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Abstract

Endophytic fungus is an intriguing group of organisms that live inside their host's living tissues, which are primarily higher 
plants. Endophytes generate naturally occurring bioactive chemicals that are thought to operate as an elicitor for the synthesis 
of secondary metabolites in plants, without causing any disease symptoms in the host cells. By imparting stress tolerance and 
enhancing host resistance to a range of diseases, this incredibly varied collection of fungus can have a significant influence on 
plant ecosystems. They are known to improve nutrition through the reversible exchange of nutrients and protect plants from 
infections, which in turn affects development by releasing plant growth hormones. Endophytic fungus-infected plants exhibit 
notable increases in biomass, enhance commercial plant output, and are therefore beneficial to the agricultural industry. 
The potential uses of endophytic fungi as biological vectors, biological control agents, and insecticidal products, sources 
of secondary metabolites, antimicrobial agents, antitumor compounds, antibiotics, immunosuppressants, and antidiabetic 
agents make them of biotechnological interest. The current study concentrated on the numerous uses of fungal endophytes in 
several biotechnology fields.
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Abbreviations: PGPE: Promote Plant Growth; IAA: 
Indole-3-acetic Acid; ROS: Reactive Oxygen Species.

Introduction

Endophytic microorganisms, such as bacteria and 
fungi, are ubiquitous in all plant species and inhabit the 

internal tissues of the plant without causing any apparent 
detrimental effects [1]. Endophytic microorganisms that 
promote plant growth (PGPE) reside within the tissues of 
plants, and their robust symbiotic relationship enhances 
the exchange of nutrients and enzymatic activity. Microbial 
endophytes can infiltrate plant tissues in a latent manner, 
thereby exhibiting no discernible symptoms [2]. Endophytic 
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fungi are a potential source of biocontrol agents by research 
that has been conducted on them [3]. These organisms 
spend part or all their life cycles living inside the otherwise 
healthy internal plant tissues of their hosts, yet they do not 
seem to do any noticeable damage to those tissues. They 
have a significant impact on the physiological processes that 
occur inside their host plants. By creating a diverse array of 
fungal metabolites, fungal endophytes improve their host’s 
tolerance to abiotic stress, disease, insects, and mammalian 
herbivores [4].

Endophytes may either directly or indirectly activate 
these plant growth-promoting features in plants [5]. 
Endophytes are also known to have antimicrobial 
properties. These fungi frequently play a role in nutrient 
intake, boosting plant growth, improving plants’ ability to 
withstand stress, limiting the growth of rivals and soil-borne 
pathogenic organisms, and improving disease resistance. 
Several techniques must be used in sustainable agriculture 
to improve food production while minimizing damage to 
the crop, the environment, and public health. An effective 

substitute for conventional chemical farming is the use of 
fungal endophytes to enhance plant development. When 
crops are exposed to harmful biotic and abiotic stress factors 
including drought, cold, salinity, and disease, poisonous and 
lethal chemical pesticides and fertilizers, endophytic fungi 
help the plant to cope up with the stress [6]. An alternative 
to conventional chemical plant growth boosters is the use 
of endophytic fungi. Using mechanisms including triggered 
systemic resistance, bioremediation, and biological control, 
endophytic fungi help plants more effectively endure the 
impacts of abiotic stress [3].

Applications of Fungal Endophytes

Beneficial secondary metabolites have been isolated from 
endophytic fungi, which have been used in biotechnological 
breakthroughs in the medicine, agricultural, nutrition, and 
environmental processing industries. Microorganisms called 
endophytes reside inside plant and are essential to their 
growth and well-being (Figure 1).

Figure 1: Applications of endophytic fungi in various fields.

Protection of the Host Plant Against Herbivorous 
Animals

There has been a significant amount of research and 
literature on the extremely specialised nature of the symbiotic 
relationship between plants and endophytes, as well as the 
impact that fungal alkaloids have on both vertebrate and 
invertebrate herbivores. When herbivores consume plant 
tissue, they are certain to come into contact with fungal 
metabolites if the host tissue has been pervasively and 
systemically colonised with endophyte hyphae. Herbivores 
may range from huge animals to tiny arthropods. Insect 

resistance is increased by the majority of type C endophytes. 
Plants’ resistance to insect herbivory is shown to depend 
on both the kind of fungal strain and the stage of growth, 
as determined by Rashid and Chung [7]. Evidence of the 
antinematode activity of class 1 endophytes has also been 
given by other investigations [8]. Although many endophytes 
are thought to confer resistance to insects and nematodes on 
their host plants, studies have shown that this is not always 
the case. These findings emphasise the need to investigate 
endophytes in their natural habitats among native plant 
species [9]. While C-endophytes have traditionally been 
regarded as beneficial mutualistic organisms, recent research 
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has revealed that a significant number of endophytes do not 
confer any protective advantages to their host plants [10]. 
Class IV endophytes, according to some studies, help the host 
plant defend itself from herbivores by secreting secondary 
compounds.

