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Abstract 

Obesity is assuming epidemic proportions. We don’t have any medical therapy that can be used for long term. Although 

bariatric Surgery (BS) results in immediate weight loss neither it can be afforded by all individuals nor is it safe with the 

comorbidities of obesity. Hence it has become essential to understand the etiopathology of increasing obesity by leaps 

and bounds to get a long-term sustainable cure. Volkow, et al. gave a comparison of obesity, simulating that of patients of 

drugs of abuse, where compulsive intake of tasty food, that is high in lipids and sugars, much >the metabolic 

requirements. Although hypothalamus remains the basic area where integration of circulating signals like leptin, ghrelin 

and nutrients occurs from the periphery further it is influenced by both higher centers along with sensory influences like 

tastes and smell along with emotional states. Earlier we had reviewed how different higher centers influence 

hypothalamus for final intake of food, here we discuss in detail the role of mesolimbic pathways as far as the rewarding 

part of feeding is concerned. Role of dopamine signaling, its receptors and genes controlling are further discussed in 

detail. 
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Ventral Tegmental Area; NAc: Nucleus Accumbens; CCK: 
Cholecystokinin; GLP-1: Glucagon-Like Peptide 1; TG: 
Triglycerides; CM: Chylomicron; LPL: Lipoprotein Lipase; 
ApoB48: Apolipoprotein B48; ApoE: Apolipoprotein E; 
VLDL: Very-Low Density Lipoprotein; IDL: Intermediate-
Density; LDL: Low-Density Lipoproteins; PFC: Prefrontal 
Cortex; CVO: Circum Ventricular Organs; ER: Endoplasmic 
Reticulum; D2R: D2 Receptor; BMI: Body Mass Index; 
BOLD: Blood Oxygen Level Dependent; D2BP: D2R-like 
Binding Potential; PET: Positron Emission Tomography; 
DAT: DA Transporter; 5CSRT: 5 Choice Serial Reaction 
Task; OP: Obesity Prone; OR: Obesity Resistant; AT: 
Adipose Tissue; OFC: Orbito Frontal Cortex; HDL: High 
Density Lipoproteins; MetS: Metabolic Syndrome; PUFA: 
Poly Unsaturated FA; BBB: Blood Brain Barrier; DHA: 
Docosahexaenoic Acid; LCFA: Long Chain Fatty Acids; 
LPC: Lysophosphatidyl Choline; LRP: LDL-Receptor-
Related Protein; AD: Alzheimer’s Disease; DIO: Diet 
Induced Obesity; ROS: Reactive Oxygen Species; SNP: 
Single Nucleotide Polymorphisms; RIP: Receptor 
Interacting Protein; TNFα-R1: Tumor Necrosis Factor 
Alpha Receptor1; TLR: Toll Like Receptor; NGF: Neural 
Growth Factor; PPARδ: Peroxisome Proliferated Activated 
Receptor Delta; FFA: Free Fatty Acids; NR: Nuclear 
Receptors; PG: Prostaglandin; WC: Waist Circumference; 
ADHD: Attention Deficit Hyperactivity Disorder; ACC: 
Anterior Cingulate Cortex. 
 

Introduction 

Incidences of obesity and consequent metabolic 
complications are getting out of hand. Not only is it 
involving adults but children as well. It has become very 
important to understand the etiopathogenesis of the same 

with the increase getting out of proportion and no clear 
medical therapy in sight. We have been trying to search 
for the etiopathogenesis of obesity for over a decade [1-
6]. Since the concept of Food Addiction or brain circuitry 
in obese responds in a manner similar to that of drug 
addicts by Virchow’s group we have been trying to follow 
that hypothesis and further emphasized how it is 
important to study other brain areas involved in cognition 
food reward emotion separately regarding obesity with 
different effects that fronto striatal circuits may override 
the hypothalamic circuits [7]. Here we further try to 
emphasize on the role of increased triglycerides affecting 
the mesolimbic circuits and its influence on various 
genetic factors like the Taq A1 allele carriers and other 
genes like ANKK1 and non-carriers and effect of other 
genes like the FTO gene. 
 

Methods 

We Carried out a review utilizing the Search Engine 
PubMed using the MeSH terms mesolimbic brain system, 
dopaminergic receptors; DRD1-5; Genes related to 
dopaminergic signaling; high fat diet (HFD) fatty acid (FA) 
sensing in brain; saturated fats sensing; role of 
lipoproteins (LP); ANKK1; FTO. As for inclusion and 
exclusion Criteria are all studies limited to food reward 
were initially downloaded and then further articles 
pertaining to fat and lipid metabolism in brain were used 
excluding those specifically for carbohydrate metabolism 
and any article whether favoring reward hypothesis or 
refuting was used. Since limited laboratories are working 
on this field we took out more articles from cross 
references and article search further from names of 
workers method shown in Figure 1. 

 
 

 

Figure 1: Inclusion and Exclusion Criteria. 
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Results and Discussion 

We found a total of 250 articles out of which we 
selected 135 articles for this review. No meta-analysis 
was done. Limitations of this study are as not many 
groups are working on this field namely how TG’s affect 
brain reward system especially ML system and DA 
receptor action including reward circuitry incentive 
salience and, working memory, and other cognitive 
parameters opinion of only 2-3 groups available on this 
subject. 

 
Proper energy homeostasis gets obtained, once energy 

intake along with needs reach an equilibrium at a definite 
metabolic set point. With marked evolutionary changes a 
system that responds markedly and coordinates a variety 
of signals related to hunger along with satiety via 
complicated along with needless interaction of neural 
circuits which had been basically meant for long time 
energy homeostasis. The hypothalamic-brain stem axis 
has been observed to be a key controller of energy 
balance within the central nervous system (CNS). In the 
circulation the signals that correspond to energy like 
leptin, ghrelin, insulin along with nutrients get identified 
by and change the action of specific neuronal areas which 
subsequently involve neuroendocrine, peripheral nervous 
and finally behavioral systems to get accustomed to 
nutrient input and energy demands (Figure 2).  
 

 

 

Figure 2: Peripheral signals regulating feeding. 

