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Abstract

There is a very essential role that mitochondria play in controlling energy metabolism with respect to oocytes maturation as 
well as Preimplantation embryos in which both quantity as well as morphology of mitochondria along with mitochondrial DNA 
amount get very closely controlled. Lot of mouse experimental kinds having impaired mitochondrial function cause infertility 
that validates the crucial part played by mitochondria in female reproduction. On finding abnormalities of mitochondrial 
action both cells as well as organisms utilize methods that are aimed at recuperating or help in get the mitochondria rescued 
and delete mitochondria which can’t in anyway be salvaged. Of these methods Mitochondrial Unfolded Protein Response 
(mtUPR) has been associated with ageing avoidance recently, since mitochondrial aids in age associated collection of injured 
proteins, decreased oxidative phosphorylation as well as reactive oxygen species (ROS) synthesis. Importance of these lies in 
female reproduction since if mtUPR genes like Clpp are removed following specific targeting it causes female infertility, causing 
problems in maturing of oocyte along with 2 cell embryo generation and inability to develop blastocyst. Additionally if CLPP 
is missing it results in exaggerated follicular removal with a phenotype mimic long premature ovarian failure. More studies 
will give understanding of both physiological and pathological regulation of oocyte as well as initial embryonic mitochondrial 
action that workers are trying to use in generating therapies that are innovative in aging oocytes and in women presenting 
with mitochondrial inheritent abnormalities and thus treating female infertility with elderly females.
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mTOR Inhibitor Rapamycin

Introduction

In all eukaryotic cells practically double membrane 
organelles named mitochondria exist. Probably their origin 
started by endosymbiotic process that occurred around 
1.5 billion years ago with the eukaryotic cell engulfing 

bacterium. The size and amount /cell differ, and are separate 
from them having their own DNA, that encodes 13 proteins 
having crucial part in mitochondrial function. Only separate 
organelle possessing its own DNA is the chloroplast seen in 
the plant cells as well as in eukaryotic algae which carries out 
photosynthesis. Importantly mitochondrial DNA (mt DNA) 
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gets inherited via the mother in maximum animals that helps 
the workers involved in genealogy to track back the maternal 
line long back within time.

Part of mitochondria is that it is a place from where 
cells energy originates is well accepted [1-6]. Besides these 
complicated organelles aid in a large quantity of key cellular 
processes that has calcium signalling, apoptosis along with 
control of membrane potential [4,7,8].

 Over the last 5 decades, part of mitochondria in aging has 
been evaluated both in animals as well as human tissues. Lots 
of probable modes via which mitochondria modulate aging of 
the cells have been proposed. In the same line, a critical part of 
mitochondria in both male and female reproduction has been 
shown in animals and examined in Artificial Reproductive 
Technology (ART). Thus we decided to conduct a systematic 
review regarding mitochondrial unfolded protein response 
(UPRmr), that is a mitochondria stress action path which may 
participate in female reproduction and reproductive aging.

Methods

We carried out a PubMed search for articles 
related to mitochondrial changes with relation to aging 
and abnormalities in reproduction. The MeSH terms 
mitochondrial unfolding response in various animals in 
relation to oocytes, aging different genes related to UPRmt, 
ATFS, CLPP, proteostasis; role of General control repressible 
2( GCN2) and eukaryotic initiation factor 2(eIF2), 
mitochondrial unfolding response in C.elegans and other 
species.

Results and Discussion 

 We found a total of 340 articles out of which we utilized 
74 articles for this review. No meta-analysis was done.