Plants with endophytes have been shown to be more 
resistant to fungal infection, and herbivores that nourish on 
infected plants have lower productivity. Endophytic fungi 
mitigate the negative effects of insect herbivores through a 
variety of mechanisms, such as diminished feeding, slowed 
development, stunted population growth and mortality 
[11]. Vertebrate herbivores exhibit similar avoidance and 
diminished performance patterns, including birds, rabbits, 
and deer. Endophyte infection can even lessen the impact 
of herbivores that live below ground, like nematodes and 
root-feeding insects. The strongest example for the anti-
herbivore advantages of endophytic fungi comes from 
studies that indicate herbivore populations are destroyed 
when permitted to graze solely on plants infected with fungal 
endophytes [12].

Endophytic fungi create a wide variety of chemical 
defences, but not all of them are equally efficient, and many 
insect herbivores develop immunity to a specific substance 
at one point or another in their life cycles. As a general 
rule, larvae are more susceptible to poisons than adults. 
Geographic variation in consumption patterns means that 
even endophytic fungi that are supposed to be protective 
for their hosts, like Neotyphidium in plants, may not always 
cause avoidance or negative effects on herbivores [13].

Influence of Plant’s Ability to Withstand Stress

Plants are encountered with increasingly hostile 
environments for growth and maintenance as a result 
of environmental deterioration caused by agricultural 
operations and the changing climate. Equally difficult for 
a crop is that ever-increasing demands for agricultural 
output just further exacerbate the issue. Endophytic fungi 
are a potential solution for protecting plants from different 
stresses, and in this case, assistance is clearly required for 
healthy plant development. Endophytic fungi can protect host 
plants from water scarcity, extreme heat or cold, high or low 
salinity, and even poisonous metals [14]. Several dysfunctions 
in plant structure and function may be traced back to the 
altered genetic regulation of cellular pathways that results 
from exposure to abiotic stresses [15]. Endophytic fungus 
provides several benefits to host plants in a number of ways 
that increase their chances of success in the face of adversity. 
In response to oxidative stress, plants raise their catalase and 
peroxidase activity, which generates reactive oxygen species 
and initiates membrane damage and lipid peroxidation. 

Endophytic fungi increase resistance to ROS and decrease 
lipid peroxidation [16]. Growth of the plants can be initiated 
directly by phytohormones, and indirect plant benefits can be 
achieved through the phytohormones’ role in modulating the 
adaptation process to abiotic stresses. The hormone abscisic 
acid regulates stress-response gene expression and stomatal 
closure, both of which serve to decrease transpiration 
and so fluid loss. ABA is suppressed by endophytic fungi’s 
presence [17]. Khan, et al. [18] investigated the effects 
of inoculating saline-stressed cucumber plants with the 
endophytic fungus Paecilomyces spp. Vegetative growth was 
higher in inoculation salinity-adapted plants. The favourable 
endophytic interaction of Yarrowia lipolytica was also 
reported by Jan, et al. [19], which reduced the negative effects 
of salt on maize plants. The effectiveness of the endophytic 
fungus Porostereum spadiceum in alleviating salt stress and 
enhancing the growth of soybean plants was observed. To 
achieve this, the phytohormone levels of both inoculated and 
control seedlings were compared [20]. Through regulating 
phytohormones, endophytic colonisation mitigated the 
negative effects of salt. The endophytic fungus Aspergillus 
niger was shown to give sunflower and soybean with 
resistance to high temperatures in another investigation. 
Plant length and biomass were all significantly raised 
by fungal inoculation [21]. Fungal endophytes produce 
bioactive metabolites and activate systemic resistance as 
the primary defence against pathogens, herbivores, and 
nematodes [22].

Because of its protective benefits on plants against 
biotic stresses, endophytic colonisation by a variety of 
fungi has been the centre of a significant amount of study. 
Several of these studies focused on Serependita indica, an 
endophyte that can protect many different types of crops 
from many different diseases [23]. Endophytic colonisation 
of cotton plants by Phialemonium sp., as described in a 
2018 study by Zhou, et al. [24] inhibited root penetration 
by Meloidogyne incognita worms, gall development, and 
nematode reproduction. Endophytic colonization’s impact 
on plant development and resistance to pests has also 
been investigated. One study by Dash, et al. [25] used an 
inoculation of endophytic fungi. The objective of the study 
was to investigate the impact of endophytic invasion on 
the fitness of the host plant and its resistance against 
Tetranychus urticae, commonly known as the two-spotted 
spider mite. To achieve this, seeds of Phaseolus vulgaris were 
subjected to inoculation with Bacillus thuringiensis, Isaria 
fumosorosea, and Lecanicillium sp. All strains examined by 
the scientists were able to successfully colonise bean plants 
as endophytes, and they were retrieved from the different 
parts of plants. The length of the plants and the fresh weight 
of the shoots and roots were both improved by the treatment 
of the seeds. Endophytic associations between Penicillium sp. 
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and Phoma glomerata, found in cucumber plants, resulted in 
considerably greater biomass and enhanced growth despite 
salt and water stress. The friendly relationship enhanced 
potassium, calcium, and magnesium intake while reducing 
sodium toxicity during saline stress. Reprogramming of 
plant growth in response to abiotic challenges by fungi via 
regulation of abscisic, jasmonic, and salicylic acid production 
has also been identified [26]. Studies by Jaber and Enkerli 
[27] demonstrated the ability of various strains of B. bassiana 
and M. brunneum to establish fungal colonies in broad bean 
plants, resulting in increased plant growth in seed-treated 
individuals. The same species were later reported by Jaber 
[28] as having successfully colonized the wheat (T. aestivum) 
plant’s aerial parts and roots to stimulate plant development. 
Due of the impressive ability of the fungus to regenerate from 
both leaves and stems, suggested the capacity of systemic 

