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Abstract

In response to the challenges posed by the nonlinearity, instability, and complexity of the stock market in the insurance industry, 
we propose an enhanced generative adversarial neural network-based stock prediction model termed CAL-WGAN-GP. The 
model's generator incorporates components such as the CNN-BiLSTM model and a self-attention mechanism, employed to 
generate precise predictions for stock closing prices. The discriminator, comprising a multi-layer convolutional neural network, 
is tasked with distinguishing between the stock closing prices generated by the generator and actual stock closing prices. To 
assess the model's generalization capability, stock data from China Ping an, China Life, XinHua Insurance, and Pacific Insurance 
is selected. During the dataset construction, relevant features, including technical indicators, are incorporated to facilitate the 
model in better learning hidden data information. Experimental results demonstrate that CAL-WGAN-GP surpasses baseline 
models across four evaluation metrics: Mean Squared Error (MSE), Root Mean Squared Error (RMSE), Mean Absolute Error 
(MAE), and R-squared (R2), achieving the highest degree of data fitting.

Keywords: Stock Price Prediction; Generative Adversarial Network; Self-Attention Mechanism; CNN BiLSTM; Feature Data

Abbreviations: MSE: Mean Squared Error; RMSE: 
Root Mean Squared Error; MAE: Mean Absolute Error; R2: 
R-Squared; LSTMs: Long Short-Term Memory Networks; 
CNNs: Convolutional Neural Networks; FFT: Fast Fourier 
Transform; EMA: Exponential Moving Average.

Introduction

With the rapid development of China’s economy, there is a 
growing awareness of investment and financial management 
among the populace. Stock investment, offering the potential 
for high risk and high returns, has become a popular avenue 
for investors. However, the inherent volatility and instability 
of the stock market pose challenges in researching and 
predicting stock prices, introducing risks for investors. 

Nevertheless, as stock prices manifest as time-sequenced 
data with robust temporal correlations, their prediction can 
be approached by capturing historical information through 
time series forecasting methods.

In the realm of time series data, scholars have diligently 
explored and devised a comprehensive array of stock 
data prediction methods, broadly categorized into linear 
and nonlinear prediction methods [1]. Linear prediction 
methods, constrained by their inability to capture the 
nonlinear features of stock data, prove inadequate for 
accurate stock price predictions. Nonlinear prediction 
methods, conversely, demonstrate superior capability in 
capturing data correlations, exhibiting better generalization 
ability. As articulated in Zhao T, et al. [1], nonlinear 

https://medwinpublishers.com/
https://doi.org/10.23880/oajda-16000111


Open Access Journal of Data Science & Artificial Intelligence2

Zhao B, et al. Improved Generative Adversarial Network Stock Price Prediction Method. J Data Sci 
Artificial Int 2024, 2(1): 000111.

Copyright© Zhao B, et al.

prediction methods encompass approaches grounded in 
BP neural networks, support vector machines, recurrent 
neural networks, generative adversarial networks, and 
reinforcement learning. Among these, generative adversarial 
network-based prediction methods [2-10], trained through 
adversarial learning, stand out for their adaptability to the 
nonlinearity, instability, and complexity of the stock market. 
They generate data samples aligning more closely with 
actual market conditions, offering valuable support for stock 
prediction.

Therefore, this study introduces an advanced generative 
adversarial network-based model, CAL-WGAN-GP, for 
predicting stock closing prices. The primary contributions of 
this paper are as follows:
1. Harnessing the robust performance of the CNN-BiLSTM 

model in stock prediction, this paper innovatively 
integrates the CNN-BiLSTM model and self-attention 
mechanism into the generative adversarial network, 
forming the CAL-WGAN-GP model for stock price 
prediction.

2. In terms of the dataset, this paper introduces innovation 
by incorporating stock datasets for XinHua Insurance, 
China Life, and Pacific Insurance into stock prediction. 
Relevant feature data are integrated into the dataset, and 
it is verified that the CAL-WGAN-GP model also exhibits 
excellent predictive performance on these datasets.

