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Introduction

It had been clear that gut microbiome is correlated 
with the generation of Type 1 Diabetes Mellitus (T1D) as 
reviewed by us in the etiopathogenesis of T1D believed to 
be an autoimmune condition immunotherapy and unsulin 
independent immunotherapies strategies for the treatment 
[1-6]. Nevertheless, the precise explanation had been lacking.
 

Origin of type 1 diabetes mellitus (T1D) takes place 
from the incapacity of pancreatic βcells to generate enough 
insulin generally as sequelae of considerable pancreatic 
βcells damage. T1D gets classified as an immune modulated 
disease. Nevertheless, the events which guide pancreatic 
βcells apoptosis still need events to be estimated, causing 
incapacity of avoidance of continued cellular damage. 
Changes in the mitochondrial working is definitely the 
main pathophysiological event reinforcing pancreatic βcells 
depletion in T1D.Akin to numerous medical disorders ,it has 
become attractive in T1D,the part of the gut microbiome 
inclusive of crosstalk of the gut bacteria with the fungal 
infection Candida albicans. Gut dysbiosis along with gut 
permeability are intricately correlated with escalated 
circulating lipopolysaccharide (LPS) and repressed butyrate 
quantities, which may work in decontrolling immune reactions 
and systemic mitochondrial working. Here we have reviewed 
the wider available outcomes of T1D pathophysiology, 
emphasizing the significance of mitochondrial melatonergic 
pathways of pancreatic βcells in the guiding of mitochondrial 
impairment. The repression of mitochondrial melatonin 
makes pancreatic βcells predisposed to Oxidative stress 
(OS) and impaired mitophagy; minimally modulated 

by elimination of melatonin‘s induction of the PTEN 
induced kinase (PINK1) , thus repressing mitophagy and 
escalating autoimmune correlated major histocompatibility 
complex(MHC)-1.The melatonin’s immediate precursor 
N-acetyl serotonin (NAS), portrays a BDNF simulator 
through the activation of the BDNF receptor TrkB. Since 
both full length(TrkB-FL) &truncated( TrkB-T1) possess a 
substantially robust part in pancreatic βcells working and 
survival ,NAS, portrays one more perspective of melatonergic 
pathways germane for pancreatic βcells damage in T1D.
Integration of the mitochondrial melatonergic pathways in 
T1D pathophysiology incorporates broader earlier differing 
outcomes over pancreatic intercellular events. The repressed 
Akkermansia muciniphilia, Lactobacillus johnsonii, butyrate, 
and shikimate pathway, inclusive of bacteriophages aid 
besidespancreatic βcells apoptosis, however further to the 
bystander activation of CD8+T cells, that enhances effector 
function and avoids their thymic deselection. The gut 
microbiome is a significant estimator of the mitochondrial 
impairment guiding pancreatic βcells elimination and 
autoimmune actions obtained from cytotoxicCD8+T cells. 
This possesses considerable future scientific work and 
treatment repercussions.

Thus recently George Anderson’s group has tried 
incorporating the aberrations in the shikimate pathway that 
takes place in case of microbiota like crosstalk of Akkermansia 
muciniphilia with the bacteriophages possessing the capacity 
of controlling Akkermansia muciniphilia quantities [7,8] 
pointing bacteriophages significantly influences through 
Akkermansia muciniphilia along with the shikimate pathway. 
Normally shikimate pathway is involved in generation 
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of aromatic amino acids, apart from tryptophan for 
phenylalanine,and tyrosine which is essential in microbiota 
& other gut microbiome for. In humans this symbiont 
relation is altered with use of glyphosate based herbicides 
(GBH), which hampers phosphoenol pyruvate (PEP)-binding 
to enzyme 5-enolpyruvylshikimate-3-phosphate synthase 

(EPSPS) thus resulting in death of Akkermansia muciniphilia 
-see ref 10for details. Furthermore they have integrated 
this abnormal tryptophan metabolism with repression of 
mitochondrial melatonergic pathway & shikimate pathway 
in view of melatonin precursor NAS gets formed from 
tryptophan (5HT) [9,10] (Figures 1&2).

Figure 1: Shows the tryptophan–melatonin pathway (gold shade).

Figure 2: Shows how gut dysbiosis, gut permeability, pro-inflammatory cytokines, and Candida albicans fungal infection act to 
suppress the mitochondrial melatonergic pathway in pancreatic β-cells.

