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Abstract

In the face of complex biotic and abiotic stresses, modern agriculture seeks innovative solutions to ensure sustainable crop 
production. Plant Growth-Promoting Rhizobacteria (PGPR) emerges as powerful allies, offering a sustainable approach to 
fortifying plant defense mechanisms. This review delves into harnessing PGPR-mediated defense priming to combat both 
biotic and abiotic stresses in agriculture. Defense priming, a sophisticated mechanism acquired through exposure to primary 
stimuli, empowers plants to mount quicker and more resilient defense responses against subsequent challenges. PGPR induce 
a pre-conditioned state of heightened alertness, enabling rapid and robust defense responses upon stress encounters. This 
paradigm not only enhances plant resilience to pathogens and environmental stressors but also promotes sustainable practices 
by reducing chemical inputs. The review critically evaluates the mechanisms underlying PGPR-mediated priming, emphasizing 
its potential to modulate plant physiology, metabolite production, increased antioxidants enzymes, defense related enzymes 
activities and enhance stress tolerance. It further explores how PGPR can improve plant responses to a spectrum of stressors. 
This review also highlights PGPR-mediated defense priming as a cost-effective, enduring, chemical-free, and sustainable 
method for managing abiotic and biotic stresses in agriculture. Implementing this strategy offers effective crop protection 
with minimal fitness and environmental costs, even in harsh conditions.
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Introduction

Amidst the accelerating pace of global warming and 
the persistent impacts of climate variability, the integrity 
of agricultural productivity hangs in the balance. These 
concerns are further compounded by environmental 
degradation, pollution, and the prevalence of biotic stresses 
on food crops, all of which jeopardize global food security 
[1,2]. Environmental stressors can lead to substantial 
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reductions in crop yields, ranging from 30% to 70% [3]. Both 
biotic and abiotic stressors inflict severe constraints on plant 
growth, yield, and survival. As the global population hurtles 
towards an anticipated 9-10 billion by 2050, the pressure 
intensifies on the agro-economic sector to meet burgeoning 
demand [2,4]. This has increased a reliance on synthetic 
agrochemicals, deployed to temper stress severity, combat 
pathogens and pests, and amplify yields and overall crop 
productivity.

Current efforts are directed towards enhancing 
crop productivity without reliance on pesticides and 
fertilizers. Traditional breeding, which harnesses natural 
genetic diversity, has been pivotal in improving crops and 
strengthening their resilience against pathogens. However, 
conventional breeding’s lack of precision can lead to 
unpredictable results and require significant time and 
resources. On the other hand, genome editing techniques like 
CRISPR-Cas9 provide precise modifications but encounter 
regulatory obstacles and public resistance, with concerns 
about unintended side effects [5]. Despite their limitations, 
both approaches struggle with addressing complex traits 
and adapting to rapidly changing environmental conditions.

Plant defense priming is an innovative approach to crop 
protection. Various biological, physical, and chemical stimuli, 
as highlighted by Yang, et al. [6], can induce the primed state 
of the plant immune system, while beneficial interactions 
with root-colonizing microorganisms, as noted by Yu, et al. 
[7], have been identified as potential triggers for establishing 
this primed state. This enables primed plants to remember 
prior interactions with beneficial microbes, allowing them 
to mount quicker and more targeted defences against 
invading pathogens [6,7]. This readiness, known as priming, 
enhances the plant’s defense mechanisms, offering more 
effective protection against pathogens when they attack 
[8]. Unlike direct defense activation, priming conserves 
resources by only activating defences when needed, avoiding 
negative impacts on plant growth and development [9-14]. 
Additionally, priming provides broad-spectrum protection 
in challenging environments, boosting productivity with 
minimal fitness costs [15].

Upon receiving initial priming cues, plants undergo 
various physiological, transcriptional, metabolic, and 
epigenetic changes [9]. Some alterations in plants can lead to 
somatic immune memory, while others extend to reproductive 
tissues, forming intergenerational or transgenerational 
immune memory, benefiting future generations [6,16-18]. 
Epigenetic modifications, such as DNA methylation and 
histone modifications, are crucial for establishing memory in 
plants [19,20]. These changes enable plants to “remember” 
previous stress events and pass this information on to 
subsequent generations, thus supporting long-term 

adaptation strategies [21]. Catoni, et al. [22] discovered 
that priming tomato plants with β-aminobutyric acid 
(BABA) significantly reduced global cytosine methylation, 
particularly in CHH sequence contexts. This hypomethylation 
predominantly occurred in differentially methylated regions 
(DMRs) and might influence priming indirectly by affecting 
regulatory genes that control stress responses, rather than 
directly modifying defense genes. The heritability of DNA 
methylation marks over several generations highlights the 
potential of using epigenetic mechanisms to develop crops 
with improved stress resilience [23].