colonization by M. endophytica, which was identified in 
91% of the plants grown from fungal-inoculated seeds. 
These researches emphasized the possibility of endophytic 
interactions between several fungal species and their hosts. 
Research into the relationships between helpful microbes 
and their plant hosts has led to the discovery of plant-
microbe interactions, opening up a new avenue in the quest 
for environmentally friendly farming practices [29].

Production of Insecticidal Agents by Endophytes

Many endophytic fungi have anti-insect properties and 
are proved active against insects by producing some toxic 
insect repellent substances, some of which are given below 
in Table 1.

Sr. No. Producing Fungus Compound References
1 Geotrichiumcandidium Neofrapeptin A Fredenhagen, et al. [30]
2 Cordyceps heteropodac Cicadapeptin I Krasnoff, et al. [31]
3 Omphalotusolearius Omphalontins E-I Liermann, et al. [32]
4 Fusarium sp. Apicidin Singh, et al. [33]
5 Penicillium citrinum Quinolactide Abe, et al. [34]
6 Aspergillus niger Nafuredin- γ Ōmura, et al. [35]
7 Beauveria bassiana Beauverolide N Kuzma, et al. [36]

Table 1: Insecticidal compounds produced by endophytic fungi.

Plant Growth Promotion

Endophytes, in addition to coping with host defence, are 
required to release compounds that are antibacterial and 
antifungal to maintain a healthy balance of antagonism with 
other competing organisms. The synthesis of phytohormones, 
which encourage the development of plants, is an additional 

advantage of this process. Endophytes can indirectly or 
directly increase plant growth and yield (through biological 
nitrogen fixation, phytohormone production, siderophore 
synthesis, and phosphate solubilization), or indirectly 
through a variety of mechanisms (Table 2). Endophytes also 
have the potential to remove soil contaminants through the 
enhancement of phytoremediation (Figure 2).

Sr. no. Activity Exhibited by Endophytic Fungi References
1 IAA production Bric, et al. [37]
2 Phosphate solubilization Talukdar, et al. [38]
3 Cellulolytic activity Dar, et al. [39]
4 Ammonia detection Szilagyi-Zecchin, et al. [40]
5 HCN production Donate-Correa, et al. [41]
6 Amylase production Hankin, et al. [42]
7 Siderophore production Schwyn, et al. [43]

Table 2: Different types of plant growth promoting activities exhibited by endophytic fungi.
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Figure 2: Plant growth promotions by endophytic fungi in different ways [44].

Several fungal endophytes can stimulate growth in the 
host plant either directly or indirectly. This is achieved by 
processes such as habitat restriction and competition, direct 
antagonism of pathogens, and changes in the levels of plant 
hormones such as gibberellins and auxin in the host plant. 
The term “major nutrient” usually refers to this substance. 
It keeps plants in good overall health and vigour by doing 
things like encouraging the growth of roots, boosting the 
strength of stalks and stems, encouraging the production of 
flowers, improving crop quality, and boosting the resistance 
of plants to illnesses. Phosphorus is an important component 
of ATP. It is an essential component in passing on information 
about a plant’s genetic makeup from one generation to the 
next, acting as blueprint that details all aspects of a plant’s 
development as well as any changes to its DNA or RNA [45].

Because phosphorus is essential to the growth of seeds, 
it is abundant in seeds and fruits. Phosphorus is also present 
in high concentrations in fruits. Phytin is the primary type 
of phosphorus storage that is found in seeds. Phosphorus 
deficiency causes plants to mature later, produce lesser 
quality fodder, fruits, vegetables, and grains, and be more 
susceptible to disease; it slows the growth of the stem more 
than that of the roots and causes a purple hue to emerge in 
the leaves of some plants [46].