This complicated behavioral consequences which 
effect food intake depend on integrative processes from 
higher areas in CNS code for motivation, reward, habit, 
emotional behavior, along with memory which get 
influenced by nutritional status and several hypothalamic 
along with extra hypothalamic networks of brain. Crucial 
in these being mesolimbic (ML) circuits, where dopamine 
(DA) secretion has been demonstrated to code for the 
reinforcing along with motivating qualities of High fat 
(HF) along with high sugar (HFHS) foods [8,9]. Especially 
the projections of DA neurons from the ventral tegmental 
area (VTA) in the midbrain to the nucleus acumbens 
(NAc) is a basic neural substrate for the action of drugs of 
abuse, hence the ML is known as the ‘’brain reward 
circuit’’. It is clear that energy associated signals like 
leptin, ghrelin, insulin also target ML [10]. 

 
ref no. 65-Central integration of peripheral nervous 

and hormonal inputs that regulate energy balance. Gut-
derived nervous and circulating factors convey a satiety 
signal and include vagal inputs from stomach or digestive 
tracts as well as secreted peptides such as cholecystokinin 
(CCK), PYY3-36, or glucagon-like peptide 1 (GLP-1). 
Ghrelin is secreted primarily by the stomach and 
positively regulates feeding while insulin or leptin act as 
long-term satiety factors. Ghrelin, leptin, and insulin have 
targets in the hypothalamus as well as the reward 
circuitry. Dietary lipids are esterified into triglycerides 
(TG) and packaged in nascent chylomicron (CM) at the 
level of the gut, secreted first in to the lymphatic system, 
and then the bloodstream. TG-rich CM gradually loses 
their lipid content upon action of tissue lipoprotein lipase 
(LPL) and ultimately recaptured as remnant CM by the 
liver. In the process CM exchange their native 
Apolipoprotein B48 (ApoB48) component for the 
apolipoprotein E (ApoE). Very-low density lipoprotein 
(VLDL), produced by the liver, represent another source 
of TG-rich particles which, upon action of LPL, give rise to 
intermediate-density (IDL) and low-density (LDL) 
lipoproteins. LPL is also expressed in the brain in both 
hypothalamic structures and ML structures including the 
prefrontal cortex (PFC), the hippocampus, ventral 
tegmental area, and throughout dorsal and ventral 
striatum. TG hydrolysis in the NAc regulates the 
rewarding and motivational aspects of food intake and 
could be an important mechanism linking dietary input 
with reward. 
 

HFD, Obesity and DA Signaling 

Hypothalamic areas are present near the circum 
ventricular organs (CVO) and are considered to be the 
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primary neural areas affected by nutrient excess [11]. 
Molecular explanation s concerning increased nutrient 
consumption and changes in neural function involves FFA 
metabolism in the hypothalamus [12], nutrient caused 
endoplasmic reticulum(ER) stress [13], inflammation [14] 
or resistance to energy associated signals [13,15]. Further 
there is proper proof that directly DA signaling gets 
influenced by HFD in humans along with rodents. Like 
massive dopamine D2 receptor (D2R) present in the 
striatum is inversely associated with body weight [16], 
along with compulsive eating observed in obese rats, 
when measurement was done of tasty food consumption 
inspite of aversive conditioned stimulus [17]. Silencing 
the D2R in the dorsal striatum by genetic means, 
increases the formation of a reward-absent state along 
with compulsive eating in rats that have faced HFD. 
Moreover in rats individual differences in motivational 
effect of food-associated cues, further predicted how 
much gain in weight would be there along with their 
trying to work to obtain the food rewards. Greater craving 
correlated with a fast alteration in dorsal striatum DA 
signaling, although not with opioid signaling in the NAc 
[18]. 

 
Earlier studies demonstrated that in humans striatal 

D2R present in obese people were significantly less and 
had a negative association with body mass index (BMI) 
[16,19]. Moreover blood oxygen level dependent (BOLD) 
signals in striatal areas, checked using functional 
magnetic resonance imaging (fMRI) was reduced in obese 
vis a vis lean patients, pointing to defective neuronal 
activity in the striatal neurons [20]. Conversely obesity 
was related to higher BOLD response related to food 
associated cues in brain areas that controlled reward and 
motivation. Underactive striatal neurons at baseline 
response in obese subjects, in contrast to them showing 
sensitized response to food signals are what above data 
points. For quantification of striatal D2R-like binding 
potential (D2BP), Guo, et al. [21], utilized positron 
emission tomography (PET) and found a correlation 
between striatal DA binding in obesity, that implicated DA 
signaling in this process. A negative association was 
observed of BMI with D2BP in the ventral striatum, in 
contrast to dorsal striatum, where both BMI along with 
either habit of eating or eating at any opportunity was 
positively associated with D2BP. It is still not clear 
whether changes in DA signaling causes obesity or occurs 
secondary to weight rise, with this research observing a 
complicated way of DA signaling abnormalities in obese 
people, in whom different alterations might generate a 
state of reward deficiency along with increased habitual 
response. 

Various studies emphasize that the presence of defects 
that are present within ML function form independent of 
increased body weight and despite getting exaggerated by 
obesity state, might be an initial outcome of exposure to 
dietary fat. Despite degree and what direction these 
alterations take differ as per the diet, strain or which area 
of brain has been used; HFD exposure can independently 
as far as body weight rise is concerned, lead to increased 
D2R increase, Increase DA turnover rate, function of the 
DA transporter (DAT), increase amphetamine response 
and response to food reward [22]. If animals were given 
calories that had been restricted calories through HFD but 
not high sugar diet showed reduced attention and 
increase impulsivity once checked by 5 choice serial 
reaction task (5CSRT) [23]. Further reduced exposure to a 
fat source also initiated binge like eating behavior along 
with sensitivity of ML activity, while mice that had 
absence of ghrelin receptor did not accelerate palatable 
food intake that indicated that energy associated signals 
like ghrelin participate in ML response to energy enriched 
food [24]. All fat sources equally interfered with ML 
activity. Exposure to saturate but not unsaturated fat 
caused alteration in D1R and DAT excess in the ML [25]. 