Oocyte Mitochondria and Mitochondria in 
Preimplantation Embryos

At the time of the formation of mammalian oocyte as well 
as early embryo, lot of mitochondria, mt DNA copy number, as 
well as mitochondrial morphology alters in a manner that can 
be anticipated, that points to a closely controlled and a very 
important biological function [9]. Roughly 200 mitochondria 
are there in oogonia. In view of constant escalation in the 
amount of mitochondria at the time of follicular formation, 
mature (metaphaseII) oocytes possess roughly 100,000 
mitochondria [10] and 550,000 mt DNA copies with lot of 
differences among samples [11-15]. Importantly in-spite of 
a marked enhancement of the total quantity of mitochondria 
all through the time of follicular maturation, oocyte 
mitochondria density (number of mitochondria/cytosol 
area) and mitochondrial coverage (total mitochondrial 

area, per cytosol area) reduce with the follicular formation, 
possibly in view of a fast escalation of oocyte volume [16]. 
Notably, oocyte is the initial mitochondrial source at the time 
of initial Preimplantation formation, since mitochondria get 
inherited maternally and the full amount of mitochondria 
as well as mt DNA copy numbers continue to be same at the 
time of fertilization as well as cleavage divisions [14,17]. 
Further mt DNA replication is 1st seen in the trophectoderm 
cells on blastocyst formation that corroborates the marked 
energy enhancement for meeting the demands of the embryo 
[18-21]. On implantation mitochondrial replication also gets 
restarted [14,22-24].

 There are a lot of variations in the morphology and 
anatomical structure of oocyte mitochondria as compared 
to those observed in somatic cells. Those mitochondria 
from mature (metaphase II) oocytes are lesser in size 
(<1µmdiameter), have >spherical shape, and possess lesser 
as well as truncated cristae that are encircled by a dense 
matrix [25]. Still, oocyte mitochondria, are working and 
aid in ATP formation using oxidative phosphorylation, all 
through oocyte maturation, fertilization, as well as initial 
cleavage multiplications, at the time when pyruvate is the 
initial fuel [26-29]. What is valuable is that the full amount 
of mitochondria as well as mt DNA copy numbers do not 
undergo change, dramatic alterations in the mitochondrial 
morphology take place at the time of initial Preimplantation 
formation. Greater Elongation of mitochondria occurs 
(2.51µmdiameter, in 8 cell human embryo) [30], having 
a > cristae amount with a lower density matrix [18]. This 
morphologic change gets finished when 1st embryonic cell 
differentiation takes place that leads to the development of 
the trophectoderm as well as inner cell mass, during 5-6 days 
following fertilization in humans [29].

 These mitochondrial changes are significant in 
sustenance of fertility is shown by the phenotypes seen in 
mouse models where crucial controlling genes are removed 
by targeting them. Actually, decreased fertility is seen in mice 
that express defective mitochondrial DNA polymerase [30], 
as well as in oocyte specific removal of mitochondrial fusion 
factor Drp1 causes female fertility along with hampered 
folliculogenesis and ovulation [31]. Recently, global germline 
removal of mitochondrial stress response gene Clpp has been 
demonstrated to cause infertility with exaggerated follicular 
removal [32].

Response of Cells to Mitochondrial Dysfunction

Cells can identify mitochondrial impairment and act by 
a lot of methods. These actions try to retrieve the function in 
those mitochondria that can be salvaged and remove those 
that can’t be saved. Ultimate outcome is the sustainance of 
a working mitochondrial network and get the homeostasis 
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within the cell back

Unfolded Protein Response in Mitochondria: 
Mitochondrial Unfolded Protein Response (UPRmt) represents 
transcriptional response at the time of mitochondrial 
functional impairment which aids in the working of the 
mitochondrial network as well as prevent cell death. Lot 
of ways exist by which UPRmt can be coordinated, that are 
transcription factor ATFS1 (ATF5 in case of mammals), that 

helps in the expression of nuclear–encoded Mitochondrial 
chaperones as well as proteases ,reactive oxygen species 
(ROS), enzymes responsible for detoxification, in addition 
to Mitochondrial protein import parts[33] (Figure 1). 
Proteins here get into the cell to sustain the action of healthy 
organelles and aid in getting back the action in the impaired 
ones.Role of this UPRmt in aging and reproduction is further 
detailed.