The organic form and the inorganic form of phosphorus 
are the two categories that may be found in the ground. It may 
be found in its organic form in decomposing plant matter, 
compost, and the tissues of microbes [47]. Plants are unable 

to make use of phosphorus in an insoluble state because it 
cannot be dissolved in water [48]. Fungi are the organisms 
most capable of releasing vital nutrients from soil, according 
to a great number of studies. It was found that Penicillium 
and Aspergillus were two key species that were discovered 
with strong mineral-solubilizing activity, and this activity 
was associated to a lowering in the pH of culture medium.

Inorganic phosphate salts break down because of 
microorganisms, which leads to the release of organic acids 
[49,50]. Sustainable agriculture benefits from the wide 
variety of fungi that are known to reside in endophytic 
interactions with plants and are generally considered 
helpful to plant growth and development. Penicillium sp. was 
isolated from tea leaves, and their phosphate-solubilizing 
activity was investigated by Nath, et al. Both isolates that have 
demonstrated exceptionally high phosphate solubilization 
activity have contributed to a gradual elevation in the acidity 
of the culture medium up to day 8. These isolates may find 
widespread use as biofertilizers. Isolation of Trichoderma 
gamsii from Lens esculenta lateral root endophytes was 
confirmed by microscopic analysis, morphological analysis, 
and 18S rDNA sequencing. With a drop in pH, this fungus in 
the growth medium was able to solubilize up to 17% of the 
phosphate. Trichoderma gamsii demonstrated its capacity 
to promote plant development in a greenhouse bioassay 
utilizing four different test crops [51].
 

Research that was carried out by Nath, et al. [52] focuses 
on isolating fungal endophytes from tea (Camellia sinensis) 
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roots, stems, and leaves that were collected from tea gardens 
in Assam, India. These endophytes were then subjected to 
in vitro testing to determine their PGP activity levels. The 
fungus Aspergillus niger was shown to have the highest 
level of IAA activity, followed by the fungus Penicillium 
sclerotiorum. The highest activity was demonstrated by 
Fusarium oxysporum followed by Penicillium chrysogenum 
F1. Penicillium sclerotiorum is the most efficient phosphate 
solubilizer. Phytohormones are natural compounds that are 
released in certain organs of plants. These substances can be 
transported to other locations, where they stimulate specific 
reactions in terms of the plant’s biology, physiology, and 
morphology. Aside from that, plant microbiomes synthesize 
growth regulators including gibberellic acid, auxins, and 
cytokinin [50]. The microbiomes of plants have been found 
to play a significant role in the development and proliferation 
of various plant organs, including but not limited to flowers, 
stems, leaves, and fruits.

Plant growth hormones can enhance and actually impact 
cell growth, development, and differentiation even at low 
concentrations. The following are the five major classes of 
phytohormones: abscisic acid (a) auxins, (b) cytokinins, (c) 
ethylene, (d) Gibberellins, (e) abscisic all are important plant 
growth regulators. According to the research conducted by 
Hamayun, et al. [53], certain fungal endophytes facilitate 
the growth of their host by stimulating the synthesis of 
gibberellins (GAs), indole-3-acetic acid (IAA), and cytokinins. 
The endophytic fungus, Cladosporium sphaerospermum, 
was identified in the roots of Glycine max (L.) and has been 
demonstrated to produce gibberellins. Rice was able to 
flourish when it was exposed to the culture filtrate, which 
had higher concentrations of the growth factors GA3, GA4, 
and GA7 respectively. The roots of Calystegia soldanella were 
examined, and a fungal endophyte called Cadophora malorum 
that produces GAs was discovered [54]. RSF-4L and RSF-6L 
are fungal endophyte species that have been identified as 
belonging to the genus Fusarium and a species of Alternaria 
were isolated from the leaves of the Solanum nigrum plant. 
According to the results of the Salkowski experiments, both 
Fusarium sp. &Alternaria sp. produced IAA, respectively. After 
being treated with fungal CFs, plant growth characteristics 
were enhanced.

The two categories of fungal endophytes play a crucial 
role in facilitating the growth and development of plants, as 
noted by Khan, et al. [55]. The presence of fungal endophytes 
significantly enhances a plant’s capacity to endure biotic and 
abiotic stresses. To aid in relationships with plant hosts and 
to provide resistance to pests and diseases, endophytic fungi 
produce bioactive compounds. These bonds are mediated 
and protected by bioactive chemicals. There is enough proof 
to demonstrate that endophytic fungi interact with their 

hosts for mutual advantages, including the improvement of 
host health, defence against pests, grazers, and rhizosphere 
nematodes, and improvement in drought tolerance and 
root development. In exchange, endophytic fungi acquire 
habitation and diet.

Endophytes are microorganisms that synthesise 
bioactive compounds, enabling plants to defend themselves 
and providing them with the requisite energy to do so. 
Endophytic microorganisms create mycotoxin, which 
defends the host plant against attack by pathogenic 
microbes caused by the plant’s natural predators [56]. The 
18S rRNA gene sequencing shows that the strain belonged 
to the genus Penicillium and produced gibberellins with 
the GA5 designation [53]. Fungal extracellular enzymes are 
finding more and more applications in fields as diverse as 
biotechnology, medicines, the food and beverage industries, 
leather production, agriculture, bioremediation, and 
chemical compound biotransformation [57,58].