 
Emphasis on TG metabolism was paid, in the form of it 

being a big predictor of compulsive property. SD rats 
might be subdivided into obesity prone (OP) and resistant 
(OR) on the property of metabolic characteristics along 
with increase in body weight in a small 5-day HF 
challenge, in which changed TG that is circulating, fat 
partitioning that has enhanced LPL activity in the adipose 
tissue (AT), reduced muscle lipid transport were found as 
OP rats signatures [26]. Following a meal plasma TG 
predicted markedly, the coming body weight rise in OP 
rats, which is a higher TG rise following a meal (high TG 
responders) that was associated with excessive chances 
to eat extra [27]. Extracellular DA levels as investigated 
using micro dialysis in the NAc was decreased at both 
basal condition and in response to HFD or peripheral 
injection of a fat emulsion (intralipid) in OP high TG 
responders. Furthermore, on bypassing or sensory 
reward via systemic injection, TG emulsion and not 
glucose caused an increase in DA release in the NAc on 
measuring via micro dialysis [28]. Further impaired 
cognition in obese mice got better by giving 
pharmacologically lesser plasma TG, although centrally 
injecting TG reduced cognition in lean mice [29]. Sun, et 
al. utilized fMRI in humans showed an association 
between plasma TG along with ghrelin with the degree of 
the whole brain BOLD response to food reward. Larger 
postprandial decreases in ghrelin or rise in TG correlated 
with a decreased BOLD response to palatable milk shake 
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in the limbic circuit having midbrain, palladium, 
amygdale, medial orbito frontal cortex (OFC) and 
hippocampus [30]. Circulating albumin bound FFA, 
glucose, or insulin didn’t correlate with brain responses 
to food reward. 
 

Role of TG or FFA 

Main constituents of brain are lipids that get formed 
from both endogenous syntheses along with dietary 
intake [31,32]. Plasma lipids can be found as FFA that is 
bound to albumin and TG rich lipoproteins [33]. 
Lipoproteins represent a complex interrelation between 
apolipoproteins and phospholipids, which create a polar 
environment for lipid passage. Lipoprotein Lipase (LPL) 
that are expressed in peripheral tissues influences 
hydrolysis of TG from TG-rich particles like very low 
density Lipoproteins (VLDL), and gut brought 
chylomicrons (CM) to produce particles having decreased 
lipid amount like high density Lipoproteins (HDL). 

 
What is the method by which lipids get access into 

brain? Utilizing positron emission tomography (PET) 
tracing research in association with radiolabelling of FA’s 
that are injected peripherally demonstrated dynamic 
incorporation of arachidonic acid or palmitic acids in the 
brain [32,34]. Metabolic Syndrome (MetS) was found to 
be correlated with enhanced whole brain FFA uptake and 
particularly an 88% rise in hypothalamic FFA uptake [35]. 
Of the FFA, essential FFAs, poly unsaturated FA (PUFA) 
can cross the blood brain barrier (BBB) via modes poorly 
understood till recent finding of Mfsd2a (major facilitator 
super family domain containing 2a) as being the carrier 
for the absorption of the essential FA’s docosahexaenoic 
acid (DHA) in the brain [36]. Earlier free DHA was 
thought to be the main source of brain DHA, this study 
demonstrated that DHA with long chain fatty acids (LCFA) 
get transported via Mfsd2a as lysophosphatidyl choline 
(LPC) but not FFA [37]. This emphasized the complicated 
and redundant methods used for brain LCFA and DHA 
homeostasis. 

 
Circulating apolipoproteins vary from 10nm for HDL, 

20-30nm for LDL, 30-40nm for IDL, and 5-80nmfor VLDL 
and CM. Some small HDL may cross the BBB is known but 
how larger TG rich particles like VLDL or CM has been 
questioned on earlier tracer studies and with the initial 
presumption that the brain does not have a lymphatic 
system [33,38]. Following food intake lipids get packed in 
CM, and get secreted via lymphatic system and then into 
the main circulation, from where these large particles 
need to cross BBB at the point of fenestrated capillaries to 

get into the CNS. But recent finding of a lymphatic system 
in the mouse brain indicates the presence of a new 
passageway through which TG rich particles might be 
there for CSF interchange [39]. 

 
High levels of various LP receptors like VLDLR, LDLR, 

oxidized HDL receptors, and accessory proteins like LDL-
receptor-related protein (LRP). Selective binding of these 
apolipoprotein compounds along with genetic along with 
pharmacological methods have emphasized the role of 
apolipoprotein signaling in the development of brain and 
function involving learning as well as memory, in addition 
to synaptic plasticity [40,41]. Like apolipoprotein E that is 
a component of circulating CM and IDL, binds to LDLR is 
considered a main risk factor of the usual forms of 
Alzheimer’s disease (AD), although brain specific 
overexpression of LDLR increases β-apolipoproteins, 
basically that are produced by astrocytes, and particles 
roughly the size of HDL can get measured in cerebrospinal 
fluid (CSF) [42]. Thus demonstrating that both 
endogenous (astrocyte synthesized) along with 
peripherally formed (postprandial) LP particles affect 
brain functioning. Exact mode of action by which LP 
signaling gets started in brain is not understood and 
probably might involve canonical pathways, local lipid 
delivery and/or changes in cell metabolism that might 
then modulate neuronal action. 

 
TG-lipases that hydrolyse TG into FFA s and mono or 

diacyl glycerol are expressed in huge numbers in the 
brain and especially abundant in ML [33,43]. Brain lipases 
act on TG for mediating lipid deposition within specific 
brain nuclei that have essential functional results [44,45]. 
LPL is the best explored of these as far as energy balance 
is concerned. Changed brain FFA and PUFA levels was 
seen in pan neuronal LPL knockout animals (NFXLPL-/-), 
who had late onset obesity developing, besides 
demonstrating age-associated reduction in cognitive 
function and rise in anxiety. Role of LPL in substructures 
of brain have been studied with > precision utilizing more 
restricted gain or loss of function approaches. Like 
hippocampal LPL controls energy expenditure and 
autonomic tone via manufacture on the ceramide based 
signaling pathway [46,47]. 

 
Role of lipases at the time of brain development could 

probably explain the deficits seen in LPL knockout 
models; continued expression in isolated nuclei in 
adulthood can stimulate one to posit that brain TG lipases 
control local TG breakdown and LCFA availability. 
Although both TG and LCFA are circulating lipid species 
they appear in separate time points in the blood stream 
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drastically opposite with regard to food intake. After meal 
intake there is collection of TG rich particles, while LCFA 
are liberated by fasting stimulated lipolysis and thus get 
enhanced at the time of absence of food [48]. Additionally 
these LCFA s can get transferred via FA transporters 
easily that are present in great numbers in most brain 
structures, TG need initial breakdown through TG-lipases 
that markedly prevents its central presence. Hence brain 
structures that possess TG-lipases might have rare quality 
of finding post prandial alterations in dietary lipids. The 
actual presence of LPL in ML indicates that there is an 
importance of TG sensing in post prandial changes 
brought through TG differences in reward valuation. That 
way breakdown of TG in the ML along with downstream 
adaptive changes take place once FFA s get released might 
have a direct effect on DA or other ML signaling pathways 
for controlling rewards looking behavior. 
 

