. 
So high-dimensional data interpolation in handwriting 
identification [1] is not only a pure mathematical problem 
but important task in pattern recognition and artificial 
intelligence such as: biometric recognition, personalized 
handwriting recognition [2-4], automatic forensic document 
examination [5,6], classification of ancient manuscripts [7]. 
Also writer recognition [8] in monolingual handwritten texts 
is an extensive area of study and the methods independent 
from the language are well-seen [9-12]. Proposed method 
represents language-independent and text-independent 
approach because it identifies the author via a set of letters 
or symbols from the sample.

Writer recognition methods in the recent years are 
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going to various directions [13-17]: writer recognition using 
multi-script handwritten texts, introduction of new features, 
combining different types of features, studying the sensitivity 
of character size on writer identification, investigating writer 
identification in multi-script environments, impact of ruling 
lines on writer identification, model perturbed handwriting, 
methods based on run-length features, the edge-direction 
and edge-hinge features, a combination of codebook and 
visual features extracted from chain code and polygonized 
representation of contours, the autoregressive coefficients, 
codebook and efficient code extraction methods, texture 
analysis with Gabor filters and extracting features, using 
Hidden Markov Model [18] or Gaussian Mixture Model [19]. 
So hybrid soft computing is essential: no method is dealing 
with writer identification via N-dimensional data modeling 
or interpolation and multidimensional points comparing as 
it is presented in this paper. The paper wants to approach 
a problem of curve interpolation and shape modeling by 
characteristic points in handwriting identification [20]. 
Proposed method relies on nodes combination and functional 
modeling of curve points situated between the basic set 
of key points. The functions that are used in calculations 
represent whole family of elementary functions with 
inverse functions: polynomials, trigonometric, cyclometric, 
logarithmic, exponential and power function. Nowadays 
methods apply mainly polynomial functions, for example 
Bernstein polynomials in Bezier curves, splines [21] and 
NURBS. But Bezier curves don’t represent the interpolation 
method and cannot be used for example in signature and 
handwriting modeling with characteristic points (nodes). 
Numerical methods [22-24] for data interpolation are based 
on polynomial or trigonometric functions, for example 
Lagrange, Newton, Aitken and Hermite methods. These 
methods have some weak sides and are not sufficient for 
curve interpolation in the situations when the curve cannot 
be built by polynomials or trigonometric functions [25].

This paper presents novel method of high-dimensional 
interpolation in hybrid soft computing and takes up method 
of multidimensional data modeling. The method requires 
information about data (image, object, curve) as the set of 
N-dimensional feature vectors. So this paper wants to answer 
the question: how to retrieve the image using N-dimensional 
feature vectors and to recognize a handwritten letter or 
symbol by a set of high-dimensional nodes via hybrid soft 
computing?

Multidimensional Modeling of Feature 
Vectors

Proposed method is computing (interpolating) unknown 
(unclear, noised or destroyed) values of features between 
two successive nodes (N-dimensional vectors of features) 
using hybridization of mathematical analysis and numerical 

methods, Calculated values (unknown or noised features such 
as coordinates, colors, textures or any coefficients of pixels, 
voxels and doxels or image parameters) are interpolated 
and parameterized for real number αi ∈ [0;1] (i = 1,2,…N-1) 
between two successive values of feature. This method uses 
the combinations of nodes (N-dimensional feature vectors) 
p1=(x1,y1,…,z1), p2=(x2,y2,…,z2),…, pn=(xn,yn,…zn) as h(p1,p2,…
,pm) and m=1,2,…n to interpolate unknown value of feature 
(for example y) for the rest of coordinates:
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Then N-1 features c1,…, cN-1 are parameterized by α1,…, 

αN-1 between two nodes and the last feature (for example 
y) is interpolated via formula (1). Of course there can be 
calculated x(c) or z(c) using (1). Two examples of h (when 
N = 2) computed for MHR method [26] with good features 
because of orthogonal rows and columns at Hurwitz-Radon 
family of matrices:
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The simplest nodes combination is

1 2( , ,..., ) 0mh p p p =                                   (3)

and then there is a formula of interpolation:

1)1()( +−+⋅= ii yycy γγ .

Formula (1) gives the infinite number of calculations for 
unknown feature determined by choice of F and h. Nodes 
combination is the individual feature of each modeled data. 
Coefficient γ=F(α) and nodes combination h are key factors 
in data interpolation and object modeling.