In addition to their role as phytoremediators, 
endophytes perform the functions of main saprobic 
decomposers, mutualists, and latent pathogens. There is a 
wide variety of endophytes that can perform the function 
of phytoremediation. The majority of these endophytes are 
heavy metal-resistant endophytes, both hyper-accumulators 
and non-hyperaccumulators and organic contaminant-
degrading endophytes [59,60]. Bioremediation using 
these endophytes increases plant growth (via regulation 
of phytohormones [61], enzyme production, and nitrogen 
fixation), decreases phytotoxicity (via production of iron 
chelators, siderophores, and enzymes that degrade iron), 
and ultimately increases plant metal tolerance [62].

Antimicrobial and Antidiabetic Activity

Endophytes are capable of producing several hydrolytic 
enzymes in addition to peptide and polyene macrolide 
antibiotics like amphotericin B and nystatin [63]. Penicillin 
and cephalosporins are, without a doubt, the most significant 
anti-infective medications now available on the market. 
Endophytic fungi produce a number of antibiotics, including 
Daptomycin [64] and Valinomycin, a strong antibiotic that 
is effective against acute respiratory syndrome Coronavirus 
[65,66]. An endophytic fungus Cryptosporiopsis quercina 
is renowned for its active antifungal action against C. 
albicans and other species of Trichophyton. These fungi 
are considered to be human fungal infections. A molecule 
known as cryptocandin [66], which was discovered from C. 
quercina, is renowned for its efficacy as an antimycotic drug. 
A compound called cryptocin was isolated from the same 
fungus and has been demonstrated to effectively combat 
Pyricularia oryzae [67].
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Pseudomycins, also known as lipopeptides, have been 
shown to be active action against human pathogenic fungi 
such as Candida albicans and Cryptococcus neoformans 
[68,69]. In order to develop NMR approaches, ambuic 
acid, which is generated by Pestalotiopsis microspore, in 
conjunction with another endophyte called terrein, is 
employed [70]. A molecule called pestaloside [71], which 
was isolated from P. microspore, has been shown to have 
antimicrobial characteristics, but the two sesquiterpenes 
known as pestalotiopsins A and B are known to have 
phytotoxic effects. Muscodor albus, in addition to endophytic 
fungus, is responsible for the production of volatile chemicals 
that have antimicrobial and antifungal properties [72]. The 
isoamyl acetate that is generated by this fungus is the most 
useful substance that it produces. There is evidence that 
some species of Gliocladium generate the volatile antibiotic 
chemical annulene [73]. Some bioactive agents produced by 
the genus Xylaria, such as sordaricin and multiplolides A and B, 
have been shown to have biological activity against C. albicans 
[74]. On the other hand, mellisol and 1,8-dihydroxynapthol 
1-O-a-glucopyonaside have been shown to have activity 
against HSV type 1 [75]. An endophytic Streptomyces species 
that was isolated from Grevillea pteridifolia generates a 
new antibiotic known as ‘Kakadumycin A,’ which is both an 
effective antibacterial agent and an antimalarial agent [76].

The antimicrobial spectrum of Phomopsis sp., which was 
isolated from the host plant Rhizophora apiculata, was more 
effective against gram-positive bacteria [77]. D. zingiberensis 
culture filtrates inhibited Bacillus, Staphylococcus and E. Coli 
[78]. It was discovered that the fungal endophytes found in 
Eucalyptus exserta have strong antibacterial effects when 
tested as raw extracts [79].

Anticancer Compounds Produced by Endophytes

It is possible for endophytes to produce secondary 
metabolic products that are identical to or equivalent to 
those generated by their hosts (Table 3). Anticancer agents 
are examples of the bioactive substances that are created 
simultaneously by plants and the endophytes that are linked 
with them. Endophytic fungi have been shown to be a rich 
and consistent source of naturally occurring chemicals that 
have anticancer properties. These natural products have 
the potential to have a significant effect on the development 
of anticancer medications in contemporary medicine [80]. 
Endophyte-derived natural compounds have the potential 
to be employed as an alternative source in the research 
that ultimately leads to the creation of innovative treatment 
options for cancer [81-83]. Many endophytes have been 
identified as the sources of new chemicals that have shown 
promising results in anticancer testing.

Sr. No. Host plant Fungal Endophyte Anticancer Agent References
1 Taxus brevifolia Taxomyces andreanae Taxol (Palcitaxel) Stierle, et al. [84]
2 Camptotheca acuminate Fusarium solani Camphothecin Ran, et al. [85]
3 Podophyllum. Hexandrum Tramete shirsuta Podophyllotoxin Giri, et al. [86]
4 Adenophoreaxiliflora Chaetomium sp. Chaetominine Jiao, et al. [87]
5 Torreya. Taxifolia Pestalotiopsis microspore Cytochalasins Torreyanic acid Sappapan, et al. [88]

Table 3: Anticancer agents produced by fungal endophytes.