TG Sensing in Reward ML System 

Berland, et al. developed a model where TG emulsion 
(intralipid TM) got perfused via the carotid artery in the 
direction of the brain at a concentration along with rate 
that simulates the post prandial increase in TG, without 
affecting the systemic lipids. With this model they 
revealed that TG can act directly in the brain for 
controlling locomotors activity, food preference, along 
with food seeking behaviors. Brain TG delivery reduced 
operant responding for rewards on a continuing ratio 
schedule, with preference for a tasty HFHS food in a food 
choice paradigm. Direct brain TG deposition reduced by 
approximately 50% night locomotor action and 
amphetamine-induced locomotion. Further TG also 
opposed D2R agonist-induced locomotion, which 
suggested a TG evoked control of the DA activity. 
Knockdown of LPL in NAc selectively had the reverse 
observations, causing increased motivation to food 
rewards working along with intake of palatable food. 

 
Normally transiently there is an increase in TG 

following a meal. But plasma TG remains chronically 
increased in obesity and is not related with reduced 
tropism for calorie high foods, that points that adoptive 
mechanisms take place. To simulate the response of the 
brain to chronic hypertriglyceridemia they utilized 
sustained TG perfusion to lean animals comparing it with 
a model of diet induced obesity (DIO). They modeled 
hypertriglyceridemia with the use of a model of DIO or 
with chronic (7days) TG perfusion in the direction of the 
brain which enhanced brain TG sensing without any effect 
on plasma triglycerides levels. Both the treatments caused 
behavior specific desensitization, where central TG 

sensing was not able to modulate tropism for tasty foods 
anymore but even now reduced locomotor action. This 
adaptive action stimulated by chronic increases in 
circulating TG or brain TG sensing, might explain how 
continuous intake of HF foods overwhelm the controlling 
systems to control weight gain. Central TG sensing can 
directly act in acute reduction in locomotor action which 
precedes metabolic alterations when animals get a 
western diet given to them [49]. On acute brain TG 
sensing it might help to decrease the desire for food 
reward. But if chronically increased TG sensing modes 
desensitize or result in compensatory adaptations so that 
decrease in physical action remain, although motivation 
for HFD becomes resistant to TG-mediated homeostatic 
control. Combination of both decreased physical activity 
and maintained motivation for HF foods will 
automatically equal to body weight gain. 

 
Thus local TG breakdown in brain structures enriched 

with TG processing enzymes may have separate impacts 
as shown by above results. Albumin-bound LCFA’s in the 
circulation might basically act in the hypothalamus and 
act to control feeding and glucose production particularly 
in the period when food is scarce and thus adipose 
lipolysis causes FFA release in high amounts, as compared 
to LPL mediated hydrolysis of TG particles collected 
following a meal in ML structures may take part in the 
coding for incentive as well as motivation characteristics 
of food. While acute TG exposure, generally on meal 
intake, reduces both rewarding and motivational action of 
food, although chronic exposure causes desensitization, 
with unregulated excessive feeding behavior. 
 

Molecular Aspect of ML Lipid Sensing  

The presence of lipid sensing in the brain was 
introduced by Oomura, et al. [50] and has been studied in 
detail in the past 10yrs. LCFA metabolism controls 
neuronal activity, autonomic control of insulin release, 
food intake and liver glucose production [12,15,51]. 
Sensing of LCFA in hypothalamus covers variety of 
cellular modes of action that are direct entry into the 
tricarboxylic acid cycle (TCA cycle), amino acid controlled 
activation of m TOR [52], autophagy, inflammation via 
nuclear enhancer of kappa-light-chain-enhancer of 
activated B cells (IKK/NFκB) dependent pathways 
[13,53], enhanced mitochondrial lipid β-oxidation, 
mitochondrial respiration getting adapted along with 
reactive oxygen species (ROS) scavenging [54], collection 
of lipid-mediated metabolites like acetyl CoA along with 
malonyl CoA, direct control of protein kinase C action 
[55], activation of membrane receptors via lipid 
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mediation, eicosanoids controlled signaling as well as 
transcription adaptations that get activated by lipids [56]. 

 
Though high calories food is universally present, 

uncontrolled food intake and obesity does not involve 
every person that implicates that the current food 
environment may interact directly with both genetic 
along with epigenetic elements of susceptibility. Taq1A 
allele is a very good candidate regarding this. This affects 
30-40% of population, homozygous dose of the A1 allele 
directly associates with a 30-40% decrease of striatal D2R 
excess [57] which has marked association with addiction 
along with compulsive behavior that has an effect on both 
drugs of abuse, along with feeding. The A1 allele occurs as 
a result of single nucleotide polymorphisms (SNP) that is 
present at the gene which codes for Ankyrin repeat and 
kinase domain containing 1 (ANKK1) near the gene 
encoding D2R [58]. ANKK1 is a receptor interacting 
protein (RIP) kinase; which is a structurally associated 
family of factors which integrate different stimuli that are 
inflammation innate immune response that is 
downstream of tumor necrosis factor alpha (TNFα-R1) 
receptor and Toll like receptor (TLR) and converge on 
cjun-N-terminal kinase (JNK), MAPK activity or NFκB 
signaling pathways [59]. 

 
Human protein-protein interaction studied with the 

use of in silico analysis showed that of the ~30 partners of 
human ANKK1 that have been anticipated, 50% are 
present in the NFkB, JNK, or MAPK pathway [60]. In brain 
ANKK1 is exclusively expressed in astrocytes. These 
astrocytes integrate different metabolic signals for 
coordinating neuronal activity and get targeted by lipids 
directly; particularly saturated fat induced inflammatory 
responses and ER stress brought about via TLR and 
IKK/NFκB signaling [61]. The way ANKK1 of astrocyte 
finally correlated with decreased D2R excess still remains 
a query, again FA metabolism, may give various probably 
modes. Like the D2R and ANKK1 promoters have NFκB 
cis regulatory elements [58,62]; and lipid induced 
prostaglandins that are strong neural growth factor (NGF) 
stimulators, secreted by astrocytes. Further NGF directly 
controls D2R mRNA transcription in return via the NFκB 
signaling pathway [63]. 