N-Dimensional Functions in Modeling

Unknown values of features, settled between the 
nodes, are computed using (1). Key question is dealing 
with coefficient γ. The simplest way of calculation means 
h=0 and γi=αi. Then proposed method represents a linear 
interpolation. Each interpolation requires specific values of 
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αi and γ in (1) depends on parameters αi and γ in (1) depends 
on parameters αi ∈ [0;1]:

( ) [ ] [ ] ( ) ( )1, : 0;1 0;1 , 0, ,0 0, 1, ,1 1NF F F Fγ α −= → … = … =

And F is strictly monotonic for each αi separately. 
Coefficient γi are calculated using appropriate function and 
choice of function is connected with initial requirements 
and data specifications. Different values of coefficients γi are 
connected with applied functions Fi(αi). These functions γi = 
Fi(αi) represent the examples of modeling functions for αi ∈ 
[0;1] and real number s > 0, i = 1,2,…N-1. Each function is 
applied for different modelling:
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Or any strictly monotonic function between points (0;0) 
and (1;1). For example interpolations of function y=2x for N = 
2, h = 0 and γ = αs with s = 0.8 (Figure 1) is much better than 
linear interpolation.

 

Figure 1: Two-dimensional modeling of function y=2x with 
seven nodes and h=0, γ=α0.8.

Functions γi are strictly monotonic for each variable αi 
∈ [0;1] as γ = F(α) is N-dimensional modeling function, for 
example:
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And every monotonic combination of γi such as
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For example when N = 3 there is a bilinear interpolation:

1 1 2 2 1 2, , (½ )γ α γ α γ α α= = = +                  (4)

or a bi-quadratic interpolation:

2 2 2 2
1 1 2 2 1 2, , (½ )γ α γ α γ α α= = = +             (5)

or a bi-cubic interpolation:

3 3 3 3
1 1 2 2 1 2, , (½ )γ α γ α γ α α= = = +                  (6)

Or others modeling functions γ. Choice of functions γi 
and value s depends on the specifications of feature vectors 
and individual requirements. What is very important: two 
data sets (for example a handwritten letter or signature) 
may have the same set of nodes (feature vectors: pixel 
coordinates, pressure, speed, angles) but different h or γ 
results in different interpolations (Figures 2-4). Here are 
three examples of reconstruction (Figures 2-4) for N = 2 
and four nodes: (-1.5; -1), (1.25; 3.15), (4.4; 6.8) and (8; 7). 
Formula of the curve is not given. Algorithm of proposed 
retrieval, interpolation and modeling consists of five steps: 
first choice of nodes pi (feature vectors), then choice of 
nodes combination h (p1,p2,…,pm), choice of modeling 
function γ = F(α), determining values of αi ∈ [0;1] and finally 
the computations (1).

Figure 2: 2D modeling for γ = α2 and h = 0.

And other interpolations for the same set of nodes:

Figure 3: 2D reconstruction for γ = sin (α2.π/2) and h in 
(2).
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Figure 4: 2D interpolation for γ = tan (α2.π/4) and h = (x2/
x1) + (y2/y1).

So there are different data reconstructions with 
different modeling functions. As it can be observed, there 
is one extremum between two nodes for modeling with h 
≠ 0 (Figures 3 & 4). Comparing with polynomial or spline 
interpolations, there is one very important question: how to 
avoid extremum between each pair of nodes and how to 
minimize interpolation error? Generally current methods 
do not answer this key question. Nowadays methods of 
interpolations rely mainly on polynomials, especially on cubic 
splines. It means that there are interpolation polynomials 
W(x) of degree 3 for every range of two successive 
interpolation nodes (xi,yi) and (xi+1,yi+1). This method of 
cubic splines is C2 class – this fact is very important in many 
applications of cubic interpolation. But second important 
feature of this method is interpolation error for function f(x):
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So interpolation error depends on second derivative in the 
range of nodes [a;b] and this value cannot be estimated in 
general. Cubic spline can have extremum and may differ 
from interpolated function f(x) very much. Also interpolation 
polynomial Wn(x) of degree n (Lagrange or Newton) for n+1 
nodes (x0,y0), (x1,y1) … (xn,yn) is connected with unpredictable 
error in general with calculations of derivative rank n+1:
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Proposed method with h = 0 and α ∈ [0;1] represents 
formulas as convex combinations of nodes’ coordinates:

1 1) (1 ) , ) (1( ) y(k k k kx x yx yα α α α γ γ+ += × + − = × + −

And interpolation error in general between two nodes looks 

as follows:
1y yk k kε + −≤

Proposed method is dealing with such significant features:
•	 no extremum between two nodes;
•	 interpolation error does not depend on the value of 

derivative in the nodes or outside the nodes (even if 
derivative does not exist);

•	 interpolated function can be smooth in the nodes (class 
C1);

•	 reconstruction of the function that much differs from 
the shape of polynomial, and not only function but any 
curve, also closed;

•	 extrapolation is calculated with the same formulas for α 
∈ [0;1];

•	 the idea of linear interpolation is applied for other 
modeling functions, not only γ = α1;

•	 convexity between the nodes is fixed using two modeling 
functions:
γk = αs   or    γk = sin(αs·π/2) with real parameter s > 0.

These two kinds of modeling functions are the simplest 
function, chosen via many calculations as follows:
•	 γk = αs if convexity is not changing between the nodes 

(xk,yk) and (xk+1,yk+1);
•	 γk = sin(αs·π/2) if convexity is changing between the 

nodes (xk,yk) and (xk+1,yk+1).

Theorem If

•	 There are given nodes of continuous function y = f(x): 
(x0,y0), (x1,y1) … (xn,yn), n ≥ 2;

•	 There are formulas to calculate values between the 
nodes:

1 1) (1 ) , ) (1( ) y(k k k kx x yx yα α α α γ γ+ += × + − = × + −
α ∈ [0;1], k = 2,3…n-1, γk = αs or γk = sin(αs·π/2) with real 
parameter s > 0;
•	 Three successive nodes are monotonic, for example let’s 

assume:
y0 > y1 > y2 or y0 < y1 < y2

Then there is the method of 2D curve interpolation and 
extrapolation such as:
T.1: There is no extremum between two successive nodes – 
interpolated function is monotonic in the range of two nodes.
T.2: Interpolated curve is class C0 (continuous) or C1 
(continuous and smooth).
T.3: Interpolation error does not depend on the value 
of derivative in the nodes or outside the nodes (even if 
derivative does not exist).
T.4: Convexity between two nodes (xk,yk) and (xk+1,yk+1) is 
fixed using modeling functions γk = αs (if convexity is not 
changing) or γk = sin(αs·π/2) (if convexity is changing).
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T.5: Extrapolation is calculated with the same formulas for 
α ∈ [0;1].

Proof

T.1: Convex combination to calculate x(α) and y(α) between 
two nodes with strictly monotonic function γk gives us 
monotonic interpolation of the curve with no extremum 
between two nodes.
T.2: Interpolated curve is class C0 (continuous) just from 
definition of x(α) and y(α). Also smooth interpolation between 
nodes is achieved with the same. Only smooth function in the 
inner nodes must be proved. Here is shown how to achieve 
smooth function in the inner nodes – let’s assume then yk ≠ 
yk+1 for each k. If yk = yk+1 for any k, then according to T.1 there 
must be the simplest linear interpolation between nodes 
(xk,yk) and (xk+1,yk+1) and interpolated curve is not smooth in 
nodes (xk,yk) and (xk+1,yk+1).

For first three monotonic nodes (x0,y0), (x1,y1) and 
(x2,y2) there are calculations to fix parameter s for modeling 
function γ1 between nodes (x0,y0) and (x2,y2) interpolating 
node (x1,y1) inside:

2 1 2 1

2 0 2 0

(0;1), t (0;1)x x y y
x x y y

α − −
= ∈ = ∈

− −
If convexity is not changing between (x0,y0) and (x2,y2), then 
γ1 = αs and 
If convexity is changing between (x0,y0) and (x2,y2), then  γ1 = 
sin(αs·π/2) and 2log ( arcsin )s tα π

=

A1 (beginning of the loop in algorithm for k = 2,3…n-1): 
Having modeling function γ1 between nodes (x0,y0) and 
(x2,y2), it is possible for any α*→0 calculate
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Then left difference quotient c is computed in the node 
(x2,y2): 
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Of course if value of derivative in (x2,y2) is known, c = f ’(x2) 
≠ 0. Then parameter u is fixed to obtain left (c) and right 
difference quotient equal in (x2,y2) - it means smooth in this 
node. If y3 preserves the same monotonicity like y2 and y1 
(y1>y2>y3 or y1<y2<y3) then

3 2

3 2

1 (1 *) x xu c
y y

α −
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If y3 does not preserve the same monotonicity like y2 and y1 
then (because of different sign of left and right difference 
quotient) 3 2