Histone acetylation and methylation have been 
identified as key regulators of defense priming, occurring at 
specific histone residues and often alongside transcriptional 
reprogramming due to pathogen challenges or environmental 
stimuli. This process results in a sustainable reconfiguration 
of the nucleosome structure, as highlighted by Espinas, et 
al. [24]. Remarkably, in Arabidopsis, researchers examined 
stress memory in response to hyperosmotic stress priming. 
This priming resulted in histone modifications such as 
H3K27me3, which persisted in certain genes even after 
ten days of normal growth, indicating that the H3K27me3 
marks were passed on through mitosis [21]. Geng, et al. [25] 
investigated the epigenetic diversity and memory in Thlaspi 
arvense, an oilseed crop, under salinity stress. They found 
that, compared to control plants, T. arvense plants showed 
increased epigenetic diversity in response to salinity stress. 
These changes persisted in the second and third generations, 
suggesting that the plants retained the stress memory and 
could pass it on to future generations. This process, where 
epigenetic marks are inherited across multiple generations 
without recurrent stress, is known as transgenerational 
epigenetic inheritance. Thus, the stress tolerance resulting 
from epigenetic priming could be harnessed to cultivate 
plants with enhanced tolerance.

This inheritance of epigenetic changes can lead 
to intergenerational immune priming (IGIP) or 
transgenerational immune priming (TGIP) as shown in 
Figure 1 [9,26]. Such phenomena have been observed in 
various crop plants, where primed plants produce resilient 
offspring [13,14,18,27,28]. For instance, recent studies 
have shown that Trichoderma-mediated priming in barley 
results in progeny that perform better under drought stress 
compared to non-primed barley. The expression of the 
epigenetic regulator gene HvDME was notably higher in 
primed barley and its subsequent generations, indicating 
the inheritance of priming through these epigenetic markers 
[20]. Another study demonstrated that primed common bean 
(Phaseolus vulgaris L.) with INA (2,6-dichloro-isonicotinic 
acid) provides resistance against Pseudomonas syringae pv. 
phaseolicola, with this resistance being transgenerationally 
transmitted via epigenetic modifications of INA-responsive 
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genes like PvPR1 [28]. One more research further showed 
that DNA methylation changes in BABA-primed potatoes 
confer intergenerational resistance to Phytophthora 
infestans, with stress memory passed through R3a promoter 

methylation. Similarly, Meller, et al. [29] found that in BABA-
primed plants, the H3K4me2 label acts as a heritable mark 
for intergenerational regulation of resistance in potato.

Figure 1: PGPR-mediated defense priming enhances plant resilience to environmental stresses and induces somatic 
memory, termed as somatic priming. Furthermore, this priming can be inherited by progeny, resulting in intergenerational 
and transgenerational immune priming. Epigenetic modifications, including DNA methylation and histone modification, 
facilitate this inheritance mechanism. Compared to unprimed plants, primed plants display heightened resilience to stresses 
and transmit this enhanced defense capability to future generations through epigenetic mechanisms, offering sustainable 
solutions in agriculture.

Recent research has demonstrated that PGPR-mediated 
priming in wheat against Bipolaris sorokiniana extends 
beyond the parent generation, establishing intergenerational 
immune priming. This inheritance mechanism provides 
sustained protection against B. sorokiniana, highlighting 
the potential of PGPR-based strategies for long-term 
disease management in agriculture [14]. Utilising beneficial 
microorganisms not only boosts plant defense mechanisms 
but also reduces reliance on chemical pesticides, promoting 
eco-friendly agriculture. PGPR plays a pivotal role in 
promoting plant growth and development through the 
secretion of a diverse array of modulatory compounds 
[30,31].

In this context, this review aims to explore the concept of 
harnessing PGPR-mediated defense priming as a sustainable 
paradigm for combating both biotic and abiotic stresses in 
agriculture. We will delve into the mechanisms underlying 
PGPR-induced defense priming, examine its potential 
applications in enhancing crop resilience, and discuss 
its implications for sustainable agricultural practices. 