 
Though excessive feeding secondary to an acute HFD 

exposure was demonstrated to involve astrocyte 
activation of NFκB, adaptations taking place on long term 
exposure of HFD may involve another partner, namely 
peroxisome proliferated activated receptor delta (PPARs). 
PPARδ is a member of a family of ligand activated 
transcription factors that control number of cellular 

metabolic adaptations that initially respond to LCFA and 
prostaglandins. Further PPARδ has been found to be an 
essential controller of the ML. Like activation of PPARδ by 
LCFA or synthetic agonist reduce opioid synthesis or 
forebrain neurons along with proteins from methyl-4-
phenyl-1,2,3,6-tetra hydropyridine (MPTP) induced loss 
of DA neurons. Striatal PPARδ is directly controlled by 
TLR/NFKB pathway and a PPAR response element is 
present in the AKKK1 promoter [64]. 

 
LCFA signaling in the ML might potentially be 

integrated at the level of the tripartite synapse composed 
of striatal DA neurons and astrocytes, busy in the 
coordinated activation of the ANKK1/NFκB/PPARs triad 
for bringing about the expression of function of D2R 
(Figure 3). Although the ML response to short term HFD 
exposure might be brought about by an NBκB/NGF 
activity on D2R. PPARδ activation by LCFA might cause 
long term transcriptional adaptations in striatal 
structures following HF intake. With this thought, changes 
in lipid sensing in the ML in addition to enhanced 
exposure to food associated cues, both effects of the 
modern food environment, would demonstrate along with 
heighten the result of the ANKK1 polymorphism in 
compulsive behavior. 
 

 

 

Figure 3: Potential mechanism associating central TG 
sensing and reward. 



                                            Open Access Journal of Endocrinology 

 

Kulvinder Kochar Kaur, et al. Chronically Elevated Triglycerides as a Result of High Fat 
Palatable Diet Resulting in a Vicious Cycle on Reinforcing Reward and Dopamine Signaling: 
A Possible Cause for the Obesity Epidemic Worldwide in the Food Environment Available-A 
Comprehensive Review. J Endocrinol 2019, 3(2): 000143. 

  Copyright© Kulvinder Kochar Kaur, et al. 

 

8 

Courtesy ref no-65-Nutritional lipids lead to increased 
synthesis of TG-rich particles and export by the gut. At the 
level of the brain, the tripartite synapse composed of 
neurons and astrocytes will detect changes in nutrient 
availability. Free fatty acids (FFA) enter astrocytes or 
neurons through lipid receptors/transporters or via 
lipoprotein lipase (LPL) mediated breakdown of 
lipoprotein. Once in the cell FFA can enter the TCA-cycle 
but can also directly activate lipid-activated nuclear 
receptors (NR) including proliferated activated receptors 
delta (PPARδ) or the nuclear enhancer of kappa-light-
chain-enhancer of activated B cells (NF-κΒ) signaling 
pathways, or through indirect pathways involving Toll-
like receptor activation, inflammatory processes, ER-
stress, or prostaglandin (PG) synthesis. In turn, activated 
NR and NF-κB exert a direct regulation at the 
transcriptional level on dopamine D2 receptor (D2R). At 
the level of the astrocyte, NF-κB activation leads to 
increased cytokine production which promotes the 
release of the neural-growth factor (NGF). NGF released 
by astrocyte directly regulates neural D2R abundance. 
The astrocyte-specific Ankyrin repeat and kinase domain 
containing 1 (ANKK1) directly interacts with NF-κB and 
MAP kinases. In that regard, mutation of ANKK1 (TaqIA 
A1) would directly impact most FFA-induced cellular 
responses. At the level of DA neuron signaling, early D2R 
response and late β-arrestin mediated responses could 
both be affected by a FFA/ANKK1 initiated pathway. 
 

Why Dopamine 

In ingestive behavior role of DA involves multiple 
factors that include cognitive, appetitive along with 
metabolic domains along with their interactions. Together 
these domains collect information regarding the nutritive 
value and sensory characteristics of food along with the 
state of the organism, for giving priority and changing 
behavior to efficiently acquire and store energy. 
Subsequently many pathways exist through which genetic 
changes which impact DA signaling can affect food intake 
and obesity. Additionally new research positively 
indicates that adiposity, metabolic dysfunction along with 
diets high in saturated fat and sugar adapt in DA 
functions, are molecular, cellular as well as circuit level 
for affecting DA based functions varying from working 
memory and compulsive behaviors to preference of food 
and sensing of nutrients and glucose metabolism control 
[65-71]. Hence variants in DA genetically might affect 
intake besides by conferring initial risk, affecting brain 
adaptations [72]. Thus a vicious cycle gets initiated where 
genetic predisposition affect brain function for helping an 
unhealthy diet and weight increase in obesogenic 

environments, that in turn effects function of the brain for 
promotion of both metabolic and cognitive dysfunction 
and more weight rise. 
 

Role of DRD2 

Multiple independent processes control DA signaling, 
which are DA formation, pre and post synaptic DA 
receptors and presynaptic DA transporters. Genetic 
differences influencing these processes might thus affect 
ingestive behavior and obesity. 5 types of DA receptors 
exist (DRD1-DRD5) that is basically grouped into 2 major 
subclasses: DRD2 like, that have DRD2, DRD3 and DRD4 
and DRD1 like that include DRD1 and DRD5. Though they 
have various distribution patterns in the brain (Figure 4), 
they usually interact to control neurotransmission [73]. 
DRD2 is emphasized because of 
 Differences in the fat mass and obesity associated 

(FTO) gene represent the most powerful polygenic 
adiposity determinants with inactivation of this gene 
impairing DRD2-dependent neurotransmission and 
function in rodents and DRD2 based learning in 
humans [74-76]. 
 

 The Taq1ARFLP that is related with differences in 
DRD2 receptor density [77] was demonstrated to 
interact with an FTO gene variant for affecting 
adiposity; both central along with peripheral insulin 
resistance (IR) as well as DRD2 based learning. Both 
studies showed the effect of FTO in these phenotypes 
was observed to be higher in persons, who also had a 
copy of the Taq1 A1at risk allele or based on persons 
also possessing this genotype. 
 

 Though estimates differ based on ethnicity, approx. 
50% (11-67%for rs8050136) of the European people 
carry an at risk allele for FTO and roughly 35% (23-
56% for rs 1800497) of these people can also be 
anticipated to carry the Taq1 A1 at risk allele 
(HapMap1 and 1000 Genomes2). Thus genetic variants 
affecting DRD2 signaling might affect a big portion of 
the population. 
 

