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Abstract

Biocatalysis is known since man knew about brewing which was known since 6000 years. Enzymes from microbial sources 
were then employed in industries such as production of beer, wine, cheese etc. Nearly 100 years down the lane biocatalysts 
have been used for chemical transformations. In order to access the repertoire of pharmacological and agrochemicals with 
high chemoselectivity, regioselectivity, and enantioselectivity, biocatalysis integrates microbiologists, enzymologists, and 
organic chemists. The usual chemical approach is challenged by the saturation of carbon-carbon double bonds by biocatalysts, 
as they avoid the usage of organocatalysts or precious metals (in combination with chiral ligands and molecular hydrogen). 
Since past 30 years they have been used for the synthesis of valuable fine chemicals especially pharmaceuticals. This review 
gives a brief about microbial biocatalyst including the photosynthetic blue-green algae.
 
Keywords: Biocatalysis; Biotransformation; Algae; Bioreduction; Chiral Compounds

Abbreviations: ERs: Ene-reductases; ATH: Asymmetric 
Transfer Hydrogenation; ADH: Alcohol Dehydrogenases; 
NAD+: Nicotinamide Adenine Dinucleotide; OYE1: Old 
Yellow Enzyme 1; KRED: ketoreductase; DPP-4: Dipeptidyl 
Peptidase-4 Activity; PET: Positron Emission Tomography.

Introduction

Enzymologists, microbiologist, and organic chemists 
collaborate in biocatalysis to access the repository 
of pharmacological and agrochemicals with high 
chemoselectivity, regioselectivity, and enantioselectivity. 
Biocatalysis is process which is been increasingly used 
now a days instead of the traditional synthetic routes to 
synthesize important molecules of industrial importance. 
Biocatalysts are very advantageous as they work under 
normal conditions of pH value, temperatureand pressure in 
an aqueous environment, which makes it a greener process 

to chemistry. It is also advantageous as these reactions are 
highly stereoselective, chemo-selective and regioselective. 
Biocatalysts play an important role in the synthesis of 
enantiomerically pure compounds used in pharmaceutical 
industries, agrochemicals and synthesis offlavours. Food and 
Drug Administration has given guidelines that drugs must be 
produced as chiral molecules and demand the proof that the 
isomer which is non-therapeutic must be non-toxic in case 
it is sold in a racemic form. The usual chemical approach is 
challenged by the saturation of carbon-carbon double bonds 
by biocatalysts, as they avoid the usage of organocatalysts 
or precious metals (in combination with chiral ligands and 
molecular hydrogen).

Ene-reductases (ERs) are a promising biocatalyst 
that can cooperatively reduce unsaturated double bonds 
with transition metals. They are also compatible with 
other emerging techniques such as photoenzymatic, 

https://medwinpublishers.com/OAJMB
https://portal.issn.org/resource/ISSN/2576-7771#
https://medwinpublishers.com/
https://doi.org/10.23880/oajmb-16000279


Open Access Journal of Microbiology & Biotechnology
2

Meshram SH and Sahu N. Biocatalyst Potential Candidate for Human Welfare. J Microbiol 
Biotechnol 2023, 8(4): 000279.

Copyright©  Meshram SH and Sahu N.

chemoenzymatic, multi-enzymatic, photoelectrochemical, 
single reduction chemistry, and radical-mediated 
transformations. Enzymologists and synthetic chemists will 
be influenced by this study to investigate and further the 
fascinating chemistry revealed by ERs for both academic and 
commercial objectives.

Racemic Compounds

A mixture of equal proportions of mirror-image 
enantiomers are called as racemic compound (Figure 
1). Single enantiomers and their racemates can be very 
different in pharmacological properties. This property is 
very important in medicinal chemistry for the synthesis of 
drug molecules [1]. Previously many drugs were formulated 
as their racemic mixtures and sold. The important case 
of drug thalidomide failure was the biggest turning point 
in the field of chiral drugs and chirality concerned. It was 

used by pregnant women as an analgesic during the 1960s 
(Figure 2). Structurally it was a simple compound and had 
only one chiral center, but the chirality of it proved to be very 
crucial on the pharmacological effects of this drug. Since 
the environment of drugs (human bod proteins, enzymes) 
in nature are chiral, enantiomers specifically bind to one 
type of the enzyme and produce different effects (Figure 
3). They have a diastereoisomeric relationship with respect 
their receptor complexes. In the case of thalidomide, there 
was no study carried out on the potential consequences of 
this structure activity relationship and the drug molecule 
was synthesized and sold in the form of a racemic mixture. 
Unfortunately, pregnant women who consumed this drug 
during pregnancy gave birth to deformed children. Later on 
much investigation was carried out which proved that the R 
isomer was safe and had analgesic effect while the S isomer 
was teratogenic.