Related Research

Generative Adversarial Networks (GANs) Goodfellow I, 
et al. [11] constitute a type of deep learning model designed 
for data generation through competitive learning, originally 
employed in image generation tasks. The advent of DCGAN 
(Deep Convolutional Generative Adversarial Networks) 
Radford A, et al. [12] integrated deep convolutional networks 
into GANs, enhancing the quality and stability of image 
generation. The cGAN (conditional GAN) model, introduced 
by Isola P, et al. [13], facilitated the transformation of input 
images into the target domain based on conditional input. 
Spectral normalization, proposed by Miyato T, et al. [14], 
addressed stability concerns in GAN models by constraining 
discriminator weights, thereby improving image generation 
quality. BigGAN Wang TC, et al. [15] presented a high-
resolution image synthesis and editing cGAN model, enabling 
semantic control and yielding higher-quality images. Despite 
these advancements, the original GAN grappled with training 
challenges, including instability and mode collapse.

To mitigate these issues, WGAN (Wasserstein GAN) 
Arjovsky M, et al. [16] emerged, replacing traditional 
JS divergence with the Wasserstein distance, yielding 
superior performance in various metrics. However, WGAN 

encountered challenges when the gradient scaling factor 
assumed extreme values, resulting in generator network 
instability. Consequently, WGAN-GP (Wasserstein GAN with 
Gradient Penalty) Gulrajani I, et al. [17] was introduced, 
utilizing gradient penalty to ensure Lipschitz continuity in 
the discriminator and optimizing discriminator training 
through gradient descent. This model showcased remarkable 
stability and enhanced image generation quality.

In recent years, GAN technology has found applications in 
the realm of stock market prediction, learning data patterns 
and trends to provide more accurate forecasts. Studies have 
demonstrated that historical stock price data can be utilized as 
input for GANs to generate future predictions. Notable works 
include Takahashi S, et al. [2], which proposed a GAN-based 
framework for financial time series prediction, and Romero 
RAC, et al. [3], which introduced a stock prediction model 
integrating adversarial generative networks, long short-
term memory networks, and convolutional neural networks. 
Zhang K, et al. [4] presented an end-to-end GAN-based stock 
prediction model for daily closing prices, while Lin H, et al. 
[5] introduced a model incorporating adversarial generative 
networks, gated recurrent units, and convolutional neural 
networks with robust generalization, even in the face of 
events like COVID-19. The SAR-GAN model Yan DM, et al. [6], 
combining self-attention mechanisms and residual networks, 
exhibited noteworthy generalization across diverse datasets. 
Liu YL, et al. [7] addressed imbalanced text token distribution 
issues in convolutional neural network sentiment analysis 
for stock price prediction through a sentiment analysis and 
GAN-based approach.

Furthermore, Sonkiya P, et al. [8] proposed an ensemble 
approach incorporating sentiment analysis and GANs to 
predict stock prices and Asgarian S, et al. [9] introduced 
three GAN-based models for market trend prediction 
by analyzing public sentiment. Polamuri SR, et al. [10] 
innovatively applied reinforcement learning and Bayesian 
optimization, overcoming hyperparameter challenges in a 
hybrid prediction algorithm based on Generative Adversarial 
Networks (GAN-HPA).

In summary, GAN technology stands as a pivotal research 
direction in stock market prediction, offering significant 
contributions towards achieving more accurate predictions. 
While further refinements and research are warranted, GANs 
have demonstrated their potential in enhancing forecasting 
accuracy within the stock market domain.

Methods

To achieve more precise predictions of stock closing 
prices, this study adopts a methodology that involves defining 
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stock data features and structuring a Generative Adversarial 
Network (GAN) model. Technical indicators derived from 
the stock dataset, along with high-frequency components 
obtained through Fast Fourier Transform (FFT) of the closing 
price, are integrated into the dataset as additional feature 
data. This approach enhances the model’s ability to capture 
hidden information within the data. Within the Generative 
Adversarial Network, self-attention mechanisms Vaswani A, 
et al. [18] and a CNN-BiLSTM model Donahue J, et al. [19] 
are introduced to augment data generation capabilities 
and enhance predictive accuracy. The generator network 
predominantly incorporates a hybrid model constructed with 
Convolutional Neural Networks (CNN) Xu L, et al. [20], Long 
Short-Term Memory Networks (LSTM) Hochreiter S, et al. 
[21], and self-attention mechanisms. This combination aims 
to extract hidden features from the data more accurately, 
resulting in generated stock data that closely aligns with real 
data.