Bioactive Substances Produced by Endophytic 
Fungi

Interaction of plant with the endophytic fungus naturally 
results in the biosynthesis of secondary metabolites (Table 
4). Genes from both the plant and the endophyte species 
regulate and modulate the nature of the connection between 
them [89]. Endophytic fungi in medicinal plants produce 
an abundance of secondary metabolism products [88]. 
Secondary metabolite production in plants may also be 
influenced by the symbiotic interaction between endophytes 

and their host plants. Plants developing in adverse 
environments must be tested for endophyte isolation and 
its metabolites [88]. Alkaloids, benzopyranones, chinones, 
flavonoids, phenolic acids, and many others are only some 
of the beneficial secondary metabolites that endophytes 
produce [90]. Such bioactive metabolites are commonly used 
as agrochemicals, antibiotics, antiparasitics and antioxidants 
[88]. Biotechnological methods that employ certain 
organisms show promise as viable substitutes for developing 
an infinite, low-cost, and sustainable source of high-quality 
bioactive products as well as aromatic compounds.
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Bioactive Compound Plant Species Endophyte References

Podophyllotoxin and its analogues
Sinopodophyllum hexandrum, Alternaria sp.

Giri, et al. [86]Diphylleia sinensis Penicillium sp.
Dysosmaveitchii Monilia sp.

Camptothecin and its analogues
Camptotheca acuminata, Fusarium solani Kusari, et al. [91]

 Nothapodytes foetida Botryosphaeria parva

Huperzine A
Huperzia serrata Acremonium Kusari, et al. [91]

Lycopodium serratum Penicillium chrysogenum
Vinblastine and its analogues Catharanthus roseus Alternaria sp. Huang, et al. [92]

Cytoskyrin a Conocarpus erecta Cytospora sp. Brady, et al. [73]
Phomoxanthone a Lucila spinosa Xylariasp.

Isaka, et al. [93]
Phomoxanthone b Tectona grandis Phomosissp.

Rubrofusarin b Cynodondactylon Aspergillus niger Guo, et al. [94]
Emindole DA Mediterranean green alga Emericellanidulans Kralj, et al. [95]

Paclitaxel and its analogues Taxus cuspidata Alternaria sp. Wani, et al. [95]

Table 4: Bioactive compounds produced by Endophytic Fungi.

Production of Antioxidants

ROS, or reactive oxygen species, are by-products of the 
aerobic process found in all living organisms that serve a 
number of functions. The production of free radicals in the 
form of various ROS is triggered when the light absorption 
capacity of photosynthetic cells exceeds their usage [97,98]. 
This happens because oxygen molecules can quickly 
accept electrons from the body’s electron transport system 
[99]. Herbivorous and pathogenic plant stress causes the 
production of ROS via oxidative bursts in the host plant 
[100,101]. During these bursts, chemicals are synthesised 
that may be employed to either block the spread of invading 
hyphae physically or to have direct, damaging effects on the 
cells of these organisms. Many studies [102,103] corroborate 
this notion. This study’s results provide credence to the 
hypothesis that reactive oxygen species serve a useful role 
in preparing the plant’s response to abiotic stresses, which 
has been proposed after a thorough revaluation of the role 
of ROS in the abiotic stress response of plants [99,104]. The 
plant produces many singlet oxygen species as part of this 
function, and these species travel extensive distances inside 
the tissue of the plant to provide systemic communication 
throughout the plant.

An arsenal of antioxidants is produced during the 
activation of the plant’s stress response. These antioxidants 
then regulate the degree of ROS build-up in plant cells, 
hence lowering the risk of cell damage and apoptosis [101]. 
ROS have a mechanistic role in apoptosis, nonspecific 
physiological stress, and systemic signalling, all of which 

influence the effectiveness of fungal infection or endophytic 
fungi colonisation and the plant’s reactions, which may be 
resistance, acceptance, or sanctions. In addition, via the 
interaction between oxidants and antioxidants, antioxidants 
may play a role in the transmission of stress signals. As 
a result, the host may be better able to respond rapidly to 
pathogenesis and tell the difference between a mutualist 
and a pathogen through chemical communication with an 
avirulent pathogen or an asymptomatic endophyte.

When cultures of Phyllosticta sp. were subjected to 
ROS, Srinivasan, et al. found that the organisms exhibited a 
high level of antioxidant activity. The interaction between 
fungal endophytes and host plants is a dynamic process 
that involves the potential involvement of reactive oxygen 
species (ROS) and antioxidants in the modulation of the 
host’s hypersensitivity and systemic developed resistance 
mechanisms.