Figure 1: Representation of enantiomers of a chiral molecule which are not superimposable over each other (Picture taken 
from Google Images).
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Figure 2. Representation of the enantiomers of thalidomide.

Some of the enanatiomers may show same therapeutic 
or toxic effects but they might differ in the magnitude of these 
effects; one may be pharmacologically active and the other 
may be inactive. Lot of research was carried out in the area 

of stereochemistry of drugs in order to develop newer, safer 
and more effective drugs and other chemical compounds [2]. 
Figure 4 represents the compounds which show different 
effect based on the enantiomer. 
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Figure 3: Binding of active and inactive enantiomer to the binding site and its effect.

Today many of the drugs marketed are chiral. Both the 
Pharmacodynamic and pharmacokinetic studies are carried 

out before the drug is released in the market [3]. 
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Figure 4: Examples of some chiral compounds having different effect.
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Chiral Compounds

When a molecule or ions cannot be super imposed over 
its mirror counterpart in any combination of rotations the 
compound is said to be chiral. A chiral centre is defined as the 
centre atom which is connected to the four different atoms.

Approach for the Synthesis of Chiral Compounds

There are two different methods for the production 
of chiral center in the compound by the reduction of keto 
compounds to produce chiral secondary alcohols. 
•	 Asymmetric hydrogenation using different chiral 

organometallic complexes
•	 Use of a biocatalyst (Enzyme keto-reductases). 

Chemical Reagents Used for Synthesizing Chiral 
Compounds: Asymmetric hydrogenation of ketones can 
be carried out using chemical catalysts such as hydrides of 
Sodium, Lithium, and Ruthenium complex, (Table 1). The 
disadvantage of these methods is that the catalyst is very 
costly and their disposal is very difficult. It affords optically 
active secondary alcohol in good yields. The hydrogen 
molecule gets added to the carbonyl group from any of the 
two enantiofaces producing different enantiomers [4,5]. 

Sl. No. Substrates Catalyst Work by References

1 Aromatic ketones Ionic tagged ferrocene-ruthenium 
catalyst system Xu D, et al. [6]

2 Aliphatic and base-labile ketones Chiral ruthenabicyclic complexes Matsumura K, et al. [7]

3 Simple ketones Ruthenium(II)-indan-ambox 
complex Li W, et al. [8]

4 Alpha-amino aliphatic ketones. Ruthenium-catalyzed Xie J, et al. [9]

5

Simple ketones aromatic 
ketones, alpha,beta-unsaturated 

ketones,heteroaromatic, , and cyclopropyl 
ketones

Tunes Phos/1,2-diamine-
ruthenium (II) complexes Li W, et al. [10]

6 Ketones ruthenium-catalyzed asymmetric 
hydrogenation Liu S, et al. [11]

7 Alpha-chloro aromatic ketones eta6-arene/TsDPEN-
ruthenium(II) complexes Ohkuma, et al. [12]

8 Acetophenone
Chiral eta(6)-arene-N-tosyl 

ethylenediamine-ruthenium(II) 
complexes.

Sandoval C A, et al. [6]

9 Simple ketones
Ruthenium catalysts with diamine 

and BINOL-derived phosphinite 
ligands

Guo R, et al. [13]

Table 1: Asymmetric synthesis using Metal catalysts.

Bioreduction Using Biocatalysts: Enantiomerically pure 
secondary alcohols are used in the synthesis of chiral 
pharmaceutical products, flavors and agrochemicals. A 
symmetric reduction of prochiral ketones is the method for 
the synthesis of the required enantiomerically pure alcohols. 
Biocatalysis can be done using enzymes or whole cells from 
microorganisms or vegetables source for the bioreduction 
of prochiral ketones. These days lot of study is being carried 
out on the use of biocatalysts for chiral synthesis. Figure 5 
represents the number of publications and patents in the 

area of biocatalysis from year 2000-2017 [14].