The discriminator network of the model primarily 
employs multi-layer convolutional neural networks to 
discern whether the generated data belongs to the real data 
distribution or the fake data distribution (generated by the 
generator). Additionally, the model’s loss function integrates 
the Wasserstein Generative Adversarial Network with 
Gradient Penalty (WGAN-GP) loss function, contributing to 
the stability of model training.

To further refine the accuracy of stock closing price 
predictions, this study incorporates the Whale Optimization 
Algorithm Mirjalili S, et al. [22]. This algorithm involves 
adjusting the model’s parameters by minimizing the loss 
between actual values and predicted values, thereby 
rendering the model’s parameter settings more reasonable 
and reducing errors in the generated data.

Defining Characteristics

In the construction of the stock dataset, relying solely on 
basic market indicators such as daily opening price (open), 
highest price (high), lowest price (low), closing price (close), 
and trading volume (volume) falls short of authentically 
revealing the inherent patterns of stock price fluctuations 
and market behaviour. To enable precise predictions of stock 
prices, it is crucial to take a more comprehensive approach 
and incorporate additional market indicators, grounded 
in a profound understanding of market behaviour, for the 
training of deep learning models.

During the process of building the stock dataset, a 
diverse set of market indicators was considered.
These indicators include:

1. Quotation Data: Opening price (open), Highest price 
(high), Lowest price (low), Closing price (close), Previous 
closing price (pre-close), Trading volume (volume), 
Trading amount (amount), Adjustment status (adjust-
flag), Turnover rate (turn), Trading status (trade-status), 
Price change percentage (pctChg), Trailing price-to-
earnings ratio (peTTM), Price-to-book ratio (pbMRQ), 
Trailing price-to-sales ratio (psTTM), and Trailing price-
to-cash flow ratio (pcfNcfTTM).

2. Technical Indicators: 7-day moving average (MA7), 
10-day moving average (MA10), Exponential moving 
average (EMA), Momentum, Bollinger Bands (Boll), and 
Moving Average Convergence Divergence (MACD).

Furthermore, to enrich the dataset, the high-frequency 
components of the closing price data—extracted by filtering 
out the low-frequency components using Fast Fourier 
Transform (FFT)—were integrated. Consequently, a dataset 
comprising 25 features was formulated, enabling a more 
accurate analysis of both long-term and short-term trends in 
stock closing prices.

Generator

Convolutional Neural Networks (CNNs) were originally 
designed for processing two-dimensional image data, 
leveraging their ability to compute and process similar 
patterns in multiple small regions, thereby constructing 
a comprehensive feature set. This characteristic makes 
CNNs an influential deep learning model for extracting and 
learning hidden features from data. The convolutional layer 
of CNNs generates feature maps by conducting operations 
on input data with convolutional kernels. Subsequently, the 
pooling layer performs operations on the feature maps to 
aggregate features and reduces the number of parameters, 
establishing the groundwork for feature extraction from 
input data. This allows CNNs to effectively utilize time-series 
data for extracting and learning hidden features.

In contrast, Long Short-Term Memory networks 
(LSTMs) are emerging deep learning neural networks widely 
applied to process sequential data. Demonstrating excellent 
performance in tasks such as text classification, machine 
translation, and speech recognition Bentes C, et al. [23], 
LSTMs utilize three gate units (input gate, forget gate, and 
output gate) to control the updating and output of internal 
states. Adaptively adjusting the states of gate units based 
on input data and previous time-step information enables 
LSTMs to selectively process data. Additionally, LSTMs use 
special memory cells to efficiently manage information from 
different positions, selectively forgetting and remembering 
past Medsker LR, et al. [24].
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Information, thereby preserving long-term dependencies 
and avoiding issues like vanishing or exploding gradients. 
However, traditional LSTMs face challenges of training 
instability and gradient vanishing, particularly in modeling 
long-term dependencies when dealing with larger input data 
and more information [25]. To address these challenges, 
some researchers have integrated CNNs with LSTMs Shi Z 
and Li M, et al. [26,27], leveraging CNNs for extracting high-
dimensional features and LSTMs for synthesizing these 
features for temporal predictions.