3 2

1 (1 *) x xu c
y y

α −
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And as it was: if convexity is not changing between (x2,y2) 
and (x3,y3), then γ2 = αs and

logs uα=

If convexity is changing between (x2,y2) and (x3,y3), then γ2 = 
sin(αs·π/2)and

2log ( arcsin )s uα π
=

So smooth interpolation function in the node (x2,y2) is 
achieved. And smooth interpolation for next range of nodes 
(x3,y3) and (x4,y4) is starting like loop A1 for k=3. And so on 
till last range of nodes (xn-1,yn-1) and (xn,yn) for k = n-1 in A1.
T.3: According to T.1 – interpolation error between two 
nodes for each k is equal:

1y yk k kε +≤ −

T.4: These modeling functions are the simplest functions to 
achieve convexity changing or not.
T.5: Extrapolation left of first node (x0,y0) is done with 
modeling function γ1 and α>1. Extrapolation right of last 
node (xn,yn) is done with modeling function γn-1 and α<0. 
Then modeling function γn-1 must have domain with α<0. If 
not, there is possibility to define:

1( () (1 ) , ) (1 ) yk k k k k kx xx y yα α α α γ γ+= × + − = × + −

This theorem describes main features of proposed method.

Image Retrieval via High-dimensional 
Feature Reconstruction

After the process of image segmentation and during the 
next steps of retrieval, recognition or identification, there 
is a huge number of features included in N-dimensional 
feature vector. These vectors can be treated as “points” 
in N-dimensional feature space. For example in artificial 
intelligence there is a high-dimensional search space (the 
set of states that can be reached in a search problem) or 
hypothesis space (the set of hypothesis that can be generated 
by a machine learning algorithm). This paper is dealing with 
multidimensional feature spaces that are used in computer 
vision, image processing and machine learning.

Having monochromatic (binary) image which consists 
of some objects, there is only 2-dimensional feature space 
(xi,yi) – coordinates of black pixels or coordinates of white 
pixels. No other parameters are needed. Thus any object 
can be described by a contour (closed binary curve). Binary 
images are attractive in processing (fast and easy) but don’t 
include important information. If the image has grey shades, 
there is 3-dimensional feature space (xi,yi,zi) with grey shade 
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zi. For example most of medical images are written in grey 
shades to get quite fast processing. But when there are colour 
images (three parameters for RGB or other colour systems) 
with textures or medical data or some parameters, then it 
is N-dimensional feature space. Dealing with the problem of 
classification learning for high-dimensional feature spaces 
in artificial intelligence and machine learning (for example 
text classification and recognition), there are some methods: 
decision trees, k-nearest neighbours, perceptron’s, naive 
Bayes or neural networks methods. All of these methods are 
struggling with the curse of dimensionality: the problem of 
having too many features. And there are many approaches to 
get less number of features and to reduce the dimension of 
feature space for faster and less expensive calculations. This 
paper aims at inverse problem to the curse of dimensionality: 
dimension N of feature space (i.e. number of features) is 
unchanged, but number of feature vectors (i.e. “points” 
in N-dimensional feature space) is reduced into the set of 
nodes. So the main problem is as follows: how to fix the set of 
feature vectors for the image and how to retrieve the features 
between the “nodes”? This paper aims in giving the answer 
of this question.

Grey Scale Image Retrieval Using 3D Method

Binary images are just the case of 2D points (x,y): 0 or 1, 
black or white, so retrieval of monochromatic images is done 
for the closed curves (first and last node are the same) as the 
contours of the objects for N = 2 and examples as (Figures 
1-4). Grey scale images are the case of 3D points (x,y,s) with 
s as the shade of grey. So the grey scale between the nodes 
p1=(x1,y1,s1) and p2=(x2,y2,s2) is computed with γ = F(α) = 
F(α1,α2) as (1) and for example (4-6) or others modeling 
functions γi. As the simple example two successive nodes of 
the image are: left upper corner with coordinates p1=(x1,y1,2) 
and right down corner p2=(x2,y2,10). The image retrieval 
with the grey scale 2-10 between p1 and p2 looks as follows 
for a bilinear interpolation (4) (Figure 5):

2 3 4 5 6 7 8 9 10
2 3 4 5 6 7 8 9 10
2 3 4 5 6 7 8 9 10
2 3 4 5 6 7 8 9 10
2 3 4 5 6 7 8 9 10
2 3 4 5 6 7 8 9 10
2 3 4 5 6 7 8 9 10
2 3 4 5 6 7 8 9 10
2 3 4 5 6 7 8 9 10

Figure 5: Reconstructed grey scale numbered at each pixel.