The below graph indicates the amount of research being 
put into biocatalysis and the amount of publications in 
these areas. Here in we describe several selected examples 
using free and supporting cells for the enantioselective 
bioreduction of prochiral ketones with Prelog or anti-Prelog 
selectivity.
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Figure 5: Importance of biocatalysts and research being done in this field.

a. Mechanism of Bioreduction
Prochiral molecules are the compounds which are not chiral 

by themselves but can be converted to chiral compound in one 
step.Asymmetric transfer hydrogenation (ATH) is a powerful 
tool emerged these days for the asymmetric hydrogenation of 
prochiral ketones to their secondary alcohols. It is one of the 
most valuable intermediates in organic synthesis. In a recent 
studies the ATH reaction in aqueousmedia was proved to be 
feasible, producing chiral alcohols in good yields and showing 
high enantioselectivities [15]. 

A trigonal planar sp2-hybridized atom can be converted 
into a chiral center (pronounced “ray” and “sigh”)when a 
substituent is added to the re or si face of the molecule. If 
Cahn-Ingold-Prelog proposesan arrangement of atoms in 
clockwiseorder of precedence, then the face is said to be reif, 
when looking at that face, the substituents are arranged in a 
descending order in the opposite direction, it is said to be si . 
It is important to note that the naming of the resulting chiral 
center as S or R depends on the preference of the incoming 
group (Figure 6).
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Figure. 6. Example of asymmetric bioreduction of an aromatic ketone.

b. Enzyme Structure and Function
The enzyme responsible for the keto reduction reactions 
is called Alcohol dehydrogenases (ADH) (EC 1.1.1.1). They 
represent a class of dehydrogenase enzymes which is 
present in many living organisms and smooth the conversion 
of prochiral ketones to alcohols. Herein there is a reduction 
of nicotinamide adenine dinucleotide (NAD+) to NADH. 
Bacteria, Fungi and plants, all are known to contain the 
enzyme in varying proportions [16] (Figure 6).

c. Cofactor Regeneration
All the reactions catalysed by reductases are cofactor 
dependent, thus, it becomes important task in industrial scale 

to see that an efficient method is available for regeneration 
of the consumed cofactors. The reduction process, using 
enzymes require the presence of NADH (nicotinamide 
adenine dinucleotide) and NADPH (nicotinamide adenine 
dinucleotide phosphate) together to catalyze the reaction in 
a way that: 
1) The coenzyme and oxidized substrate bind to an enzyme, 
2) Substrate is reduced, while the coenzyme is oxidized, 
3) The coenzyme and reduced product detach from the 
enzyme, and 
4) The coenzyme is recycled and ready for the process to 
begin again [17].
NAD(P)-dependent oxidoreductases are present in most 
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of the organisms and catalyze the reduction of ketones to 
secondary alcohols. As there is need of expensive cofactors, 
this process becomes very costly. This problem is abolished 
by using whole plant part or tissue and microorgamisms 
since the living system has this cofactor system within them. 
Depending on the biocatalyst used, any desired enantiomer 
can be obtained, which could be an important factor for drug 
development process [18,19]. 

d. Chiral Secondary Alcohols
Chiral secondary alcohols play a vital role in 

pharmaceutical, agrochemical, and chemical industries. 
In recent years, large development has been carried out 
towards biocatalytic ketone reduction as a green process 
for producing to enantiopure alcohols. Genetic engineering 
technology for the production of novel hybrid enzymes now 
a days can create new much productive and robust enzymes 
with required activity. The combination of bioreduction 
along with other enzymatic or chemical steps allows the 
effective method in the synthesis of important complex 
chiral products [20]. 

e. Chirality and Biological Activity
Chirality, is a theory of non-superimposable mirror 

images. It is a basic property of all biological living systems. 
Stereoisomer are the compounds that possess the same 
structural and molecular formula, but they are different 
in their three-dimensional structure. Chiral compounds 
have two non-superimposable mirror-images which are 
stereoisomeric forms called enantiomers.

f. Enzymes in Bioreduction
Enzymes are present in all living organisms and they can 

perform reactions in very mild conditions of temperature 
and pH. They are remarkably stereoselective, chemoselective 
and regioselective. This ability, enables chemists to exploit 
the enzyme property, to use it in organic synthesis. In the 
past two decades there is rapid increase on research in the 
use of biocatalysis, for the synthesis of chiral compounds.
These reactions can be catalyzed by 

1. isolated enzymes or 
2. whole cells 

The use of isolated enzymes is generally preferred 
because of a high yield and no side products formation. In 
case of isolated enzymes there is requirement to supply 
external cofactor NADPH which is very costly. The use of 
whole cells doesn’t require any external supply of cofactor 
as the whole cells contain the cofactor recycling mechanism. 
Thus most preferred is the use of whole cells [21].