Additionally, further research is needed to explore the 
mechanism of intergenerational and transgenerational 
effects of PGPR defense priming, elucidating its long-term 
benefits for crop protection and food security.

Efficacy of PGPR Priming for Enhancing 
Plant Resilience in Alleviating Environ- 
mental Stresses

A crucial aspect of plant defense mechanisms involves 
phytohormones like jasmonic acid (JA), salicylic acid (SA), 
and ethylene (ET), which play pivotal roles in PGPR-mediated 
priming to enhance plant immunity [32]. PGPR-induced 
defense priming and ISR rely on intricate crosstalk between 
signalling pathways, particularly involving JA, ethylene, 
and NPR proteins [33]. Understanding this network is vital 
for enhancing plant immunity. Perception of PGPR signals 
triggers cascades, activating modulating phytohormones 
like JA and ethylene, priming defense genes and enhancing 
PR protein production. This primes plants for rapid, robust 
responses to pathogens and provides enduring protection 
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against diverse stresses. Additionally, PGPR-mediated ISR 
primes PR protein expression, linked to NPR proteins and 
modulation of JA and ethylene pathways [34]. JA activates 
defense responses against necrotrophic pathogens and 
herbivorous insects by promoting the expression of defense 
genes. SA is crucial for systemic acquired resistance (SAR), 
providing long-lasting protection against a broad spectrum 
of pathogens [35]. Ethylene works synergistically with both 
JA and SA to modulate defense responses, fine-tuning the 
balance between different hormone pathways. Certain PGPR 
strains can trigger ISR through the synergistic activation of JA/
ET and SA pathways [36]. For example, Bacillus thuringiensis 
primes tomato plants by inducing all three hormonal 
signaling pathways (SA, JA, and ET), thereby enhancing 
resistance to various pathogens [37]. Bacillus subtilis 
MBI600 also activates JA and SA pathways simultaneously in 
tomato plants to control soil-borne pathogens [38]. Similarly, 
Bacillus cereus AR156 can trigger immune responses against 
Pseudomonas syringae pv. Tomato DC3000 through ISR 
stimulated by both the JA/ET and SA signaling pathways 

[39]. In addition, B. cereus AR156 mediates priming in 
Arabidopsis thaliana by simultaneously activating salicylate- 
and jasmonate/ethylene-dependent signaling pathways 
[36]. NPR (Non-expressor of Pathogenesis-Related) proteins, 
particularly NPR1, are key regulators in the SA signaling 
pathway, activating the expression of PR genes and enhancing 
resistance. NPR proteins serve as central integrators, merging 
signals from SA, JA, and ethylene pathways [40]. During 
pathogen attack, NPR1 modulates the cross-communication 
between SA and JA pathways to prioritize suitable defense 
mechanisms [40]. Together, these phytohormones and NPR 
proteins form a complex network that underpins PGPR-
mediated priming, enabling plants to effectively respond 
to and withstand environmental stresses. Furthermore, 
PGPR-induced defense priming not only enhances secondary 
metabolite production and boosts antioxidant activity but 
also increases osmolyte accumulation, thereby enhancing 
the plant’s resilience to environmental stresses (biotic and 
abiotic) as shown in Figure 2 [2].

Figure 2: This schematic illustrates the signaling network underlying PGPR-induced defense priming and ISR in plants. PGPR-
derived signals initiate a cascade of events, including modulation of phytohormone signaling, particularly involving JA and 
ethylene. This primes defense-related genes, activates defense enzymes, and increases production of PR proteins, preparing 
the plant for rapid defense against environmental stresses. Additionally, PGPR-mediated ISR primes PR protein expression 
through NPR proteins and modulates JA and ethylene pathways, facilitating streamlined defense responses. PGPR-induced 
defense priming also enhances secondary metabolite production and antioxidant activity, reducing oxidative stress.

Biotic Stress

Recent studies have consistently highlighted the 
effectiveness of plant growth-promoting rhizobacteria 
(PGPR) in fortifying plant defenses against diverse 
pathogens. For example, Sufyan, et al. [41] demonstrated 
that PGPR priming of chickpea seeds not only increased 
overall plant biomass but also decreased disease incidence 

caused by Fusarium oxysporum f. sp. ciceris. Likewise, 
Dehkian, et al. [42] showed that priming tomato plants 
with Bacillus thuringiensis boosted the expression of 
defensive genes against Fusarium oxysporum (Fol), leading 
to diminished disease severity. In wheat plants challenged 
by Puccinia striiformis f. sp. tritici (Pst), Mashabela, et 
al. [43] observed notable metabolic changes induced by 
PGPR priming, including heightened levels of phenolic 
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compounds, indicating adaptive responses to stripe rust 
infection over time.