The feature vector of dimension N = 3 is called a voxel.

Colour Image Retrieval

Colour images in for example RGB colour system (r,g,b) 
are the set of points (x,y,r,g,b) in a feature space of dimension 
N = 5. There can be more features, for example texture t, 
and then one pixel (x,y,r,g,b,t) exists in a feature space of 
dimension N = 6. But there are the sub-spaces of a feature 
space of dimension N1 < N, for example (x,y,r), (x,y,g), (x,y,b) 
or (x,y,t) are points in a feature sub-space of dimension N1=3. 
Reconstruction and interpolation of color coordinates or 
texture parameters is done like in section 3.1 for dimension N 
= 3. Appropriate combination of α1 and α2 le0ads to modeling 
of colour r,g,b or texture t or another feature between the 
nodes. And for example (x,y,r,t), (x,y,g,t), (x,y,b,t)) are points 
in a feature sub-space of dimension N1=4 called doxels. 
Appropriate combination of α1, α2 and α3 leads to modeling of 
texture t or another feature between the nodes. For example 
colour image, given as the set of doxels (x,y,r,t), is described 
for coordinates (x,y) via pairs (r,t) interpolated between 
nodes (x1,y1,2,1) and (x2,y2,10,9)  (Figure 6) as follows:

2,1 3,1 4,1 5,1 6,1 7,1 8,1 9,1 10,1
2,2 3,2 4,2 5,2 6,2 7,2 8,2 9,2 10,2
2,3 3,3 4,3 5,3 6,3 7,3 8,3 9,3 10,3
2,4 3,4 4,4 5,4 6,4 7,4 8,4 9,4 10,4
2,5 3,5 4,5 5,5 6,5 7,5 8,5 9,5 10,5
2,6 3,6 4,6 5,6 6,6 7,6 8,6 9,6 10,6
2,7 3,7 4,7 5,7 6,7 7,7 8,7 9,7 10,7
2,8 3,8 4,8 5,8 6,8 7,8 8,8 9,8 10,8
2,9 3,9 4,9 5,9 6,9 7,9 8,9 9,9 10,9

Figure 6: Colour image with colour and texture parameters 
(r,t) interpolated at each pixel.

So dealing with feature space of dimension N and 
using novel method there is no problem called “the curse of 
dimensionality” and no problem called “feature selection” 
because each feature is important. There is no need to reduce 
the dimension N and no need to establish which feature is 
“more important” or “less important”. Every feature that 
depends from N1-1 other features can be interpolated 
(reconstructed) in the feature sub-space of dimension N1 
< N via proposed method. But having a feature space of 
dimension N and using author’s method there is another 
problem: how to reduce the number of feature vectors 
and how to interpolate (retrieve) the features between 
the known vectors (called nodes). Difference between two 
given approaches (the curse of dimensionality with feature 
selection and author’s interpolation) can be illustrated as 
follows. There is a feature matrix of dimension N x M: N 
means the number of features (dimension of feature space) 
and M is the number of feature vectors (interpolation nodes) 
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– columns are feature vectors of dimension N. One approach 
(Figure 7): the curse of dimensionality with feature selection 
wants to eliminate some rows from the feature matrix and to 

reduce dimension N to N1 < N. Second approach (Figure 8) 
for this method wants to eliminate some columns from the 
feature matrix and to reduce dimension M to M1 < M.

2 2 2 2 2 2 2 2 2
2 3 3 3 3 3 3 3 3
2 3 4 4 4 4 4 4 4 2 2 2 2 2 2 2 2 2
2 3 4 5 5 5 5 5 5 2 3 3 3 3 3 3 3 3
2 3 4 5 6 6 6 6 6 → 2 3 4 4 4 4 4 4 4
2 3 4 5 6 7 7 7 7 2 3 4 5 5 5 5 5 5
2 3 4 5 6 7 8 8 8 2 3 4 5 6 6 6 6 6
2 3 4 5 6 7 8 9 9 2 3 4 5 6 7 7 7 7
2 3 4 5 6 7 8 9 10

Figure 7: The curse of dimensionality with feature selection wants to eliminate some rows from the feature matrix and to reduce 
dimension N.