Chiral metal complexes have been successfully used as 
catalysts in a number of cases of enantioselective synthesis 
such as BINAP-Ru. However, there are many reactions 
where there remain difficulties in obtaining required optical 
purity and yield. Moreover, there are many disadvantages of 
chemical processes like 

•	 Less optical purity
•	 Costly chemicals
In order to get over the above disadvantages of chemical 

processes, biotransformation procedures using enzymes 
have gained popularity for the asymmetric synthesis [22].

g. Alcohol Dehydrogenase
Alcohol dehydrogenases (EC 1.1.1.1) are a category of 

dehydrogenase enzymes which occur in many organisms. 
They facilitate the conversion between Ketone and alcohols 
by the reduction of nicotinamide adenine dinucleotide 
(NAD+) to NADH.

h. Enoate Reductase
Recently many studies have been carried out on family 

of enzyme called as ene-reductases (ERs). These enzymes 
have shown potential in biocatalysis and the synthesis of 
fine chemicals as they reduce the C=C bond which is one 
of an important organic reaction (Figure 7). In the past five 
years the researchers have studied multi cascade enzyme 
processes where more than one enzyme can be used in 
the synthesis of a compound at different steps in different 
organisms (Table 2) [23]. 

Sl. No. Catalyst Enzyme reported References
1 Rhodococcus, Gordonia Enoate reductase [24]
2 Cyanobacteria* Enoate reductase [25,26]
3 Aspergillus Enoate reductase [27]
4 Clavisporalusitaniae Ene reductase [28]
5 Synechococcus sp. Ene reductase [29]
6 Saccharomycespastorianus (formerly S. carlsbergensis Old yellow enzyme 1 (OYE1) [30]
7 Penicillium citrinum [31]
8 Lycopersicon esculentum [32,33]

Table 2: Studied showing reduction of ene-bond using different biocatalyst.
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Figure 7: Mechanism of reduction by ene-reductases.

Microalgae- Enoate Reductase: Cyanobacteria or the Blue-
green algae or the Algal blooms are commonly known as 
troublesome pollution creating source of water ecosystems 
resulting mainly due to the anthropogenic eutrophication. 
The dense and profuse growth of these tiny photosynthesis 
bearing organisms usually seems like mat floating on the 
water bodies making the watercolor as brilliant blue-green 
or sometimes red. The ability of such rapid and huge growth 
in these photosynthesizing bacteria is due to the presence 
of numerous substances treated as chemical contaminations 
and biogenic elements, mainly nitrogen and phosphorus, 
which shows their exceptional adaptability related to their 
explicit “flexible” metabolism. Many researchers in this 
field have revealed the potential use blue-green algae as 
biotransformation catalysts, both for natural and synthetic 
compounds.

It is also possible to use blue-green algae in bioremediation 
of heavy metals and metal ions. During this process several 
nanoparticles of these metals are also produced. These 
attributes in combination with ease of maintaining blue-
green alga under controlled conditions can be exploited as 
industrially important microorganisms characterized by 
promising bio catalytic potential. The phototrophic organism 
has been found growing in a wide range of aquatic habitat i.e. 
Marine water, brackish water as well as fresh water (ranging 
from 3oppt to 0ppt salinity). Cells of cyanobacterial species 
can adapt such systems tospecific substancesoccurring 
in their environment. Similarly, these cyanobacteria are 
when exposed to xenobiotic compounds. Various examples 
of cyanobacteria like Aphanizomenonklebahnii, Spirulina, 
Merismopedia glauca, Anabaena laxa, Nodulariamoravica 
and Synechocystisaquatilishave the abilities to convert 
the monoterpenes and organophosphonic compounds. 
Among these species, Anabaena, Synechocystisaquatilis, 
Nodulariamoravica, Aphanizomenonklebahnii, and 
Merismopedia glauca have also been described as the most 
potent biocatalysts, with the ability to convert chalcones to 