Figure 1: Courtesy ref no-74.Mitochondrial unfolded protein response (UPRmt) characterized in Caenorhabditis elegans, 
where unfolded or misfolded proteins are degraded by the CLPP protease in the mitochondria and the cleaved products are 
exported to the cytosol through the HAF-1 peptide exporter. These peptides serve as a signal for activation of transcription 
factor (ATFS1). Subsequently, ATFS1 activates UBL-5 to form a complex with transcription factor DVE-1 to transcriptionally 
activate UPRmt genes. This results in the synthesis of mitochondrial chaperones and proteases, reactive oxygen species 
(ROS) detoxification enzymes, and mitochondrial protein import components, which aim to preserve the function of healthy 
mitochondria and recover activity in dysfunctional ones.
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Repression of Protein Synthesis within the Cytoplasm: 
Other than 13 of the roughly 1500 Proteins that have a role 
in the mitochondrial action get formed on the cytosolic 
ribosomes prior to getting shifted into the mitochondria. Thus 
these proteins are further acted on by the chaperones present 
in the mitochondrial matrix. Once the effectiveness of this 
processing process decreases, protein excess might interfere 
with the protein homeostasis within the mitochondria also 
called proteostasis and end in mitochondrial functional 
impairment. When enhances ROS is present resulting in 
mitochondrial stress [34,35], cytoplasmic Protein Synthesis 
can be decreased by the kinase GCN2 (general control 
repressible 2) that phosphorylates the eukaryotic initiation 
factor(eIF2α), that causes reduction of Protein Synthesis 
and leads to a depression of nascent peptides getting shifted 
into the mitochondria [36,37]. This action takes place as role 
of the integrated stress response and may get stimulated 
by UPRmt along with different kinds of cellular stress, like 
endoplasmic reticulum stress.

Mistargeting of Protein Resulting in UPR Activation: 
Reduced protein shifting efficacy, is a separate outcome of 
mitochondrial functional impairment that causes collection 
of wrongly placed mitochondrial Protein within the cytosol. 
This effect is called activation of UPR by protein mistargeting 
(UPRam)This leads to breakdown of the abnormally placed 
proteins having potential to be harmful by resulting in 
an enhancement of proteasome action and a reduction in 
Protein Synthesis [38,39].

Mitophagy: This mitochondrial stress actions detailed earlier 
try to prevent the injury further in impaired mitochondria and 
aid in recuperation of those organelles that can be rescued. 
If these modes don’t work, then as a last attempt mitophagy 
through which injured mitochondria that are irrepairable 
get deleted and hence the mitochondrial network gets 
safeguarded [40]. Usually prior to mitophagy fission alias 
mitochondrial division leads to badly injured mitochondria 
parts getting separated from the injured mitochondrial 
network [41]. For mitophagy to occur PTEN induced putative 
kinase 1(PINK1) kinase, that in usual situations gets brought 
into healthy mitochondria from outside and gets destroyed 
[42,43]. But in situations which result in disruption of 
mitochondrial import processes, PINK1 gets stabilized over 
the outer injured mitochondrial membrane [44]. At that 
place PINK1 phosphorylates ubiquitin as well as ubiquitin 
ligase Parkin, that causes the recruiting of Parkin to the outer 
mitochondrial membrane in which it poly ubiquitinates lot 
of proteins [45,46]. This polyubiquitination of proteins on 
the outer mitochondrial membrane starts the recruiting of 
the parts required for injured organelles to get swallowed 
by an autophago some, that further gets moved to lysosomes 
for breakdown and hence injured mitochondria get expelled 
[47].

Unfolded Protein Response in Mitochondria: UPRmt 

represents a signal transduction pathway via mitochondria 
to nucleus which makes sure that mitochondrial proteostasis 
via getting to know the mitochondrial stress or UPR and 
stimulating a severe transcriptional action which aids 
in folding, prevents import, and decreases translation of 
mitochondrial proteins [48-50]. Multiple mitochondrial 
stress processes induce UPRmt.