While traditional CNNs often use fixed filter sizes for 
processing time-series data, this approach limits their 
ability to handle features at different time scales, potentially 
leading to imbalanced treatment of temporal features and 
inaccurate assessments of feature importance. Self-attention 
mechanisms, on the other hand, capture dependencies 
within time series by enabling weighted calculations on input 
at each time step based on historical information [18]. This 
enhancement improves model performance by adaptively 
learning the weight of each element in the sequence, allowing 
the model to focus on the most informative elements within 
the input sequence.

Addressing issues related to feature importance neglect 
when combining CNNs and LSTMs and aiming to better 
utilize contextual information from both preceding and 
subsequent data, this study constructs a hybrid model based 
on an attention mechanism, termed CNN-BiLSTM, as the 
generator network.

The input layer of the constructed generator network 
receives pre-processed data and employs a Convolutional 
layer for filtering operations to identify different features 
within the data. The Average Pooling layer reduces the size 
of feature maps by selecting the average value in each sub-
region, thus reducing the number of network parameters, 
lowering computational costs, and helping to reduce 
over-fitting. The Batch Normalization layer improves the 
training speed and performance of deep neural networks, 
enhancing the model’s robustness and generalization 
capability, and reducing over-fitting. The Self-Attention layer 
learns more effective feature representations, enhancing 
the model’s expressive power and generalization ability, 
resulting in improved prediction accuracy and efficiency. 
The Bidirectional LSTM layer processes input sequences 
simultaneously in both forward and backward directions, 
capturing relationships within the sequence more effectively. 
The Dense layer performs linear transformations on the 
data, followed by nonlinear activation, further enhancing the 
model’s expressive power. Finally, the data is flattened into a 
one-dimensional vector, and the output layer produces the 
model’s prediction results. The generator network structure 

is illustrated in Figure 1.

 

Figure 1: Structure diagram of generator network.

Discriminator

The discriminator network of the proposed model 
processes input data, which combines generated stock 
closing prices from the generator with real stock closing 
prices. This approach aims to increase the length of the input 
data and enhance the discriminator’s accuracy in learning 
classification.

The convolutional layer plays a crucial role in enabling 
the model to learn valuable features from both real stock data 
and generated predicted stock data, contributing to improved 
classification accuracy. Following the convolutional layer, 
the average pooling layer reduces the dimensionality of the 
output, eliminating unnecessary information and enhancing 
the model’s robustness and generalization capability.

To ensure robustness and stability, the batch 
normalization layer normalizes the output from the 
average pooling layer, mitigating issues such as gradient 
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vanishing or exploding. In this study, three CNN units, each 
comprising a convolutional layer, an average pooling layer, 
and a batch normalization layer, are selected to reinforce the 
discriminator’s performance. Their primary function is to 
discern the authenticity of input data, determining whether 
the data is derived from the real dataset or generated by the 

generator.

The discriminator’s output is a scalar value (score) 
ranging between 0 and 1, with a score closer to 1 indicating 
that the input data closely resembles real data. The structure 
of the discriminator network is illustrated in Figure 2.

 

Figure 2: Discriminator network structure diagram.

Build CAL-WGAN-GP Model

The combined generator and discriminator networks 
described above constitute the CAL-WGAN-GP model 
proposed in this study. The training process of the model 
follows these steps:

Step 1: Initialize the weights of the generator and 
discriminator networks. 

Step 2: Iterative Training:
•	 In the discriminator network, train the discriminator 

using real data samples to obtain the error on the real 
data. Then, train the discriminator using a mixture of fake 
data samples generated by the generator and real data 
samples to obtain the error on the generated data. Apply 
gradient penalty to constrain the difference between 
these two errors, resulting in the discriminator’s error. 
Finally, update the discriminator’s parameters using 
gradient descent based on this error.

•	 In the generator network, train the generator using 

the generated data to train the discriminator network. 
Update the generator’s parameters based on the error 
provided by the discriminator network.

•	 To eliminate fake gradients and enable the generator 
to generate higher-quality data, train the discriminator 
network once while training the generator network 
multiple times. In this study, the value of n, which 
represents the number of times the generator network 
is trained for each training of the discriminator network, 
is set to 3.

Step 3: Repeat the above Step 2 until the model converges.

The structure of CAL-WGAN-GP is illustrated in Figure 
3. This study begins by pre-processing the dataset and then 
employs the training process of the described model on the 
pre-processed data. Finally, the model computes gradient 
penalties, updates gradients, and consequently updates 
the parameters of both the discriminator and generator 
networks to achieve convergence.
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Figure 3: CAL-WAGN-GP structure diagram.