Moreover, Carlson, et al. [44] employed metabolomics 
to reveal that PGPR-primed sorghum seedlings exhibited 
enhanced upregulation of defense-related metabolites 
against Fusarium pseudograminearum, suggesting evidence 
of induced systemic resistance (ISR) and a primed state in 
the plants. Additionally, Devi, et al. [14] underscored the 
protective effects of PGPR priming in wheat against Bipolaris 
sorokiniana, attributing this to increased levels of enzymatic 
and non-enzymatic antioxidants, as well as heightened 
activities of defense-related enzymes in primed plants 
compared to non-primed ones.

In a recent contribution, Tahir Ali, et al. [45] demonstrated 
that priming Crocus sativus with the Bacillus sp. D5 strain 
enhanced biomass and fortified resistance against Fusarium 
oxysporum infection by inducing various defense enzymes. 
Collectively, these studies emphasize the potential of PGPR 
priming as a sustainable strategy for enhancing plant 
defense mechanisms and reducing pathogen-induced losses 
in agricultural contexts.

Abiotic Stress

Due to their immobile nature, plants face a variety of 
abiotic stresses like drought, heat, heavy metal toxicity, and 
salinity, all of which hinder their growth and development 
[46-48]. These stresses adversely affect critical physiological 
processes such as photosynthesis, floral formation, seed 
germination, and even induce responses like stomatal closure. 
By 2050, it is anticipated that drought-affected crop lands 
will double, while water resources will diminish by thirty 
percent [49]. Abiotic stresses disrupt the delicate balance 
between reactive oxygen species (ROS) generation and 
scavenging, leading to the acceleration of ROS propagation 
and subsequent damage to crucial macromolecules and 
photosynthetic complexes, ultimately resulting in cell death 
[49]. PGPR priming enhances crop growth by activating 
antioxidant defense systems, regulating both enzymatic 
(CAT, SOD, APX, GR) and non-enzymatic antioxidants, thus 
shielding plants from oxidative damage [50].

The efficacy of priming techniques in enhancing 
drought tolerance across various crops is highlighted by 
recent research findings. For instance, priming maize with 
PGPR boosts phenolic acid flavonoids and enhances the 
activity of antioxidant enzymes such as SOD, CAT, and APX 
under drought conditions [51]. Furthermore, studies have 
demonstrated the effectiveness of priming in other crops. 
Priming Oryza sativa seeds with Bacillus pumilus SH-9 
not only enhances germination metrics but also improves 
seedling characteristics compared to the control group, even 
under drought stress [52]. Similarly, priming wheat seeds 

with the endophytic strains B. subtilis 104 and 26D enhances 
growth, elevates photosynthetic pigment content, increases 
leaf area, and mitigates oxidative and osmotic cell damage 
under combined herbicide and drought stress conditions 
[53]. Additionally, priming wheat seeds with Bacillus 
subtilis 10-4 increases drought tolerance by augmenting 
photosynthetic pigments, relative water content, and 
reducing lipid peroxidation and electrolyte leakage during 
drought stress [54]. Moreover, priming okra seeds with 
Pseudomonas fluorescence enhances drought stress tolerance 
by maintaining relative water content, elevating the 
activity of both enzymatic and non-enzymatic antioxidants 
(e.g., AsA, GSH, SOD, CAT, APX, and GPX), and promoting 
metabolite accumulation, thereby improving growth under 
drought stress conditions [55]. In another study by Arafa 
SA, et al. [56], priming pea seeds with Bacillus thuringiensis 
MH161336 and carrot extract enhances growth, biochemical, 
and physiological traits. This includes increased relative 
water content and chlorophyll levels (a and b), up-regulation 
of antioxidant enzymes, higher seed yield, and reduced lipid 
peroxidation and reactive oxygen species during drought 
stress. Collectively, these findings underscore the potential of 
priming techniques to mitigate oxidative stress and bolster 
crop resilience against drought.

