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Abstract

Septoria tritici blotch (STB) caused by the fungus Mycosphaerella graminicola, is one of the most important foliar diseases of 
wheat (T. aestivum spp., aestivum L.) worldwide. The disease is pervasive and economically significant throughout Ethiopia's 
wheat-growing regions. Naturally susceptible wheat cultivars of STB disease were found in the Central Highlands of Ethiopia, 
where incidence (98%) and severity (97%) of the disease, as well as yield loss (41%), were documented. This disease has been 
managed using a variety of techniques, including cultural control, chemical control, and genetic controls have been utilized to 
control this disease and subsequently reduce yield losses. The lack of information on the diversity of diseases worldwide and 
in Ethiopia now hampers the screening and selection of wheat genotypes for disease resistance. In this review, wheat septoria 
disease management and molecular breeding approaches in Ethiopia were assessed.
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Introduction

Wheat (Triticum aestivum L.) is among the most 
important staple food crops in Ethiopia produced at 1.89 
million ha of land with an annual yield approximated to 5.78 

million metric tons and wheat ranks third after Maize (Zea 
mays) and Teff (Eragrostis tef) in total production and fourth 
after Teff (Eragrostis tef), Maize (Zea mays) and Sorghum 
(Sorghum bicolor) in area coverage [1]. It is grown between 
6 and 14° N latitudes and between 35 and 42° E longitudes 
ranging in altitude from 1500 m to 3200 m above sea level 
(m.a.s.l). In Ethiopia, the most suitable area falls between 
1700 and 2800 m.a.s.l. In Ethiopia, both common (bread) 
wheat (Triticum aestivum L.) and durum wheat (Triticum 
turgidum ssp. durum) is widely cultivated in Ethiopia for 
food, feed, and income generation.

It is used to make a variety of traditional and modern 
processed foods, including injera and other industrially 
processed foods like pasta and macaroni [2]. The straw is 
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a good source of animal feed and is also used for thatching 
roofs. Although the wheat cultivated areas, production and 
productivity of wheat in Ethiopia are showing an increasing 
trend, the production of wheat in the country is very 
insufficient to meet the increasing demand for food for the 
ever-increasing population; Ethiopia’s wheat production self-

sufficiency is only 75 percent and the remaining 25 percent 
wheat is imported commercially and through food aid [3]. 
Between 2005 and 2017 wheat production and productivity 
have increased throughout the country, It is grown exclusively 
under rain fed circumstances, and its output is overtaking 
that of all other grain crops in the country [4].

Figure 1: Wheat harvested area (ha) and production trend in Ethiopia from 2007 to 2017 source [5].

Oromia, Amhara, Tigray, and Southern Nations, 
Nationalities, and Peoples (SNNP) regional states are 
considered to be the primarily wheat-growing areas of the 
country accounting for more than 90% of national wheat 
production. Despite its incredible contributions, the average 
wheat productivity of the country is 2.8 t/ha; far below the 
global average of 3.5 t/ha [5]. The low productivity is because 
of both biotic and abiotic factors. Among these, diseases 
play a significant role in yield reduction [6]. In Ethiopia, 
wheat is susceptible to more than 30 types of diseases which 
highly affect its yield [6,7]. Septoria tritici blotch, caused by 
the fungus Zymoseptoria tritici (formerly: Mycosphaerella 
graminicola or Septoria tritici) is becoming the major wheat 
devastating foliar disease globally including in Ethiopia 
[6,8,9]. Under favorable environmental conditions, can cause 
relevant yield loss [7]. Both durum wheat (Triticum turgidum 
sub. durum Desf.) and bread wheat (Triticum aestivum L.) are 
affected by Septoria tritici [10].

The disease is economically significant and widespread 
throughout Ethiopia’s wheat-growing regions across 
surveyed locations in the highest STB prevalence (100%) 
was found in the highlands of Wollo, Ethiopia, with the 
lowest STB prevalence (33%) found in various locations 
[11,12], It is the most destructive disease in West and South 
West Shewa zones and the overall distribution of the disease 

reached 100% [6,13]. In the Central Highlands of Ethiopia 
at Holeta naturally evolved susceptible varieties observed 
the highest STB disease incidence (98 %), disease severity 
(97%), and (41%) yield loss [8,14]. STB is the major disease 
limiting wheat yield in the most potential areas of the wheat 
production zone of Ethiopia, Arsi, and Bales [6]. In 2014 Data 
generated autumn season disease survey showed that STB 
and leaf rust are the two important diseases constraining 
wheat production in the Arsi, and Bale areas of Ethiopia 
[15]. Economic losses due to STB infections can result not 
only from losses in grain yield but also in quality as, under 
severe epidemics, the kernels of vulnerable wheat cultivars 
are shriveled.