The loss function of CAL-WGAN-GP is based on the loss 
function of WGAN-GP. The loss function of WGAN-GP replaces 
the Jensen-Shannon divergence with the Wasserstein 
distance. Unlike the optimization objective of the original 
GAN, the optimization goal of WGAN is to minimize the 
distance between the probability distributions of real data 
and generated data.

Its loss function consists of three components:
1. Generator’s loss function: This part of the loss function 

is the same as the original WGAN, aiming to maximize 
the Wasserstein distance between samples generated by 
the generator and real samples.

2. Discriminator’s loss function: This part of the loss 
function is also the same as WGAN, aiming to minimize 
the Wasserstein distance between real samples and 
generator samples.

3. Gradient penalty term: This is a new feature of WGAN-
GP, which adds an additional regularization mechanism to 
the discriminator’s loss function to constrain the weight 
distances. Specifically, when calculating the Wasserstein 
distance between real samples and generator samples, a 
penalty is applied to the gradients, making the gradients 
of the discriminator with respect to generator samples 
smoother. This helps avoid erroneous adversarial 
training between the generator and discriminator and 

improves the efficiency of the generator in generating 
data.

The mathematical expression of the loss function is 
shown in equation (1).
 

[ ] [ ] ( )ˆ

2

ˆ ˆ ˆ( ) (z) x ( ) 2
ˆ( ) ( ( )) ( ) 1

data z xWGAN GP x p x z p p x xL E f x E f G z E f xλ−
 = − + ∇ −    

 

(1)

In the equation, ( )f x represents the output of the 
discriminator for real sample x , ( ( ))f G z represents the 
output of the discriminator for generated sample ( )G z , x̂  
is a random linear interpolation between real and generated 
samples, λ  is a hyper parameter, ( )dataP x  and (z)zP
are the probability distributions of real data and the prior 
distribution in the latent space, and G(z)  is the generator 
function.

Experiments

Dataset

The daily stock dataset of China Ping An (sh.601318) 
from the Shanghai Stock Exchange encompasses a variety of 
features, including opening price, closing price, highest price, 
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lowest price, trading volume, percentage change, and more. 
These features, extensively employed in related literature 
[28], provide rich information for predictive models, 
rendering the dataset highly valuable for research purposes.

For this study, daily stock data from China Ping An, a listed 
company on the Shanghai Stock Exchange (sh.601318), was 
selected. To facilitate the model in more accurately capturing 
hidden information within the data, the study incorporated 
features defined in the method and constructed the China 
Ping An stock dataset. Additionally, daily stock data from 
other insurance companies within the same industry as 
China Ping An, such as China Life (sh.601628), New China 
Insurance (sh.601336), and Pacific Insurance (sh.601601), 
were selected. These datasets were constructed using the 
same data processing methods.

Data for this experiment was downloaded using the 
baostock package in Python, covering the time period from 
January 4, 2012, to December 30, 2022. As stock market data 
is not updated during market holidays, the dataset excludes 
data for weekends or holidays. The number of data points in 
each stock dataset is 2621.

Given that stock data is collected sequentially over time 
and represents two-dimensional data, but neural networks 
require three-dimensional input, a sliding window approach 
with a window size of 30 was employed. This transformation 
converted the two-dimensional data into three dimensions, 
representing the total data samples (samples), the length of 
the sliding window (time-steps), and the number of stock 
features (features). Subsequently, the transformed data, post 
sliding window processing, was split into a training dataset 
and a testing dataset in chronological order. The first 70% of 
the data served as the training set for model training, while 
the remaining 30% constituted the testing set for analysing 
and evaluating the model’s prediction performance.

The training set comprises 1885 data points (the first 
70%), and the testing set consists of 786 data points (the last 
30%). Following sliding window processing, the shape of the 
training dataset is (1835, 30, 25), and the shape of the testing 
dataset is (786, 30, 25).

Data Pre-Processing

In the original dataset, there might be instances of 
missing values or corrupted data. As a preliminary step, the 
experiment replaces these missing values or corrupted data 
with zeros. Substituting missing values or corrupted data 
with zeros serves to standardize the input dataset, facilitating 
subsequent data processing and analysis.