the corresponding cis-chalcone, dihydrochalcones (also a 
valuable natural sweetener), causing regioselective reduction 
of 1,3-diphenyl-2-propen-1-one and also by altering the 
C=C bond of the olefinic fragment of the molecule without 
affecting the carbonyl group. This may be made possible 
by the formation of enzymes that allow the compound to 
be metabolized. Inclusion of enzymes involved in a chain of 
internal changes. Their internal cellular structures possess 
mechanisms that transform many natural compounds with 
specific advantages of selective enzymatic behaviour such as 
chemo-, regio-, and stereo-selectivity.

The most important family of ERs is the FMN-dependent 
Old Yellow Enzyme (OYE). Thisis a class of oxidoreductases 
(EC 1.6.99.1) [34]. They specifically catalyse the reduction of 
α, β-unsaturated compounds, containing activating groups 
such as aldehydes, ketones etc.

Types of Biocatalysts

Vegetable Biocatalyst

One of a “green” procedure to obtain chiral compounds 
is by using plant biocatalysts. Interestingly, many plant 
based catalysts have been studied since years and are proved 
successfully for bioreduction. The most popular plant 
biocatalyst being Daucus carota. Carrots asbiocatalysis are 
due to the observed high yield and high enantioselectivities. 
Also, they are readily available in the market, easy to work 
with and inexpensive. Both R- and S-form configuration 
chiral alcohols could be obtained using plant biocatalysts 
depending on which is required [35]. 

Microbial Transformation

Several studies have been done on microbial reduction 
reactions for the stereo- and enantioselective reduction 
of ketones [36,37]. Many microbes since then have been 
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identified for the presence of keto reductase enzyme for the 
biotransformation processes.
Advantages of Microbial Transformation: Like plant cell 
enzymes, microbial enzymes, are able to catalyse reactions 
with high regio- and stereospecificity. Microbes are physically, 
incredibly small to be able to be seen by the naked eyes. A part 
from that, theycarry important role in today‘s pharmaceutical 
industry. Microbes, including the blue-green algae, grow 
exponentially and are therefore factories that produce a 
wide variety of enzymes in a very short time period as they 
multiply exponentially. It is also very possible to obtain 
and breed these organisms that are heat tolerant and can 
survive in extreme environments such as cold or hot, acid 
or alkaline conditions. Microbial transformations is a viable 
reaction that is unlikely to be performed by conventional 
synthetic methods, as shown in Table 3. Due to their small 
size, they have a high surface are to volume ratio comparedto 
some biological systems. Microorganisms, including 
photosynthetic cyanobacteria, have great potential to induce 
biocatalysis due to the presence of enzymatic systems 
capable of converting unknown substrates. Therefore, many 
studies have been performed using endophytic species with 

different bio-transformations of interest.

Pyrobaculumcalidifontis VA1 is of the thermostable bacteria 
that produces various enzymes and is stable under extreme 
heat, acid and alkaline conditions [38].
Disadvantages and Challenges of Microbial 
Transformation: Though there are many advantages in the 
use of microbial catalysts it comes with certain drawbacks.
•	 If properly trained person doesn’t perform the reaction 

there are chances of contamination.
•	 There is a separate step required for the centrifugation 

of microorganism to obtain the reaction mixture.
•	 There might be reactant and product toxicity on the 

organism. 
•	 The organism may use the substrate as energy source 

which doesn’t give the desired product.
•	 As the biological framework is complex in microbes, 

there are very low chemical yields.
•	 Same organism may produce different enzymes which 

gives rise to side reactions and unnecessary products.
•	 These processes are relatively very slow.