For many years, rusts were the most threatening fungal 
wheat disease in Ethiopia, and therefore, breeding programs 
were mainly focused on the introduction and improvement 
of wheat genotypes resistant to rust Susceptibility of 
prevalent commercial wheat cultivars to STB resulted in 
severe epidemics in the major wheat-growing provinces 
of Ethiopia, Arsi and Bales [6]. Thus, the knowledge On-
resistance spectra of wheat genotypes cultivated in various 
parts of Ethiopia, and on virulence patterns of M. graminicola 
populations are required to identify sources of resistance 
to STB and to replace the susceptible wheat cultivars with 
resistant genotypes throughout the country.
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Biology of the Causative Agent of Septoria 
Tritici Blotch

Septoria Tritici Blotch (STB) of Wheat

Fungi show much morphological diversity, different 
growth forms include single-celled yeast, multicellular and 
tip- growing hyphae, and asexual and sexual spores [16]. 
Zymoseptoria tritici (formerly Mycosphaerella graminicola) is 
a major fungal pathogen of wheat that causes Septoria tritici 
blotch (STB) disease [9,17]. The STB is able to infect diploid, 
tetraploid, and hexaploid wheat species and infections occur 
during all stages of plant development but, infection on the 
flag leaves can cause the most severe losses by reducing grain 
test weight [18].

Septoria tritici blotch (STB) is principally a foliar disease 
and the primary infection may begin with airborne or rain 
splashes. Air borne ascospores (sexual) and splash-borne 
pycnidiospores (asexual). Ascospores are the main source 
of primary inoculum at the beginning of an epidemic and 
contribute to epidemic development during the season. 
Pycnidiospores are the main driver of polycyclic epidemics 
during the wheat growing season and can travel short 
distances while ascospores can travel long distances. The 
disease development depends on favorable conditions such 
as frequent rain and moderate temperature, traditional 
agricultural practices, availability of inoculum, and the 
presence of susceptible cultivars [10]. Moisture is required for 
all stages of infection germination penetration, development 
of the mycelium within the plant tissue, and subsequent 
pycnidial formation [7,10].

Disease Cycle and Symptoms of STB

Disease Cycle

The disease cycle of STB begins with a windborne or rain 
splash from nearby or further away infected wheat debris. 
During the wheat-growing season, sexual spores (ascospores) 
from pseudothecia and asexual spores (pycnidiospores) from 
pycnidia are released and disseminated by airborne or rain 
splash and can establish infections in the right conditions 
[19]. The most favorable conditions for the propagation of 
this disease within crops are a combination of wind and 
moisture. In Ethiopia, the intensity of STB disease increases 
from June to November, when wheat is growing, and the 
disease’s distribution is heavily influenced by temperature 
and other environmental factors [10]. The fungus thrives 
by feeding on crop residues, primarily leaf and stubble, and 
hence endures from season to season. Sexual reproduction 
contributes significantly to the M. graminicola population’s 
genetic diversity, resulting in high biological fitness [20].

Ascospores are the major inoculum for infection and 
are commonly transmitted in the autumn [21,22]. When 
the fungus comes into contact with the leaves shortly after 
the seedlings sprout in the fall, the biotrophic development 
stage begins. When spores settle on a leaf, they germinate 
and develop into filamentous hyphae, which enter the host 
via stomata, other natural openings, or wounds [23]. The 
fungus grows slowly after penetration, without producing 
haustoria or other apparent feeding structures, and the 
plant stays symptomless for 8–11 days [24-26]. The fungus 
gets its nutrition from the plant, and its hyphae will spread 
throughout the plant.

 Disease Symptoms

Septoria tritici blotch appears earlier in the growing season 
more frequently on lower leaves than on top leaves [27,28]. 
According to research, STB has an inverse association with 
plant height; tall wheat cultivars are less affected than dwarf 
wheat varieties [29,30]. Additionally, STB is present on the 
glumes and rachis. Tiny, tan-colored necrotic tissue lesions 
with a linear or rectangular appearance and frequently 
bordered by leaf veins are among the signs of STB. The 
first observable symptoms of the disease are little chlorotic 
patches on the lower leaf tips. Over time, these chlorotic areas 
develop into light-brown necrotic lesions. The leaf tissue will 
turn a light gray color as the necrotic lesions spread [24,31]. 
If environmental conditions are favorable and there is a lot 
of rain, the necrotic lesions will spread and the leaf tissue 
will appear light gray in color [32]. Fungus pycnidia or spore-
producing bodies are the black spots on necrotic areas. The 
best in-field indicator of the disease is the presence of tiny, 
black pycnidia in lesions [28,33]. Pycnidia’s size varies 
between cultivars and is influenced by both their quantity 
and overall density. The pycnidia themselves may become 
smaller as the number of pycnidia on the leaf rises [34].

Disease Assessment

For the quick implementation of disease management 
measures, research on the genetic and pathogenicity 
variability of the pathogen, and/or evaluations of germplasm 
resistance, disease rating is applied. When determining the 
severity of septoria on wheat, the percentage of diseased 
(or necrotic) leaf area, the density of pycnidia, and their 
combinations are typically utilized [35,36]. Previous 
research evaluated the severity of septoria using exceedingly 
labor- intensive, expensive, and time-consuming sample 
preparation techniques [37]. Developed standard diagrams 
for measuring the percentage of the affected area using an 
electronic scanner, while Rosielle AA [38] utilized a television 
scanner to create a scale to measure the amount of pycnidial 
covering on leaves.

https://medwinpublishers.com/OAJMB
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However, the quick and hands-free visual assessment 
method is popular for determining the severity of septoria. 
There have been many different kinds of visual rating scoring 
scales produced so far. For evaluating the severity of foliar 
diseases in wheat, barley, and triticale [39] created a 0–9 
scale. This scale has since been upgraded into a double-
digit (00–99) scoring system that only expresses the vertical 
progression of the disease and its severity [35]. Additionally, 
CSA [40] created a six-point STB severity grading system 
based on pycnidia density, which is used to categorize plants.