In stock data, variables like stock opening prices, highest 
prices, lowest prices, etc., are price data, while trading 
volume is quantitative data. Technical indicators also have 
different units of measurement. Inputting unprocessed 
data into the model can introduce certain disturbances in 
the prediction results due to differences in data units. To 
eliminate the influence of these disparities in data units, 
this experiment applies the Min Max Scalar function from 
the Sklearn. Pre-processing library to normalize the data. 
This normalization process ensures that all data are within 
a consistent numerical range. As a result, the input features 
of stock data become more effective and accurate, enhancing 
the model’s ability to predict stock data. The formula for data 
normalization is shown in equation (2)
 min

max min
x xxscaled

x x
−

=
−

     (2)

In the equation, x represents the original data, xscaled 
represents the normalized data, x𝑚i𝑛 represents the
minimum value in the original data, and xmax represents the 
maximum value in the original data.

Evaluation Indicators

To comprehensively assess the predictive capability 
of the model from different perspectives, the experiment 
employs four evaluation metrics to quantify model 
performance. These metrics include Root Mean Squared 
Error (RMSE), Mean Absolute Error (MAE), Mean Absolute 
Percentage Error (MAPE), and R-squared coefficient (R^2). 
The formulas for calculating these four metrics are as shown 
in equations (3) to (6):

1

1 ˆ
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n
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= −∑
     

 (4)

1

ˆ100% n
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2 1

2

1

ˆ
n

t t
t
n

t t
t

x x
R

x x

=

=

−
=

−

∑

∑
     (6)

In the equation, ˆtx represents the model’s predicted 
result, tx  represents the actual values in the dataset, tx  
represents the average value of tx , and n represents the 
total number of data points in the dataset.
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MAPE (Mean Absolute Percentage Error) represents the 
relative error between predicted values and actual values. A 
lower MAPE indicates a smaller error between predicted and 
actual values, signifying more accurate predictions. RMSE 
(Root Mean Squared Error) is used to assess the extent of 
error between predicted values and actual values. It reflects 
the deviation between predicted and actual values, with 
smaller RMSE values indicating lower model bias and better 
model performance. MAE (Mean Absolute Error) measures 
the mean absolute value of the errors between actual values 
and predicted values. Smaller MAE values suggest relatively 
more accurate predictive performance by the model. R2 
(R-squared) coefficient is employed to gauge the correlation 
between predicted values and actual values. The closer R2 is 
to 1, the stronger the model’s predictive capability, indicating 
its ability to accurately reflect the characteristics of the 
sample population.

Baseline Methods

To validate the stock prediction method proposed 
in this experiment and assesses its ability to enhance 
prediction accuracy, several baseline models were chosen for 
comparative experiments. Below, we provide an overview of 
the structures and relevant parameters of each model.

LSTM: The LSTM network comprises two layers of Long 
Short-Term Memory (LSTM) layers. The number of neurons 
in each layer is configured as 21 and 49, respectively. 
Following the LSTM layers, there is a fully connected layer 
with 43 neurons, and finally, an output layer with 3 neurons.
GRU [29]: The GRU model consists of 2 layers of Gated 
Recurrent Unit (GRU) networks. The number of neurons 
in each layer is set to 75 and 157, respectively. Following 
these GRU layers, a fully connected layer with 187 neurons 
is concatenated, and subsequently, an output layer with 3 
neurons is added.
CNN-LSTM: In the CNN-LSTM model, a one-dimensional 
convolutional neural network (1D CNN) is configured with an 
output dimension of 157. The size of each one-dimensional 
convolutional kernel window is set to 2, and the same data 
padding method is employed. Subsequently, the data passes 
through a one-dimensional average pooling layer with a 
pooling window size of 2. The output data from this layer is 
then fed into an LSTM network. The LSTM network has 60 
neurons. Following the LSTM layer, there is a fully connected 
layer with 130 neurons. Finally, the output layer is configured 
with 3 neurons.
Basic WGAN-GP: In the Basic WGAN-GP model, the 
configuration of the discriminator network, loss function, 
and learning rate aligns with that of the CAL-WGAN-GP 
model. However, the generator network in the Basic WGAN-
GP model is set as the aforementioned GRU network.

Experimental Environment and Parameter 
Settings

The CAL-WGAN-GP model and the baseline models 
were both constructed and executed in a 64-bit Windows 11 
operating system, utilizing identical hardware and software 
environments. The essential hardware and software 
configuration details are provided in Table 1.