 Lot of studies document reduced DRD2 after DIO, HFD 
in the absence of obesity, along with metabolic 
dysfunction. 

 
Simplified schematic of brain dopamine pathways and 

distribution of DRD2 and other dopamine receptor 
subtypes in areas important for reward. DRD2 shows the 
greatest differential expression in striatal areas. SN = 
Substantia Nigra, VTA = Ventral Tegmental Area, PFC = 
Prefrontal Cortex, ACC = Anterior Cingulate Cortex. 
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Figure 4: Courtesy ref no-135-Dopamine receptor 
subtype distributions. 

 
 

DA-Based Functions Affecting Intake Behavior 

A lot of cognitive functions get controlled by DA 
signaling, essential for optimizing Intake Behavior. The 
DA-fronto-striatal loop participates in working memory, 
cognitive flexibility along with associative learning 
[78,79]. Particularly, working memory along with 
cognitive flexibility work as opposite effects for 
supporting online stability of task-related representations 
and helping the flexible update of these representations 
as an answer to novel input [80]. Thus any deficiencies in 
working memory along with cognitive flexibility in turn 
get related to cognitive inflexibility, impulsivity along 
with compulsive behaviors all being components of 
addictive like behaviors that include overeating [81]. 
 

Big debate exists regarding the exact role of DA in 
associative learning. One thing is known that various 
forms of associative learning are controlled by the fronto-
striatal loop that includes: 
 Model based learning, in which values for the future 

account for goal related behaviors 
 Model free learning, in which earlier learned values 

cause habit development [82], big altercation on exact 
role of DA in these works exists. It has been said that 
DA regulates the exertion of effort [83], signaling of 
reward prediction errors [84], along with imparting 
incentive salience to reward associated stimuli [85]. 
Irrespective of the verified role that DA system imparts 
on moving from model based (like goal 

directed/action-object responding) to model free 
(habitual stimulus-response resonding) learning after 
continuous exposure to reinforces like drugs as well as 
food [86], is a basic characteristic of addictive behavior 
[87] and seen in DIO. 

 
DA projections from the VTA to hippocampus have 

been thought to be responsible for adaptive memory [88]. 
With more precision, this circuit helps in carving 
memories on the side of motivational importance so that 
whatever is recalled has motivational importance and is 
thus adaptive. If this change occurs in obesity remains a 
query, but HFD fed rodents have impairment of 
contextual memory tasks in which they need to remember 
getting food rewards present in different places with 
separate features [89]. 

 
DA has a key part in metabolic sensing [90]. Specially, 

it has been observed that DA function is crucial for the 
integrity of the ‘’gut-brain‘’ axis, that verifies the transfer 
of signals regarding the energy and nutrition given by 
nutrients to homeostatic and reward circuits that regulate 
their acquiring and metabolism. The “gut-brain” axis is 
the system where bidirectional communication takes 
place in circuits in the brain and cellular sensors in the 
GIT. Initially, ingestive behavior and nutrients metabolism 
were thought to be working with relative independence. 
But current work emphasizes on the close relationships 
with direct control of perception and behavior by 
peripheral signals with direct influence of central circuits 
that include DA neurons on nutrients metabolism. 
 

Taq 1A Polymorphisms (rs 1800497) 

Taq1A RFLP has been the most extensively explored 
genetic variant associated with DA Signaling along with 
obesity. 3 variants exist in humans, namely A1/A1,A1/A2 
and A2/A2. Roughly 30 of European, 60% of Asian and 
41% of African (Hapmap and 1000 Genomes) contain one 
or 2 copies of the A1 allele and those that do have 
approximately 30% fewer DRD2’s in the striatum, have 
been demonstrated by Candidate gene studies, although 
this was not replicated by one study [91]. A1 carriers have 
the possibility of having a waist circumference (WC) [92], 
BMI and obesity [93], as revealed by many researchers. 
Similarly GWAS has also suggested these variants in 
obesity. Associations with WC (p=0.01for men and p=0.07 
for women in GIANT3), fasting glycaemia (p=0.02 in 
MAGIC4), insulin sensitivity (p=0.01 in MAGIC) and risk of 
T2DM (p=0,08) in DIAGRAM5). A meta-analysis of 33 
studies having small samples (<100) in majority 
displayed no association between BMI and A1 allele status 
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[94]. It does not come out to be astonishing, as this SNP 
gives an explanation for only a small percent of the 
variance in BMI of the population, that suggest larger 
samples, with measures of adiposity with more precision 
essential for examining trustable associations. Besides 
obesity, the A1 allele is related to a lot of disorders that 
have affected DA Signaling that are attention deficit 
hyperactivity disorder (ADHD), addiction, alcoholism [95-
97]. Following traumatic brain injury bad results, and 
Parkinson’s disease [98,99]. 

 
A1 carriers have decreased glucose metabolism widely 

at the neuro behaviour aspect, decreased grey matter 
density in the substantial nigra, sub thalamic nucleus and 
anterior cingulate cortex (ACC), and decreased activity in 
the prefrontal cortex and striatum at the time of reversal 
learning, working memory, and receipt of monetary 
reward [100-104]. In those who are A1 allele carriers 
have a greater relation with greater impulsivity, bad time 
estimation, steeper delayed discounting, bad working 
memory, affected reversal learning, impaired negative 
outcome learning and bad long term memory [105-108]. 

 
These endophenotypes in turn are related with 

overeating and risk of obesity. Like carriers in contrast to 
noncarriers will work for food, especially if also obese, 
and the ones high in food reinforcement take more snack 
food vs. non carriers and A1 carriers who show low food 
reinforcement [109]. Additionally in a cohort of mainly 
healthy weight Asian American college students, A1 
carriers compared to non-carriers experienced higher 
fast-food and carbohydrate craving and in case of females 
further there was higher urge of taking highly tasty food 
[110]. Moreover in carriers but not in noncarriers a 
positive correlation between response in the OFC to tasty 
food cues and further gain in body fat [111]. But carriers 
also display decreased responses in DA source and target 
regions to the receipt or imagined delivery of an 
anticipated tasty food, with these responses further 
predicting future weight gain [111,112] (Figure 5). 
 