Biofuel Production

Researchers looked at the possibility of producing lipid 
biodiesel precursors using endophytic fungus that had 
been identified from a variety of different tropical plant 
species. Widespread interest is already being shown in the 
production of next-generation fuels using endophytic fungus 
as a hitherto identified reservoir of low - molecular weight 
hydrocarbons and lipids. These microbes will be directly 
responsible for the production of these forthcoming biofuels, 
which will result in a simpler and shorter biosynthetic 
process. In addition, they will be well suited for instant use in 
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current combustion engines without requiring fundamental 
modifications to vehicle structure. Endophytes that have 
optimal lipid profiles have been reported to have been isolated 
by research organisations operating in different parts of the 
globe. These endophytes may be used as precursors in the 
production of biofuels. Researchers have discovered that 
some types of fungal endophytes may create volatile organic 
molecules, which can then be used to make traditional diesel 
fuel. The genomic sequence of one of these endophytic fungi 
that produces biofuel was only published not too long ago. 
Understanding of the biosynthetic mechanism by which 
endophytes are able to accomplish the difficult task of 
producing volatile hydrocarbons will be improved thanks to 
the discovery of Ascocorynesarcoides. Research in this vitally 
essential subject of alternative bio-energy for the purpose 
of ensuring India’s energy supply has gradually begun to 
acquire pace. Fungal endophytes live inside plants and are 
used in the production of biodiesel. The plants Jatropha 
curcas, Pongamia pinnata, Sapindusmukorossi, Mesuaferrea, 
Terminalia bellerica, Casabelathevetia, and Ricinus communis 
are some of the plants that contain these fungi [105].

Discovery of New Drugs

Natural substances have been shown in recent research 
to have potential in the pharmaceutical industry as a source 
of innovative and diversified pharmacological templates 
for future drug development and discovery [106-109]. 
Research into endophytes for natural products is expected 
to play a significant role in the future of drug discovery and 
development since it is becoming increasingly clear that 
many natural compounds result from microbial associations 
with their hosts [110-111].

Natural Products Derived from Fungi 
Endophytes

Endophytes of fungi are well-established sources of 
natural compounds and produce particular plant-derived 
metabolites that are beneficial from a pharmaceutical 
standpoint. Many kinds of plant-derived medicinal chemicals 
(Figure 3), which are generated by fungal endophytes, are 
discussed in Table 5.

Figure 3: Natural products derived from fungi endophytes.

https://medwinpublishers.com/OAJMB


Open Access Journal of Microbiology & Biotechnology
10

Kaur M, et al. A Review of Endophytic Fungi and their Applications in Different Fields of Biotechnology. J 

Microbiol Biotechnol 2024, 9(2): 000299.

Copyright©  Kaur M, et al.

Endophytic Fungus Plant Source Plant Derived 
Compound Activity References

Alkaloids
Cladosporium 

cladosporioides Aconitum spp. Aconitine Anticancer Yang, et al. [112]

Alternaria alternata Capsicum annuum Capsaicin Anti-inflammatory, 
gastro-stimulatory Devari, et al. [113]

Fusarium oxysporum, Amoora rohituka 
Dysoxylum binectariferum Rohitukine Anticancer, CDK 

inhibitor Kumara, et al. [114]

Coumarins
Botryodia 

plodiatheobromae
Citrus bergamia, 
Grapefruit peel

Bergapten, 
Meranzin Antioxidant Zaher, et al. [115]

Annulohypoxylona bovei 
var. microspora

Acanthopanax senticosus, 
Sarcandra glabra Isofraxidin Anticancer Yamazaki, et al. [116]; 

Cheng, et al. [117]
Penicillium sp., Xylaria sp. Alibertia macrophylla Mellein Antibacterial, antifungal Oliveira, et al. [118]

Penicillium sp. Artemisia scoparia, 
Scopolia carniolica

Scopoletin, 
Umbelliferone

Antifungal, antioxidant, 
anti-inflammatory Huang, et al. [92]

Flavanoids

Colletotrichum sp Cajanus cajan Apigenin Antibacterial, anticancer, 
antioxidant, Shukla, et al. [119]

Hypocrealixii Cajanus cajan Cajanol Anticancer, antimicrobial Zhao, et al. [120]

Curcuma wenyujin Curcuma spp Curcumin Anti-inflammatory, 
antioxidant, antitumor Wang, et al. [121]

Lignans
Members of xylariaceae Angelica archangelica Coniferin Antidiabetic Chapela, et al. [122]

Alternaria neesex Forsythia suspensa Podo-phyllotoxin Antitumor, antivirus Kong, et al. [123]
Saponins

Penicillium oxalicum Gymnema sylvestre Gymnemagenin Anti-diabetic Parthasarathy, et al. 
[124]

Aspergillus sp. Panax Ginsenoside antioxidation, antitumor Wu, et al. [125]
Terpenes

Penicillium Azadirachta indica Azadirachtin Insecticidal Kusari, et al. [91]

Nodulisporium sp. Cinnamomum camphora Camphor Antimicrobial, topical 
skin preparations

Suwannarach, et al. 
[126]