Software/Hardware Configuration
CPU AMD 5800H
GPU RTX 3050

Python 3.7.16
Tensor flow 2.4.0

CUDA 11.1
Keras 2.4.3

Numpy 1.19.3
Pandas 1.3.5

Scikit-learn 0.22.1
Matplotlib 3.4.0

Table1: Software and hardware configuration.

In order to optimize the prediction performance of 
the model, this experiment uses the whale optimization 
algorithm and multiple repeated experiments to determine 
various parameters of the model, such as the learning rate, 
the number of neurons, and the number of network layers. 
According to the changes in the loss curve, each baseline 
model is trained for 100 rounds, the CAL-WGAN-GP model is 
trained for 230 rounds, and the data batch size is set to 128.

To optimize the predictive performance of the models, 
this experiment utilized the Whale Optimization Algorithm 
and conducted multiple repetitions to determine various 
model parameters such as learning rates, the number of 
neurons, and network layers. Based on the changes in the 
loss curves, all baseline models were trained for 100 epochs, 
while the CAL-WGAN-GP model was trained for 230 epochs, 
with a batch size set to 128.

The Adam optimizer has been proven to be one of the 
most effective optimizers for training neural networks 
[30]. Its key feature is its ability to adaptively compute the 
learning rate and momentum for each weight, thereby 
helping the generator and discriminator networks achieve a 
better balance in learning and avoiding the issues of gradient 
explosion or vanishing. Since the generator and discriminator 
play distinct roles in the model, the learning rate settings 
differ slightly. In the generator network, the learning rate 
is set to 0.0001, allowing for slower learning of the data 
distribution and the generation of more accurate samples. In 
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the discriminator network, the learning rate is set to 0.0004, 
which enables faster learning for improved discrimination 
between real and fake samples. Similarly, the optimizers for 
all baseline models are also set to use the Adam optimizer.

Stock market prices are influenced by multiple factors, 
necessitating the consideration of various variables and 
their interactions when predicting future trends. Employing 
a multi-step forward prediction approach, the model utilizes 
historical data for incremental forecasting and adjustments, 
thereby enhancing its predictive capabilities and reducing 
prediction errors. In the experiments, the historical window 
size was set to 30, while the future window size was set to 3. 
This means that the model predicts the stock trends for the 
next 3 days based on historical data from the past 30 days. By 
observing the model’s prediction results, investors can gain 
insights into market trends and changes, allowing them to 
make informed decisions.

Analysis of Experimental Results

The CAL-WGAN-GP model endeavors to predict the 
closing prices of China Ping An, China Life, New China 
Insurance, and Pacific Insurance stocks by leveraging insights 
gained from their historical data. Comparative evaluations 
are conducted against baseline models, including LSTM, GRU, 
CNN-LSTM, and Basic WGAN-GP. To enhance the robustness 

of the experimental findings, each model undergoes five 
repetitions of experiments on the test dataset, and the results 
are averaged to mitigate potential errors.

Table 2 presents a comprehensive comparison of CAL-
WGAN-GP with various baseline prediction models on 
the test datasets of China Ping An, China Life, New China 
Insurance, and Pacific Insurance. The bolded data in the table 
signifies the best test results achieved for each respective 
dataset. In an effort to offer a more tangible depiction of the 
experimental outcomes and their alignment with real stock 
data, a fitting evaluation is performed on any continuous 100 
trading days selected from the same experiment for the test 
datasets of China Ping An, China Life, New China Insurance, 
and Pacific Insurance.

Visual representations in Figures 4-7 are designed 
to enhance clarity in observing the experimental results 
and assessing the conformity of model predictions with 
actual stock closing prices. In these graphs, the horizontal 
axis represents the prediction data for 100 trading days 
spanning from the 400th to the 500th day within the test 
dataset, while the vertical axis illustrates the closing prices 
of the stocks. This graphical presentation facilitates a more 
insightful examination of the model predictions in relation to 
the observed stock closing prices.