1st delineated in Caenorrhabditis elegans (Figure1), 
where mitochondrial stress represented unfolded as well 
as misfolded proteins which up regulated the mitochondrial 
matrix CLPP protease, that gets cleaving of the misfolded 
proteins [51-53]. These proteins that had been cleaved were 
then sent to the cytoplasm and stimulated the transcription 
factor ATFS1 that is present within cytoplasm. Further 
ATFS1 gets transferred to the nucleus where it stimulates 
ubiquitin liked 5(UBL5) to develop a combination with 
defective proventriculus in Drosophila homolog) i) as 
well as for stimulating transcription of chaperones of the 
mitochondria like heat shock rotein 6(HSP6) and HSP 10 [53-
56]. Additionally UPRmt stimulates coenzyme Q formation, 
glycolysis as well as mitochondrial fission [30,54,57], 
changing metabolism of mitochondria and its dynamics to 
aid in its function as well as cell surviving at the time of stress.

UPRmt as well as part of CLPP and ATFS1 (ATF5 has 
been found to be the mammalian respective part of ATFS1) 
remains conserved in mammals [30,48,51,55,58], at the place 
where stimulation of c-Jun–N terminal kinase takes place. 
This c-Jun pathway results in the expression of transcription 
factor CCAAT-enhancer binding protein homologous protein 
(CHOP) that along with CCAAT-enhancer-binding protein (C/
EBP) modulates the transcription of UPRmt genes [59].

 Noticeably, besides stimulating transcription of > 
400genes UPRmt) in yeast, Caenorrhabditis elegans and 
mammals is correlated with phosphorylation of eIF2α 
by GCN2, leading to globally repressed translation, and 
mRNA’s which possess open reading frames are translated 
getting preference [40,60-74]. Activation of UPRmt genes by 
transcription and suppression via translation appears to be 
carried out by 2 modes which are parallel, with both needing 
CLPP [30,48,51,53,55].

Aging and UPRmt

Absence of protein homeostasis or proteostasis appears 
to have an important part in age associated decrease in 
function since dysfunctional protein control and collection 
of misfolded and unfolded proteins have been isolated 
as a signature part of aging organisms as well as aiding 
proteostasis via enhanced chaperone expression halting 
translation, or escalating proteins turnover has been pointed 
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prolong to life span [50,62].

 Current work has suggested that UPRmt is a bridge 
among proteostasis as well as aging in different organisms. A 
correlation among UPRmt with long life was 1st demonstrated 
in 2 long living Caenorrhabditis elegans mitochondrial 
electron transport chain ETC mutants (isp-1 and clk-1) [62]. 
If UBL5 or DVE1 (that is modulators of UPRmt are deleted by 
RNA-interference, it returned the prolongation of life span 
in both) mutants. In the same line, enhanced long life by 
muscle particular blockade of ETC complex IV had escalated 
the expression of UPRmt genes [63]. Notably, a lot of other 
models having longevity like NAD+/Sirtuin 1 or rapamycin 
in Caenorrhabditis elegans also needs UPRmt [64].

 Total decrease in mitochondrial function is well accepted 
in aging organisms, and has been demonstrated in yeasts 
[59], worms [67], flies and mice [54,69] that interference 
of mitochondrial ETC action enhances life prolongation 
[63,64,69]. These observations get corroborated by 
recent findings detailed above, showing that up regulating 
mitochondrial stress responses adds to escalated life in the 

;prolonged lived mitochondrial mutants [63,67,70].

If the mitochondrial stress responses get interfered with 
the lead to age associated accumulation of injured proteins, 
decreased oxidative phosphorylation .enhanced reactive 
oxidative stress formation and stimulation of apoptosis of 
cells. Hence getting an insight into the molecular modes 
through which mitochondrial stress responses might cause 
pronation of life might aid in generation of therapies to avoid 
age associated diseases and thus bettering [49].

Reproduction and UPRmt: Crucial control of UPRmt is done 
by CLPP. How it works in cleavage of unfolded and misfolded 
mitochondrial proteins, which then get transferred to 
cytoplasm and their stimulate the transcription factor ATFS1 
remains conserved right from Caenorrhabditis elegans to 
mammals. Mice developing global germline removal of Clpp 
showed massive mitochondrial impairment in oocytes having 
reduced membrane potential as well as ATP generation, 
along with escalated ROS along with mt DNA copy numbers 
(Figure 2). 