Quinones and Xanthones

Chaetomium globosum Hypericum perforatum Hypericin Anti-depressant, 
antimicrobial Kusari, et al. [91]

Gibberella moniliformis Lawsonia inermis Lawsone Cytotoxic Sarang, et al. [127]
Miscellaneous Plant-derived Compounds

Aspergillus unguis Wheat, rye, barley Azelaic acid Antimicrobial, 
anticancer Kamat, et al. [128]

Muscodor vitigenus Ancistrocladus tectorius Naphthalene Antibacterial, insect 
repellent

Ruangrungsi, et al. 
[129]

Table 5: A list of plant-derived compounds from fungal endophytes.
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Production of Immunosuppressive Compounds

Immunosuppressive drugs are offered to patients 
undergoing organ transplantation in order to suppress, 
minimise, or avoid allograft rejection. Therefore, they are 
very important in medical management of autoimmune 
diseases like SLE etc. Because of the rising demand for 
immunosuppressive treatments, there is a pressing need to 
accelerate the search for pharmaceuticals that are not only 
safer but also more trustworthy. This is necessary in order 
to investigate the issues that are now plaguing the efficacy 
of these medications. Many investigations have shown that 
endophytes are capable of producing bioactive chemicals 
that may suppress the immune system [65,130]. Chemical 
analysis is often employed to identify the presence of (-) 
mycousnine enamine. The endophyte Mycosphaerella 
sp. was isolated from the china root leaves plant to produce 
this biomolecule [131]. Cyclosporin A and (-) mycousnine 
enamine were able to decrease the proliferation of T 
lymphocytes by reducing the expression of CD25 and CD69 
surface activation antigens. This resulted in the inhibition 
of T cell proliferation [131]. In conjunction to this, nine 
polyketides were isolated from the mangrove leaves that 
harbour the endophytic fungus Penicillium sp. ZJ-SY2. 
These compounds showed promising immunosuppressive 
properties [130]. Fomitopsisbetulinus, a basidiomycete often 
linked with wood decay, was the source of Xylarialongipes 
HFG1018. This fungus was responsible for the production 
of eighteen new nor-isopimarane diterpenes, which were 
designated as xylarinorditerpenes A–R (1–18). Some of 
these compounds had the ability to suppress the immune 
system [132].

Production of Siderophores

Siderophores are created by many species with the 
ability to scavenge iron from the environment they are in to 
render the essential substance easily accessible to the cell. 
Various species are capable of producing siderophores. To 
facilitate uptake and utilisation of ferric iron, siderophores 
are secreted out into the environment to form soluble ferric 
complexes. Siderophores have very complicated chemical 
structures, which enables them to create the most powerful 
iron-chelating complexes. Siderophores are engaged in 
the process of virulence and play an important role in the 
mobilisation of iron and other components. Recent research 
has also shed light on the significant connection between 
siderophores and the capacity to withstand oxidative stress. 
Both in agricultural and medical contexts, their applications 
have been the subject of much research. On the other 
hand, new research areas are beginning to focus on the 

use of siderophores as green-iron chelators. Specifically, 
siderophores are being considered as a potential solution for 
the protection of cultural assets.

Many microorganisms that live on or around plants, 
both beneficial and harmful, share a common trait: the 
synthesis of extracellular siderophores. Siderophores are 
produced by a number of different strains of fungus. Scots 
pine and Labrador tea foliar endophytic fungi were studied 
for their ability to produce antimicrobial and antioxidant 
compounds via extracellular siderophore production. In 
vitro production of the siderophore ferricrocin resulted 
in concentrations ranging from 7.9 to 17.6 micrograms 
per litre. Ferricrocin was only created by the fungus that 
also had antibacterial action, and none of the well-known 
siderophores were found in the broths made by the fungi 
that produced antioxidants. As a result, the synthesis of 
ferricrocin is characteristic of certain foliar endophytic 
fungus, but not all of them. The discovery of ferricrocin in 
the leaves of Labrador tea lends credence to the hypothesis 
that this compound may play a function in vivo in the 
dynamic relationship that exists between the endophyte 
and the plant host [133].

Conclusion

New and exciting avenues for applied research into 
plant-microbe interactions can be found by studying the 
function of fungal endophytes, as these microbes can boost 
germination rates, enhance seedling health, and increase 
plant growth. The production of extracellular enzymes, 
phytohormones, and secondary metabolites can be linked 
to these abilities. Because of their potential to be used as a 
biofertilizer to improve plant growth, we should encourage 
further research into these microbes. An enormous 
portion of the endophytic population in terrestrial plants 
is probably still undiscovered. Metagenomic research into 
plant endophyte populations will reveal new applications 
and details about these microorganisms, such as the genera, 
phenotypic traits, and potential roles in seed germination 
and plant development. There is a need for more study 
to determine the genetic determinants involved in plant 
growth promotion and the molecular mechanisms by which 
plant-endophyte interactions induce defence resistance 
mechanisms against different types of stresses.
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