2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
2 3 3 3 3 3 3 3 3 2 3 3 3 3 3 3
2 3 4 4 4 4 4 4 4 2 3 4 4 4 4 4
2 3 4 5 5 5 5 5 5 2 3 4 5 5 5 5
2 3 4 5 6 6 6 6 6 → 2 3 4 5 6 6 6
2 3 4 5 6 7 7 7 7 2 3 4 5 6 7 7
2 3 4 5 6 7 8 8 8 2 3 4 5 6 7 8
2 3 4 5 6 7 8 9 9 2 3 4 5 6 7 8
2 3 4 5 6 7 8 9 10 2 3 4 5 6 7 8

Figure 8: Proposed method wants to eliminate some columns from the feature matrix and to reduce dimension M.

So after feature selection (Figure 7) there are nine 
feature vectors (columns): M = 9 in a feature sub-space 
of dimension N1 = 6 < N (three features are fixed as less 
important and reduced). But feature elimination is a very 
unclear matter. And what to do if every feature is denoted as 
meaningful and then no feature are to be reduced? For this 
method (Figure 8) there are seven feature vectors (columns): 
M1 = 7 < M in a feature space of dimension N = 9. Then no 
feature is eliminated and the main problem is dealing with 
interpolation or extrapolation of feature values, like for 
example image retrieval (Figures 5 & 6).

Recognition Tasks via High-Dimensional 
Feature Vectors’ Interpolation

The process of biometric recognition and identification 
consists of three parts: pre-processing, image segmentation 
with feature extraction and recognition or verification. 
Pre-processing is a common stage for all methods with 
binarization, thinning, size standardization. Proposed 
online approach is based on 2D curve modeling and 
multi-dimensional feature vectors’ interpolation. Feature 

extraction gives the key points (nodes as N-dimensional 
feature vectors) that are used in curve reconstruction 
and identification. Proposed method enables signature 
and handwriting recognition, which is used for biometric 
purposes, because human signature or handwriting consists 
of non-typical curves and irregular shapes (for example 
Figures 2-4). The language does not matter because each 
symbol is treated as a curve. This process of recognition 
consists of three parts:

1. Before Recognition: continual and never-ending 
building the data basis: patterns’ modeling – choice of 
nodes combination, function (1) and values of features 
(pen pressure, speed, pen angle etc.) appearing in high 
dimensional feature vectors for known signature or 
handwritten letters of some persons in the basis; 

2. Feature Extraction: unknown author – fixing the values 
in feature vectors for unknown signature or handwritten 
words: N-dimensional feature vectors (x,y,p,s,a,t) with 
x,y-points’ coordinates, p-pen pressure, s-speed of 
writing, a- pen angle or any other features t;

3. The Results: Recognition or identification - comparing 
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the results of interpolation for known patterns from the 
data basis with features of unknown object.

Signature Modeling and Multidimensional 
Recognition

Human signature or handwriting consists mainly of non-
typical curves and irregular shapes. So how to model two-
dimensional handwritten characters via author’s method? 
Each model has to be described (1) by the set of nodes, 
nodes combination h and a function γ=F(α) for each letter. 
Other features in multi-dimensional feature space are not 
visible but used in recognition process (for example p-pen 
pressure, s-speed of writing, a-pen angle). Less complicated 
models can take h(p1,p2,…,pm) = 0 and then the formula of 
interpolation (1) looks as follows:

1( ) (1 )i iy c y yγ γ += × + −                             (7)

Formula (7) represents the simplest linear interpolation 
if γ = α. Here are some examples of non-typical curves and 
irregular shapes as the whole signature or a part of signature, 
reconstructed via proposed method for y=2x and seven nodes 
(x,y) like (Figure 1):

LP X Y
1 -3.0 0.125
2 -2.0 0.25
3 -1.0 0.5
4 0.0 1.0
5 1.0 2.0
6 2.0 4.0
7 3.0 8.0

Figure 9: 2D interpolation for 1 2
2 1

1 2

,  1,  s y ys h x x
x x

γ α= = = + .

And two other interpolations for the same set of nodes:

Figure 10: 2D modeling for 1 2
2 1

1 2

,  0,8,  s y ys h x x
x x

γ α= = = + .

Figure 11: 2D reconstruction for ( ) 1 2
2 2 1

1 2

1 ,  0,8,  s y ylog s h x x
x x

γ α= + = = + .

So there are different data reconstructions with different 
modeling functions. Other interpolations for the same set of 
nodes and combination h=0 are as follows:

 

Figure 12: 2D modeling for ,  0,8,  0
2

ssin s hπγ α = × = = 
 

.
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Figure 13: 2D modeling for ( )21 arccos ,  0,5,  0s s hγ α
π

= − = = .