Sl.No Source Substrate References
1 Trichotheciumroseum Acetophenones [39]
2 Candida zeylanoides (S)-1-(4-nitrophenyl)ethanol [40]
3 Yarrowialipolytica (S)-1-phenyl-1,2-ethanediol [41]
4 Aspergillus sydowii. α-bromoacetophenonol [42]
5 Aspergillus sydowii CBMAI 934 Acetic acid [43]

6 Penicilliumcitrinum CBMAI 1186 α,β,γ,δ-unsaturated ketones (enolate 
reductase) [44]

7 Penicillium, Cladospori,Aspergillus and Verticillium Naphthoflavones [45]
8 Rhodotorulaglutinis (immobilised) (S)-1-phenylethanol [46]

9 Penicillium funiculosum, Alternaria alternate, Talaromyces 
flavus.

(S)-5-(1-hydroxyethyl) furo[2,3-c] 
pyridine [47]

10 Saccharomces cerevisiae ethyl 3-oxobutanoate [48]

11
Candida, Cryptococcus, Debaryomyces, Hanseniaspora, 
Kazachstania, Kluyveromyces, Lindnera, Nakaseomyces, 

Vanderwaltozyma and Wickerhamomyces

(4R)-(-)-carvone and (1R)-(-)-
myrtenal [49]

Bacteria
1 Escherichia coli Ketones [50,51]
2 Acetobacter pasteurianus Prochiral Ketones [52]
3 Lactobacillus senmaizukei. Acetophenones [53]
4 Lactobacillus paracasei (R)-1-(3-methoxyphenyl)ethanol [54,55]

5 Lactobacillus paracasei.
(R)-1-(1,3-benzodioxol-5yl) ethanol [56]

(S)-cyclohexyl (phenyl) methanol. [57]

6 Burkholderia gladioli Ethyl (R)-4-chloro-3-
hydroxybutyrate [58]

Table 3: Asymmetric synthesis using Microbial catalysts.
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Enzyme Application in Industry

Synthesis of Betulone from Betulin Using 
Fungus Dothideomycete sp. HQ 316564

Many marine fungus have been examined for its 

capability to reduce betulin to betulinic acid. From them one 
fungus Dothideomycete sp. selectively catalysed the oxidation 
of betulin to betulone (Figure 8) [59].

HO

OH

H

H

H

H

O

OH

H

H

H

H

Dothideomycete sp.

Betulin Betulone

Figure 8: Mechanism of reduction by ene-reductases.

Synthesis of an Intermediate of Montelukast

Montelukast 7 is an orally active selective leukotriene 
receptor antagonist (Figure 9), it is used as anti-asthma drug, 
and was originally developed by Merck under the name of 
Singulair®.

The chemical synthesis [60,61] requires solvent and 
chiral reducing agent (−)-β-chloro di-isopinocampheyl 
borane [(−)-DIPchloride] and ((R)-Xyl-BINAP) ((R,R)-DPEN) 
RuCl2 as a catalyst to produce product with enantioselectivity 

of 99% ee [60]. These agents are very toxic and corrosive, and 
may burn if it comes in contact with skin; also, the chemical 
reduction of ketone is carried out at very harsh temperature 
of −20 to −25°C to get the best stereoselectivity. Research 
carried out at Codexis and Arch Pharm Labs Limited, and they 
developed a ketoreductase (KRED) using directed evolution, 
thus enacting the same process conditions.The final enzyme 
was 2000 fold stable and thus increased the productivity 
substantially. In this case Isopropanol was used for cofactor 
regeneration which is an auxillary substrate. 

N

O OMe

Cl

O

+ OH

Ketoreductase

N

O OMe

Cl

OH

Figure 9: Step in the synthesis of Monteleukast.

Through contributions to bioinformatics and high-
through put screening, molecular biology and process 

chemistry, a KRED was developed with exceptionally high 
enantioselectivity (>99.9% ee). The KRED produced an 
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efficient and potent enzyme that catalyzes reactions of 
intrinsically water-insoluble substrate [62]. 
 

Synthesis of Sitagliptin 

Sitagliptin is an antidiabetic drug commercially manufactured 
by Januvia®, by Merck. It isfirst marketed gliptin family 
drug oral antihyperglycemic [63]. It is used along with other 
antidiabetic drugs such as metformin or thiazolidinedione, 
for the treatment of Type 2 diabetes mellitus. It acts by 
dipeptidyl peptidase-4 activity (DPP-4) inhibitor. Its, sales 
reached 6,358 million USD in the US as of 2014. It is expected 
to increase its sale by the year 2020 [64].