Evaluation index LSTM GRU CNN-LSTM WAGN-GP CAL-WAGN-GP

Ping An of China

MAPE 5.604 4.89 6.214 4.042 3.083
RMSE 3.851 4.208 4.18 3.233 2.615
MAE 3.434 3.235 3.779 2.437 2.004
R2 0.936 0.952 0.927 0.963 0.973

China Life Insurance

MAPE 7.014 10.11 8.572 11.809 6.453
RMSE 2.91 4.179 3.437 4.982 2.699
MAE 2.498 3.636 3.071 4.299 2.175
R2 0.751 0.567 0.664 0.118 0.922

New China Insurance

MAPE 7.434 6.626 7.507 8.411 5.152
RMSE 3.943 4.672 4.242 4.693 2.699
MAE 3.48 3.376 3.573 3.963 2.279
R2 0.876 0.873 0.867 0.811 0.922

Pacific Insurance

MAPE 6.23 6.149 6.809 8.85 5.007
RMSE 2.353 2.665 2.561 3.431 1.915
MAE 2.005 2.003 2.196 2.858 1.472
R2 0.87 0.865 0.848 0.699 0.876

Table 2: The prediction performance of each model in the four stock data sets.
 

Analysing the outcomes presented in Table 2, it is 
evident that the R2 coefficient predicted by each model 
closely approximates 1, indicating a strong fitting effect. The 

CAL-WGAN-GP model outperforms the compared baseline 
models (LSTM, GRU, CNN-LSTM, and Basic WAGN-GP) 
across metrics such as MAPE, RMSE, and MAE, showcasing 



Open Access Journal of Data Science & Artificial Intelligence10

Zhao B, et al. Improved Generative Adversarial Network Stock Price Prediction Method. J Data Sci 
Artificial Int 2024, 2(1): 000111.

Copyright© Zhao B, et al.

superior predictive accuracy. Specifically, in comparison 
to the baseline models, the CAL-WGAN-GP model exhibits 
an average increase of 40.8%, 35.2%, and 42.9% in MAPE, 
RMSE, and MAE, respectively, on the China Ping An dataset. 
On the China Life dataset, the average increases are 28.5%, 
27.4%, and 32.9%, respectively.

 
For the Xinhua Insurance dataset, the predicted MAPE, 

RMSE, and MAE experience an average increase of 30.7%, 
38.1%, and 36.4%, while the Pacific Insurance dataset sees an 
average increase of 27.0%, 29.0%, and 33.6%, respectively.

In summary, the CAL-WAGN-GP model consistently 
outperforms the baseline models across all four datasets, 

demonstrating its accuracy and robust predictive capabilities. 
It stands out as an effective model for forecasting the closing 
prices of insurance stocks, providing valuable insights for 
investors to make informed and precise investment decisions.

Observing Figures 4-7, it is noticeable that there exists a 
certain degree of error in the fitting curves of various models 
when compared to the actual trends in stock data. However, 
these fitting curves generally capture the overall trend in 
real stock closing prices. Notably, CAL-WGAN-GP exhibits 
fitting curves that closely align with the actual trends in 
stock closing prices, indicating its superior ability to make 
accurate predictions of stock closing prices.

Figure 4: Partial 100-day fitting graph of Ping A test set in China.

Figure 5: Partial 100-day fitting graph of China Life test set.
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Figure 6: Partial 100-day fitting graph of Xinhua Insurance test set.

Figure 7: Partial 100-day fitting graph of the Pacific Insurance test set.
 

Conclusion

This paper introduces an innovative approach, CAL-
WGAN-GP, designed for predicting closing prices in the 
insurance industry’s stock market. Employing a data 
generation strategy, this method enhances data quality 
and stock price prediction accuracy by integrating a self-
attention mechanism and a CNN-BiLSTM model into the 
generator network.

Through comprehensive experiments conducted on 
four distinct stock datasets, CAL-WGAN-GP consistently 
outperforms baseline models across four key evaluation 
metrics: Mean Squared Error (MSE), Root Mean Squared 
Error (RMSE), Mean Absolute Error (MAE), and R-squared 
(R2). Notably, it achieves the highest level of data fitting 
and demonstrates a commendable degree of generalization 
ability. These results provide valuable insights into the 
development of generative adversarial network-based 
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models for accurate stock price prediction.

In future research endeavors, we plan to investigate the 
impact of additional data features and model parameters on 
stock data prediction. Additionally, we aim to explore the 
model’s generalization capabilities across a more extensive 
array of stock datasets.
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