(Figures 9-13) are two-dimensional subspace of 
N-dimensional feature space, for example (x,y,p,s,a,t) when 
N = 6. If the recognition process is working “offline” and 
features p-pen pressure, s-speed of writing, a- pen angle or 
another feature t are not given, the only information before 
recognition is situated in x,y points’ coordinates.

After pre-processing (binarization, thinning, size 
standardization), feature extraction is second part of 
biometric identification. Choice of characteristic points 
(nodes) for unknown letter or handwritten symbol is a crucial 
factor in object recognition. The range of coefficients x has to 
be the same like the x range in the basis of patterns. When the 
nodes are fixed, each coordinate of every chosen point on the 
curve (x0

c,y0
c), (x1

c,y1
c),…, (xM

c,yM
c) is accessible to be used for 

comparing with the models. Then modeling function γ = F(α) 
and nodes combination h have to be taken from the basis of 
modelled letters to calculate appropriate second coordinates 
yi

(j) of the pattern Sj for first coordinates xi
c, i=0,1,…,M. After 

interpolation it is possible to compare given handwritten 
symbol with a letter in the basis of patterns. Comparing the 
results of this interpolation for required second coordinates 
of a model in the basis of patterns with points on the curve 
(x0

c,y0
c), (x1

c,y1
c),…, (xM

c,yM
c), one can say if the letter or symbol 

is written by person P1, P2 or another. The comparison and 
decision of recognition is done via minimal distance criterion. 
Curve points of unknown handwritten symbol are: (x0

c,y0
c), 

(x1
c,y1

c),…, (xM
c,yM

c). The criterion of recognition for models 
Sj = {(x0

c,y0
(j)), (x1

c,y1
(j)),…, (xM

c,yM
(j)), j=0,1,2,3…K} is given as:

min
0

)( →−∑
=

M

i

j
i

c
i yy

  
or min

0

2)( →−∑
=

M

i

j
i

c
i yy        (8)

Minimal distance criterion helps us to fix a candidate for 
unknown writer as a person from the model Sj in the basis. 

If the recognition process is “online” and features p-pen 
pressure, s-speed of writing, a- pen angle or some feature t 
are given, then there is more information in the process of 
author recognition, identification or verification in a feature 
space (x,y,p,s,a,t) of dimension N = 6 or others. Some person 
may know how the signature of another man looks like (for 
example Figures 2-4 or Figures 9-13), but other extremely 
important features p,s,a,t are not visible. Dimension N of a 
feature space may be very high, but this is no problem. As 
it is illustrated (Figures 7 & 8) the problem connected with 
the curse of dimensionality with feature selection does not 
matter. There is no need to fix which feature is less important 
and can be eliminated. Every feature is very important and 
each of them can be interpolated between the nodes using 
author’s high-dimensional interpolation. For example 
pressure of the pen p differs during the signature writing 
and p is changing for particular letters or fragments of the 
signature. Then feature vector (x,y,p) of dimension N1 = 3 is 
dealing with p interpolation at the point (x,y) via modeling 
functions (4)-(6) or others. If angle of the pen a differs during 
the signature writing and a is changing for particular letters 
or fragments of the signature, then feature vector (x,y,a) of 
dimension N1 = 3 is dealing with a interpolation at the point 
(x,y) via modeling functions (4)-(6) or others. If speed of 
the writing s differs during the signature writing and s is 
changing for particular letters or fragments of the signature, 
then feature vector (x,y,s) of dimension N1 = 3 is dealing with s 
interpolation at the point (x,y) via modeling functions (4)-(6) 
or others. This 3D interpolation is the same like in section 3.1 
grey scale image retrieval but for selected pairs (α1, α2) – only 
for the points of signature between (x1,y1,2) and (x2,y2,10):

2 3 0 0 0 0 0 0 0
0 0 4 5 0 0 0 0 0
0 0 0 0 6 0 0 0 0
0 0 0 0 0 7 0 0 0
0 0 0 0 0 0 8 0 0
0 0 0 0 0 0 0 9 0
0 0 0 0 0 0 0 0 10
0 0 0 0 0 0 0 0 10
0 0 0 0 0 0 0 0 10

Figure 14: Reconstructed speed of the writing s at the pixels 
of signature.