Tryptophan is converted by tryptophan hydroxylase 
(TPH2 stabilized by 14-3-3e) to serotonin (5-HT), which 
is the necessary precursor for the melatonergic pathway. 
5-HT can also be provided by neuronal inputs and other 
cellular sources, including platelets. In the presence of 

acetyl-CoA, 5-HT is converted by 14-3-3 stabilized AANAT 
to N-acetylserotonin (NAS), which is then converted to 
melatonin by AANAT. Under inflammatory conditions, as 
in T1DM, cytokines increase indoleamine 2, 3-dioxygenase 
(IDO) and TDO, which converts tryptophan to kynurenine, 
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suppressing tryptophan levels. Kynurenine also activates 
the aryl hydrocarbon receptor (AhR), which can increase the 
NAS/melatonin ratio, as well as suppress available melatonin. 
NAS increases BDNF and can activate the TrkB receptors. 
Melatonin has many protective effects as well as suppressing 
oxidative stress and MHC-1 linked autoimmunity, including 
in pancreatic B-cells. Abbreviations: 5-HT: serotonin; AANAT: 
aralkylamine N-acetyltransferase; AhR: aryl hydrocarbon 
receptor; ASMT: N-acetylserotonin O-methyltransferase; 
CYP: cytochrome P450; IDO: indoleamine 2,3-dioxygenase; 
MHC-1 major histocompatibility complex-class 1; NAS: 
N-acetylserotonin; NF-κB: nuclear factor kappa-light-chain-
enhancer of activated B cells; PINK1: PTEN-induced kinase 
1; TDO: tryptophan 2,3-dioxygenase; TrkB-FL: tyrosine 
receptor kinase B-full length; TrkB-T1: tyrosine receptor 
kinase B-truncated.

The suppressed capacity to upregulate melatonin 
prolongs the heightened activation of pro-inflammatory 
signaling via the transcription factors, NF-κB and YY1, 
coupled to decreased activation of TrkB-FL and/or 
TrkB-T1 by NAS and BDNF. A suppressed mitochondrial 
melatonergic pathway enhances oxidative stress, thereby 
decreasing PINK1 and its interactions with parkin and 
LETM1 on the mitochondrial membrane. Decreased PINK1 
suppresses mitophagy, coupled to increased MHC-1 that 
drives ‘autoimmune’ processes via NK cell and CD8+ T cell 
attraction. The accompanying decrease in OXPHOS-derived 
ATP prevent KATP induced insulin, whilst decreased PINK1 
attenuates LETM1 phosphorylation, leading to Ca2+ and 
pH dysregulation, likely accompanied by alterations in how 
LETM1 interacts with 14-3-3 and/or AANAT in the regulation 
of the mitochondrial melatonergic pathway. As well as 
activating TLR4, HMGB1 activates RAGE, thereby further 
contributing to oxidative stress. Changes in pancreatic β-cell 
mitochondrial function, including by ROS-driven miRNAs, 
will change patterned gene induction, with consequent 
changes in fluxes that mediate pancreatic β-cell interactions 
with other cells in the pancreatic islet microenvironment, 
thereby changing the dynamic intercellular interactions 
occurring. The decrease in shikimate pathway, A. 
muciniphila, L. johnsonii, and butyrate, contributed to by 
bacteriophages and enteroviruses, provides ‘bystander’ 
activation of autoreactive CD8+ T cells—possibly in 
Peyer’s patches—thereby preventing thymic deselection 
and driving classical ‘autoimmunity’. Abbreviations: 
AhR: aryl hydrocarbon receptor; BDNF: brain-derived 
neurotrophic factor; HMGB: high-mobility group box; hsp: 
heat shock protein; IDO: indoleamine 2,3-dioxygenase; 
KATP: ATP-activated potassium channel; LETM1: leucine 
zipper-EF hand-containing transmembrane protein 1; 
LPS: lipopolysaccharide; MHC-1: major histocompatibility 
complex-class 1; NAS: N-acetylserotonin; NF-κB: nuclear 
factor kappa-light-chain-enhancer of activated B cells; RAGE: 

receptor for advanced glycation end-products; NK: natural 
killer; TDO: tryptophan 2,3-dioxygenase; TrkB-FL: tyrosine 
kinase receptor B-full length; TrkB-T1: tyrosine kinase 
receptor B-truncated; YY1: yin yang 1. 

Additionally, like we earlier reviewed the association 
of neurodegenerative and neuropsychiatric diseases, 
Amyotrophic Lateral sclerosis (ALS) pathoetiology with 
gut microbiome [9-11]. Moreover George Anderson’s 
group have reasoned out this same abnormal tryptophan 
metabolism with repression of mitochondrial melatonergic 
pathway & shikimate pathway in the etiopathogenesis of 
neuropsychiatric diseases like , Multiple Sclerosis (MS), 
depression, ALS and tumours like Glioblastoma and other 
cancers [12-19].
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