The chemical synthesis of sitagliptin was carried out 
by asymmetric hydrogenation of prositagliptin using a 
rhodium-based chemical chiral catalyst rhodium-based (Rh 
[Josiphos])[65]. However, the chemical process is not as 
effective as it is contaminated with rhodium and requires a 
further purification step.Davies, et al. investigated several 
other chemical synthesis processes [66]. The enzymatic 

process used an (R)- selective transaminase to convert 
prositagliptin to the active moiety of sitagliptin. The enzyme 
was engineered through multiple rounds of mutations, 
resulting in an enzyme with 92% yield of the final product 
and 99% ee. Additionally, manufacturing costs are reduced 
and heavy metals are eliminated [67].

( S ) - 3 - H y d r o x y - 1 - ( 3 - ( t r i f l u o r o m e t h y l ) - 5 , 6 -
dihydro-[1,2,4]triazolo[4,3-a]pyrazin-7(8H)-yl)-4-(2,4,5 
trifluorophenyl) butan-1-one ((S)-HTPP) is an important 
intermediate in the synthesis of Sitagliptin (Figure 
10). Different fungal strains have been studied for the 
conversion of ketoamide 4-oxo-4-[3-(trifluoromethyl)-5,6-
dihydro-[1,2,4] triazolo[4,3-a]pyrazin-7(8H)-yl]-1-(2,4,5-
trifluorophenyl)butan-2-one (OTPP) to (S)-HTPP (Table 4). 
The group demonstrated that the reduction of OTPP was 
most effective at high temperature (45 °C), in the presence of 
distilled water and glycerol for cofactor generation. The yield 
obtained was 93% with 99% ee. 

N
N

N
N

F
F

F

CF3

O O
N

N

N
N

F
F

F

CF3

ONH2

Prositagliptin Sitagliptin

Chemical catalyst
NH4OAc
[Rh(COD)Cl]2+ (R,S)-t-Bu-
Joshiphos MeOH, 50OC
Free-base crystallization

Biocatalyst
(R)-amine transaminase

79%

92%

Figure 10: Synthesis of Sitagliptin from Prositagliptin.

Sl. No. Organism Work by References
1 Rhizopus microsporus var. rhizopodiformis ZJPH1308 Sun J, et al. [68]
2 Pseudomonas pseudoalcaligenes Wei Y, et al. [69]

Table 4: Microorganisms applied for the synthesis of sitagliptin.

Application in Positron Emission 
Tomography (PET)

Enzymes have excellent chemical selectivity and large 
turnover numbers, biocatalysis can propose appealing 
solutions in the field of radiochemistry. Chemists are 
inspired to create new radiotracers to enable non-invasive 
diagnosis of a wider range of disorders as a result of recent 
advancements in Positron Emission Tomography (PET). New 

radiotracers are developed to enable non-invasive diagnosis 
of a wider range of disorders and molecular basis inquiry, 
thanks to recent developments in PET. A novel method for 
radiolabeling physiologically active compounds with short 
half-lives positron emitters for application in positron 
emission tomography is called biocatalysis. Because the most 
widely used positron emitters have short half-lives (T1/2), 
such as fluorine-18 (18F, T1/2 = 109.8 min), carbon-11 
(11C, T1/2 = 20.4 min), and nitrogen-13 (13N, T1/2 = 9.97 
min), developing effective chemical schemes is necessary 
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for the radiosynthesis of PET tracers in order to synthesize 
and purify the radioactive species in a short amount of time. 
Even though the 1970s and 1980s were the “golden years” 
of biocatalysis in radiochemistry, developments in enzyme 
engineering over the past ten years have greatly expanded 
the pool of enzymes that can be used in chemical reactions 
and may have applications in radiochemistry.

Conclusion

Biotransformation with plant as well as microbial 
cells enables access to complex bioactive compounds 
having chiral center which can be both commercial drugs 
and candidates. Due to their capacity to catalyze regio- 
and stereo selective reactions on small molecules they 
have been applied widely. Although there are difficulties 
in selection of specific biocatalyst which can specifically 
produce certain kind of enantiomer, genetic engineering is 
applied now a days to produce such synthetically engineered 
enzymes which can specifically reduce and produce the 
desired product. Biocatalysts offer attractive solutions in 
various field pharmaceutical, microbiology, agriculture, 
radiochemistrybecause enzymes present exquisite chemical 
selectivity, enable fast chemical conversions, high turnover 
numbers, and yield highly pure products under specific mild 
conditions.
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