If a feature sub-space is dimension N1 = 4 and feature 
vector is for example (x,y,p,s), then 4D interpolation is 
the same like in section 3.2 colour image retrieval but for 
selected pairs (α1, α2) – only for the points of signature 
between (x1,y1,2,1) and (x2,y2,10,9):
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2,1 3,1 0 0 0 0 0 0 0
0 0 4,2 5,2 0 0 0 0 0
0 0 0 0 6,3 0 0 0 0
0 0 0 0 0 7,4 0 0 0
0 0 0 0 0 0 8,5 0 0
0 0 0 0 0 0 0 9,6 0
0 0 0 0 0 0 0 0 10,7
0 0 0 0 0 0 0 0 10,8
0 0 0 0 0 0 0 0 10,9

Figure 15: Reconstructed pen pressure p and speed of the 
writing s as (p,s) at the pixels of signature.

If a feature sub-space is dimension N1 = 5 and feature 
vector is for example (x,y,p,s,a), then 5D interpolation is 
the same like in section 3.2 colour image retrieval but for 
selected pairs (α1, α2) – only for the points of signature 
between (x1,y1,2,1,30) and (x2,y2,10,9,60):

2,1,30 3,1,30 0 0 0 0 0 0 0
0 0 4,2,32 5,2,34 0 0 0 0 0
0 0 0 0 6,3,37 0 0 0 0
0 0 0 0 0 7,4,43 0 0 0
0 0 0 0 0 0 8,5,45 0 0
0 0 0 0 0 0 0 9,6,46 0
0 0 0 0 0 0 0 0 10,7,53
0 0 0 0 0 0 0 0 10,8,56
0 0 0 0 0 0 0 0 10,9,60

Figure 16: Reconstructed pen pressure p, speed of the 
writing s and angle a as (p,s,a) at the pixels of signature.

(Figures 14-16) are the examples of denotation for the 
features that are not visible during the signing or handwriting 
but very important in the process of “online” recognition, 
identification or verification. Even if from technical reason or 
other reasons only some points of signature or handwriting 
(feature nodes) are given in the process of “online” 
recognition, identification or verification, the values of 
features between nodes are computed via multidimensional 
author’s interpolation like for example between (x1,y1,2) and 
(x2,y2,10) on (Figure 14), between (x1,y1,2,1) and (x2,y2,10,9) 
on (Figure 15) or between (x1,y1,2,1,30) and (x2,y2,10,9,60) 
on (Figure 16). Reconstructed features are compared with 
the features in the basis of patterns like parameter y in (8) 
and appropriate criterion gives the result.

So persons with the parameters of their signatures are 
allocated in the basis of patterns. The curve does not have 

to be smooth at the nodes because handwritten symbols are 
not smooth. The range of coefficients x has to be the same 
for all models because of comparing appropriate coordinates 
y. Every letter or a part of signature is modelled via three 
factors: the set of high-dimensional feature nodes, modeling 
function γ=F(α) and nodes combination h. These three factors 
are chosen individually for each letter or a part of signature 
therefore this information about modelled curves seems to 
be enough for specific multidimensional curve interpolation 
and handwriting identification. What is very important, novel 
N-dimensional modeling is independent of the language or 
a kind of symbol (letters, numbers, characters or others). 
One person may have several patterns for one handwritten 
letter or signature. Summarize: every person has the basis 
of patterns for each handwritten letter or symbol, described 
by the set of feature nodes, modeling function γ = F(α) and 
nodes combination h. Whole basis of patterns consists of 
models Sj for j = 0,1,2,3…K. Proposed interpolation is used for 
parameterization and reconstruction of curves in the plane.

Conclusion

The author’s method enables interpolation and modeling 
of high-dimensional data using features’ combinations and 
different coefficients γ: polynomial, sinusoidal, cosinusoidal, 
tangent, cotangent, logarithmic, exponential, arc sin, arc 
cos, arc tan, arc cot or power function. Functions for γ 
calculations are chosen individually at each data modeling 
and it is treated as N-dimensional function: γ depends on 
initial requirements and features’ specifications. Novel 
method leads to data interpolation as handwriting or 
signature identification and image retrieval via discrete set 
of feature vectors in N-dimensional feature space. So this 
method makes possible the combination of two important 
problems: interpolation and modeling in a matter of image 
retrieval or writer identification. Main features of the method 
are: this interpolation develops a linear interpolation in 
multidimensional feature spaces into other functions as 
N-dimensional functions; nodes combination and coefficients 
γ are crucial in the process of data parameterization and 
interpolation: they are computed individually for a single 
feature; modeling of closed curves.
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