Figure 2: Courtesy reference number 74-A schematic illustration of the effect of Clpp deletion on oocyte mitochondrial function, 
fertility, and ovarian aging. Targeted global germline deletion of Clpp in the mouse results in mitochondrial dysfunction in 
oocytes associated with decreased membrane potential and ATP production, and increased reactive oxygen species (ROS) and 
mitochondrial DNA (mtDNA) copy number. These changes are associated with decreased expression of mitochondrial fusion 
genes (Mfn1, Mfn2, and Opa1), resulting in smaller and rounder mitochondria. Clpp-knockout mice are infertile with impaired 
oocyte maturation and inability to form blastocysts, and they show accelerated follicular depletion, associated with activation 
of mammalian target of rapamycin (mTOR) signaling. 
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Further metabolic imaging utilizing fluorescence lifetime 
imaging microscopy showed important changes in 
the metabolism of Clpp-decreased oocytes, along with 
alterations in flavin adenine dinucleotide (FAD) and 
nicotinamide adenine dinucleotide (NAD) lifetimes as well as 
protein bound part of NAD H [71]. Noticeably mitochondrial 
dynamics like fusion as well as fission were further afflicted: 
down regulation of fusion genes, causing rounder and small 
sized mitochondria [32]. In females with Clpp-decreased 
mice, infertility resulted from dysfunctional oocyte 
maturation, 2 cell embryo generation as well as absence 
of blastocyst formation [32]. These were correlated with 
marked spindle problems within oocytes. Biggest baffling 
finding was the exaggerated deletion of Clpp-decreased 
follicles in, mice; primordial follicles reduced by 1/3rd over 
6mths and 50% by 9mths as compared to controls [32]. 
These alterations correlated with stimulation of mammalian 
target of rapamycin (mTOR) pathway, with the reproductive 

phenotype getting partially retrieved utilizing mTOR 
inhibitor rapamycin.

Management 

In humans involves autologous mitochondrial transfer 
[72] for techniques–reviewed in detail-after mitochondrial 
transfer, the quantity of ATP needed for old oocytes at the 
time of fertilization, blastocyst development and further 
embryonic formation might be another method (Figures 3 
and 4 for examples). Mitochondrial transfer from ovarian 
cells as well as healthy oocytes might result in better fertility 
results in case of oocytes that are of poor quality. Worldwide 
trials of AUGMENT technique are going on [73]. Manipulation 
of mitochondrial activity appears to control the basal 
metabolism within the target oocytes and thus physiological 
action of these cells when attempting to overtake age 
associated fertility in female germ cells [72].

Figure 3: Courtesy ref no-72-In this technique, first, both recipient and donor oocytes are fertilized using the intended 
partner’s sperm through ICSI. As soon as the pronuclei is formed, the pronuclei from abnormal mtDNA oocyte is transferred 
into the enucleated abnormal mtDNA zygote using micromanipulation equipment

Figure 4: In this technique, the spindle from defective oocytes is extracted and microinjected into donor healthy oocytes in 
which the spindle is removed. After fertilization by ICSI procedure, the zygote is reconstituted [72].
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Conclusion

Mitochondrial Unfolded Protein Response represents 
a mitochondrial stress response. Once stimulated this 
UPRmt following mild to moderate alterations regarding 
Mitochondrial action causes extension of the total life span 
in various animal kinds. On the other hand dysfunctional 
UPRmt contributes to age associated collection of injured 
proteins, decreases oxidative phosphorylation, and enhances 
generation of ROS. Importance of these lies in relation to 
reproduction since if one removes germline UPRmt regulatory 
protein CLPP globally it causes infertility and exaggerated 
follicular removal which is the initial phenotype properties. 
Part restoration of fertility phenotype in Clpp-deficient mice 
with rapamycin the mTOR inhibitor is further emphasized. 
This importance of studies are being carried out with 
worldwide AUGMENT trials regarding the use of this in 
improving fertility in older women.
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