Soil salinity poses a significant global concern, 
detrimentally impacting agricultural yields in numerous 
countries [57]. In the realm of salinity tolerance, PGPR 
priming demonstrates remarkable efficacy across various 
crops. In peas, it modulates biochemical parameters, 
reducing electrolyte leakage and H2O2 levels during salinity 
stress [58]. Similarly, in wheat, this priming enhances water 
content and photosynthetic pigments while bolstering 
antioxidant activity under salinity stress conditions. 
Furthermore, PGPR priming triggers the upregulation of 
SOS genes (SOS1 & SOS4) in wheat during salinity stress, 
indicating a pathway to enhance salinity resilience [59]. 
Additionally, seed priming with endophytic B. subtilis strains 
10–4 and 26D was found to enhance growth attributes 
and mitigate oxidative and osmotic damage to Phaseolus 
vulgaris L. plants, while also increasing lignin accumulation 
in plant roots under salinity stress conditions [60]. 
Moreover, recent research discovered that priming tomato 
seeds with Bacillus paralicheniformis resulted in improved 
germination percentage, shoot length, root length, vigor 
index, and dry matter production compared to the control 
group under salinity stress conditions [61]. Furthermore, a 
study revealed that seed bio-priming of maize with Bacillus 
spp. mitigates salt stress damage on seedlings, resulting in 
elongated roots. This effect is achieved by increasing the 
activity of catalase (CAT), peroxidase (POX), and ascorbate 
peroxidase (APX), while also upregulating the expression 
of miR160d [62]. Ultimately, these findings underscore the 
potential of microbial priming techniques in bolstering crop 
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resilience to salinity stress. Another study demonstrated 
that priming wheat with PGPR resulted in several benefits. 
Primed wheat exhibited enhanced chlorophyll content and 
increased expression of various redox enzymes, along with 
the accumulation of osmolytes. This resulted in reduced 
membrane damage during heat stress compared to non-
primed wheat plants [63]. Furthermore, another study by 
Jayanwita Sarkar et al. [64] demonstrated that priming 
wheat plants with Bacillus safensis enhanced resilience 
against high temperature stress. This was achieved through 
improvements in antioxidant enzymes, dynamic expressions 
of HSPs, osmolyte accumulation, and reduced chloroplast 
damage. Cold stress poses a significant challenge to crop 
development and global food security, prompting diverse 
molecular, physiological, and biochemical adaptations 
in plants across varying cold environments [65]. A study 
revealed that Burkholderia phytofirmans PsJN enhances 
Grapevine tolerance to low temperatures by upregulating 
stress-related genes. This priming significantly boosts the 
plant’s resilience compared to non-primed ones [66].

Heavy metal toxicity poses a significant threat to crop 
production, affecting stomata structure and function, 
RuBisCO activity, and disrupting photosynthesis [67,68]. 
Recent research by Ahmet Direk, et al. [69] discovered that 
wheat seeds primed with Bacillus cereus showed enhanced 
growth, reduced oxidative stress markers (H2O2 and TBARS), 
and increased activity of antioxidant enzymes (SOD, GST, and 
APX). This priming led to improved yields under cadmium 
and arsenic stress. Similarly, a study by Aditya Banerjee & 
Aryadeep Roychoudhury, et al. [70] explored the priming 
of Oryza sativa seeds with Acinetobacter indicus, resulting 
in enhanced growth physiology and antioxidant capacity by 
activating key enzymatic antioxidants under arsenic-fluoride 
co-toxicity.

Conclusions and Future Perspectives 

In conclusion, PGPR-mediated defense priming offers a 
holistic approach to mitigate both biotic and abiotic stresses 
in sustainable agriculture, enhancing crop resilience and 
reducing reliance on harmful chemicals. Future research 
should focus on identifying novel PGPR strains with 
superior priming capabilities, elucidating PGPR-plant 
interactions, and optimizing field application methods. 
Additionally, understanding the long-term impact of PGPR 
on plant health and soil sustainability, and integrating 
PGPR with other sustainable agricultural practices, will be 
critical for maximizing the benefits of this technology in 
diverse agricultural settings. By leveraging PGPR’s defense-
enhancing capabilities, researchers aim to bolster plant 
immunity, paving the way for more enduring and resilient 
agriculture. Exploring transgenerational effects, elucidating 
molecular mechanisms, and identifying synergies with other 

management practices are key research avenues. Ultimately, 
PGPR-mediated priming presents a promising, eco-friendly 
tool for advancing agriculture sustainably amidst growing 
population demands and climate change challenges.
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