Nutritional inputs such as free fatty acids (FFA) 
promote the action of pro-inflammatory signaling in 
astrocytes and neurons. This results in activation of NF-
kB (the nuclear enhancer of kappa-light-chain-enhancer 
of activated B cells). Through astrocyte-neuronal 
signaling NF-kB regulates the transcription of the DA D2 
receptor (D2R). In addition, within the astrocyte NF-kB 
signaling promotes a cytokine-mediated production of the 
neural-growth factor (NGF), a potent inducer of neural 
D2R abundance. ANKK1 is predicted to physically interact 
with NF-kB in the astrocyte and in the neuron. As such, 

ANKK1 mutations (TaqIA A1) could directly impact 
cellular responses mediated by NF-kB, including 
regulation of D2R signaling and receptor expression). The 
circles in the cleft represent dopamine release. 
 

 

Figure 5: Courtesy reference no.-135Potential 
mechanism associating ANKK1 and DRD2 signaling. 

 
 
This fashion of effects seen has been construed as 

proof of increased anticipatory and depressed 
consummatory food reward, supporting the incentive 
sensitization theory of addiction, along with the 
anhedonia posit of obesity. But the current data has 
refuted this observation about decreased responses 
pointing to anhedonia. 1stly, dorsal striatal response to 
milk shake is related to measures of impulsive behavior 
but not of reward of food or reinforcement [113]. 2nd, a 
positive correlation between weight gain and dorsal 
striatal milk shake response in A1 carriers but not non 
carriers was documented recently [114]. Most important, 
is that milkshake was delivered in an unpredictable way 
in this particular study. Hence response to that very food, 
in that very DRD2 rich nucleus has positive or negative 
correlation with weight gain in A1 carriers based on if 
milkshake is anticipated or not anticipated. This 
information requires emphasis since unanticipated but 
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not anticipated outcomes produce error signals. It has 
been indicated that the reduced effect to anticipated 
milkshake agrees with a weaker outcome signal, although 
the response to unanticipated milkshake points to an 
increased error signal. In the same breath it is 
hypothesized that the escalated responses to food cues, 
suggest total increased reward sensitivity in case of 
obesity [115]. 

 
Together it is posited that the A1 allele is correlated 

with increased error, but milder reward outcome signal 
production in the relation of total increased reward 
sensitivity with all these observations. Another 
publication showed increased midbrain response in A1 
carriers vs. noncarriers on the production of positive 
error signals at the time of probabilistic learning task that 
supported the earlier study. Further this study 
demonstrated that the accelerated response was related 
to poorer performance in the case of negative outcome 
learning that would be anticipated if reward outcome 
signals were reduced. Further carriers did not show 
functional connectivity between midbrain and medial 
prefrontal cortex at the time of the tasks, implicating a 
decreased transfer of DA learning signals to prefrontal 
circuits. Similarly weaker reward response signals would 
also be anticipated to enhance chances for model free or 
habitual responding. 

 
From these results strong proof is also added 

regarding A1 allele provides risk by generating baseline 
reductions in DA signaling causing variations in DA 
dependent reinforcement and cognition. Going with this 
probability pharmacological manipulation of DA signaling 
often gets separate but opposite changes in carriers as 
compared to noncarriers. Like methyl phenidate, that 
raises extracellular DA, has less efficacy in reducing food 
intake in A1 carrier vs A1 noncarriers children in ADHD, 
while the DRD2 agonist bromocriptine is more efficacious 
at decreasing craving and anxiety in A1 allele carrying 
alcoholics [116,117]. In healthy people, bromocriptine, 
and not placebo administration raises activity in the 
nucleus accumbens at the time of a reinforcement task 
and increases performance in A1 carriers but not 
noncarriers. Giving cabergoline, another agonist at the 
time of reversal learning task resulted in increased 
activation of the medial orbito frontal cortex (OFC), 
insula, ventral putamen and ACC in A1 carriers but 
reduces response in these very areas in non-carriers. This 
implicates that like DA agonists, behavioral measures 
which enhance DA signaling, like exercise might be more 
efficacious in A1 carriers. In total, these results agree with 
the inverted U shaped action of DA function 

superimposed on baseline differences in DA signaling 
given by genotype. Precisely the action of DA agonists 
would shift A1 carriers from suboptimal (low) to optimal 
(intermediate) and A1 noncarriers from optimal 
(intermediate) to suboptimal (high) dopaminergic 
functioning [8107], and hence get opposite effects. 

 
Longitudinal studies data that examined effect of 

Taq1A A1RFLP on weight increase agree with the 
pharmacological data, showing opposite correlations 
between responses to food in DA source or target regions 
and weight gain as a function of genotype. More precisely, 
response of caudate to predicted milkshake receipt is 
negatively correlated with weight gain in carriers, but 
positively correlated in non-carriers, while the reverse is 
true for amygdalar response to milkshake in sated state. It 
is not clear if these actions are a cause or effect of obesity. 
But the dorsal striatal effects have a possibility of being a 
result, as decreased responses correlate with weight rise 
but not with risk for obesity as checked by parental BMI 
[118]. But, as response to milkshake in this area is 
correlated with impulsivity, it is likely that A1 allele 
imparts risk for adaptations in striatal circuits that in turn 
cause impulsivity. If that is the case, then 1 of the actions 
of the allele might be to increase risk for neural 
adaptations which result in impulsivity and increase of 
weight increase that might explain why carriers have 
decreased outcomes with weight loss interventions [119]. 
It is feasible in relation that adaptations take place as a 
result of factors separate from diet, adiposity or metabolic 
change like age, poor sleep quality, chronic stress and 
physical inactivity [120]. In agreement with this thought, 
old although not young carriers demonstrate decreased 
dorsal striatal response and a memory task that is 
impaired [121]. 
 

Molecular Mechanisms 

The Taq1A RFLP has a correlation with a mutation 
generating a single amino acid alteration in the substrate 
binding domain of the ANKK1 protein and its linkage 
disequilibrium with the DRD2 locus. Exactly how this 
mutation in theAnkk1 gene locus alters DRD2 density and 
function is under investigation one probability is that the 
mutation affects ANKK1 action that subsequently affects 
DA receptors via its biochemical actions. ANKK1 
represents a big family of receptor-interacting protein 
(RIP) kinases, which act as necessary sensors of cellular 
stress, starting responses to environmental factors, like 
nutrient intake via activation of transcription factors like 
NFκB. Chronic exposure to increased nutritional lipids is 
instigate inflammatory-like response in the brain ,which 
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are partially mediated by NFκB, that in response, acts as a 
direct along with indirect transcriptional regulator of DA 
receptor amount and signaling. Consistently, in silico 
analysis of the possible human protein-protein 
interactions show that of the 30~ anticipated possible 
partners of human ANKK1 protein [122], 50% are found 
in pathways associated with inflammatory responses that 
include the NFκB, cytokine pathways. Particularly in the 
brain ANKK1 is highly represented, if not only specially 
expressed in astrocytes [123]. Astrocytes might be the 
targets for highly saturated fat stimulated inflammatory 
responses and ER stress mediated via TLR and IKK/NFκB 
signaling pathways. Additionally eicosanoids derived 
from lipids are strong inducers of NGF secretion by 
astrocytes that also act directly for control of DRD2 
expression via an NFκB dependent mechanism. Further 
HFD-mediated central inflammation enhances DA 
neurons susceptibility to 1methyl-4phenyl-12,3,6 tetra 
hydropyridine (MPTP) [124,125]. Hence there are modes 
that can verify that a privileged association between 
astrocytes and DRD2 containing neurons causing the 
selective actions of lipids on DRD2 through inflammatory 
cascades, just like the ones already revealed for 
hypothalamus [126]. Hence probably the mutation of 
ANKK1 brings about the inflammatory-like responses 
which particularly influence DRD2 excess and function, 
although some proof exists that other DA receptor 
subclasses might be also influenced. 
 

Model Proposed 

The above information points that a probability is 
present that ANKK1 has an important part in bringing 
about the effect of HFD on DRD2 expression through the 
nutrient stimulated inflammatory responses. Thus a 
model was posited by the group of Small DM, in which 
presence of A1 allele increases susceptibility to cellular 
inflammatory responses that further changes DA 
signaling along with DA dependent cognition, metabolism 
and behavior. Since DA has a major part in intertwining 
inputs regarding the nutritional value along with sensory 
features of foods, in addition to the state of the person for 
decision and act for achieving and store energy, multiple 
probable pathways through which adaptations in DA 
might add risk to overeat and thus for obesity [127]. 
Consistently, obese vs. lean carriers but not noncarriers 
exhibit decreased performance on a letter number 
sequencing task which checks the executive functions 
[128]. Thus by extending this DA signaling adaptations 
might further add the risk for other impulse control 
disorders and problems in which changed DA signaling 
acts in causing etiopathology, like DM, and ADHD. 

Important take home message of this is that ANKK1 is 
mainly connected to diet instead of adiposity or metabolic 
dysfunction. From this angle correlation between 
genotype and BMI and adiposity are due to the action of 
diet. In the same way this model anticipates that a HFD 
also causes alterations in DA dependent cognition 
through affecting DRD2. Importance of this lies in the 
proof being unraveled that DM, obesity and diet are 
correlated with cognitive impairments, with so many of 
these abnormalities being dependent on DA signaling 
[129]. No research has directly assessed the effect of diet 
on the correlation between the Taq1A A1 allele and 
adiposity, metabolic and /or cognitive dysfunction. But 
from animal experiments data reflect that diet might 
affect DA signaling and function unrelated to body weight, 
adiposity, and /or metabolic dysfunction [66,70,130]. In 
accord, circulating lipids directly modulate DA-mediated 
food reward and obesity-related cognitive dysfunction 
gets improved by decreasing circulating lipids 
independent of adiposity. 
 

Conclusion 

Although till now it is unexplained how TG reaches the 
brain and alters its function, same is the case with the 
molecular methods by which local FFA increase by 
breakdown of these TG’s and modulates neural effects 
along with reward. Both direct along with indirect proof 
in both humans and animals exist, as per the action of diet 
TG on reward and motivation. Hydrolysis of TG’s locally in 
the striatum might inhibit locomotor activity and for a 
little time decrease the incentive salience of calorie rich 
HFHS foods. But in the presence of chronically escalated 
TG’s in plasma, that is the result of the current scenario of 
food prevalence and obesity, the natural homeostatic 
mechanisms that usually reduce the hedonic effect of 
HFHS fails. From that angle, a positive feedback loop in 
which a chronic enhanced high amounts of TG’s, like that 
found in obesity, damages the homeostatic processes that 
limit food intake and changes in reward encoding, 
uncontrolled calories consumption and decreased 
physical activity. This will definitely push towards gain in 
weight. More studies are needed for understanding the 
physiology and molecular modes of sensing of TG’s in the 
brain and if or how genetic susceptibility loci like the 
Taq1 A allele might exacerbate the adaptive methods 
related to brain TG sensing and in the end the down ward 
trend compulsive eating that is dissociated from the 
homeostatic requirements. Further Wei, et al. 
demonstrated that chronic stress aggravates the 
susceptibility to food addiction by increasing the CRF R1 
in the NAc shell and core but reduced in VTA in mice fed a 
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highly palatable food. It increased FAS along with levels of 
DR2 and MOR IN THE NAc. Thus dysregulation of the CRF 
signaling pathway in the reward system and increased 
expression of DR2 and MOR contributes to stress related 
obesity [131]. Although it is tempting to posit that the 2 
common genetic variants, ANKK1 and FTO confer risk for 
obesity and neurocognitive impairment by their effects on 
DRD2 the recent in depth articles by the group of Archer, 
et al. are contradictory to the genetic and addictive theory 
by their explanation of compartmentalization and how 
they have given convincing explanations regarding it is 
not the food addiction theory nor the genetic theory but 
how that materno-fetal metabolic exposure and the 
DoHaD Hypothesis causes the neonate to acquire higher 
adipocytes and poor quality muscle cells and in the end 
we are back to square one in trying to finding the answers 
of finding a solution to put a brake in the obesity epidemic 
[132-135]. Clinical implications of these lie in trying to 
better utilize naltrexone/bupropion (contrive) in those 
who are Taq1 A allele carriers, and do genetic typing like 
in a case report Digbi Health Personalized Obesity 
Management program use of DNA and gut biome along 
with testing. Participants use the Digbi Health app to 
input 10 key lifestyle and wellness markers, including 
weight, sleep, hunger, cravings, stress, meditation, super 
foods, morning energy, foods to avoid and exercise on a 
daily basis and take photos of the food that they consume. 
As per these markers they decide whether exercise will 
work or not and as per genetic profile gut biome 
treatment is finalized and are able to achieve weight loss 
based on individualization of subjects, thus in those 
having abnormal TaqA1 alleles use of DA agonists like 
bromocriptine/cabergoline and behavioral measures 
which enhance DA signaling, like exercise might be more 
efficacious in A1 carriers and preferably use of contrave 
for obesity treatment in these subjects along with 
contrave use. 
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