Yield Loss Assessments of Septoria Tritici 
Blotch on Wheat in Ethiopia

The majority of the country’s wheat is thought to be 
grown in Oromia, Amhara, Tigray, and the Southern Nations, 
Nationalities, and Peoples (SNNP) regional states. The 
majority of the country’s wheat production is produced in 
Oromia (57.4%), Amhara (27.4%), SNNP (8.7%), Tigray 
(6.2%), and other regions (0.7%) [41]. Almost every section 
of the region can grow wheat, including agro-pastoral and 
pastoral regions like Afar, Gambela, and Somalia. The Oromia 
and Amhara areas do, however, produce the majority (85%) 
of Ethiopia’s domestic wheat. Due to the existence of sizable 
farms in the Bale and Arsi zone, the majority of the country’s 
wheat-growing regions, the Oromia region ranks first in 
terms of production. Thus, Ethiopia’s two wheat-growing 
regions are referred to as the Belt of Wheat Production Areas 
[4,42,43].

Ethiopia’s present wheat productivity is much below 
the global average, despite its major contributions to 
the improvement of livelihoods for a large portion of the 
population [5]. Low productivity is correlated with biotic 
and abiotic factors as well as a lack of adoption of progressive 
agricultural practices. Ethiopian wheat is susceptible to 
over 30 diseases, many of which have a big impact on 
production [6,7]. Wheat can be afflicted by a number of 
diseases, including powdery mildew (Blumeria graminis), 
rust infections (P. striiformis, P. graminis, and P. triticina), 
Fusarium head blight (Fusarium spp.), Septoria tritici blotch 
(Zymomyces septoria), and others.

The Septoria tritici blotch disease (STB) is economically 
significant and pervasive throughout Ethiopia’s wheat- 
growing regions, with the highest STB prevalence (100%) 
found in the highlands of Wollo, Ethiopia [6,12,13,44]. In the 
Central Highlands of Ethiopia naturally sensitive cultivars, 
STB disease incidence (98%) and severity (97%) were 
reported along with yield loss (41%) [8,45]. Because sensitive 
wheat type’s kernels shrink during severe epidemics, STB 
infections may result in economic losses not just in terms of 
grain output but also in terms of quality.

Due to the susceptibility of common commercial wheat 
cultivars to STB, severe epidemics emerged in Ethiopia’s key 
wheat-growing provinces of Arsi and Bales [6]. To identify 
sources of STB resistance and replace susceptible wheat 
cultivars with resistant genotypes throughout Ethiopia, 
information of resistance spectra of wheat genotypes 
cultivated in various parts of the country, as well as virulence 
patterns of M. graminicola populations, is required.

Towards Breeding Wheat for Septoria Tritici 
Blotch Disease Resistance

Plants use a combination of weapons from two arsenals 
to defend themselves against pathogens: (i) structural 
characteristics that serve as physical barriers and stop the 
pathogen from entering and spreading through the plant, and 
(ii) biochemical reactions that take place in the plant’s cells 
and tissues and produce substances that are either toxic to the 
pathogen or create conditions that inhibit pathogen growth 
in the plant. The structural traits and metabolic processes 
utilized by plants to defend themselves vary depending on the 
host-pathogen system. Furthermore, different combinations 
can occur even when a particular host and pathogen are used, 
depending on the age, type, and circumstances of the plant, 
as well as the organs and tissues that are affected as well as 
the nutritional status and weather [46]. To manage Septoria 
tritici blotch, an integrated approach that incorporates 
variety selection, cultural practice, crop rotation, bio-control 
fungicides, and deployment of genetic resistance has been 
employed are the most effective way [47,48].

Cultural Control

Effective long-term STB disease management under 
Ethiopian conditions has not yet been achieved [49]. There 
are numerous disease management strategies that are 
recommended to control this STB in wheat fields. During the 
growth season, infected plants release septoria tritici spores 
into the air, and between growing seasons, infected straw and 
other crop debris do the same. The frequency and severity 
of STB can be decreased by rotating non-host crops and 
eliminating wheat crop leftovers. The amount of inoculum 
that can start a new disease cycle can be reduced by clearing 
crop debris and thorough plowing. Other cultural techniques 
for managing STB disease include planting sensitive cultivars 
late, using cultivar combinations, and intercropping wheat 
with other crops [35,47,50,51].

Chemical Control

Fungicides are one of the most important components 
of a disease control strategy in wheat. Some of the fungicides 
used against STB are protectants like dithiocarbamates 
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(Maneb, Manzate, Mancozeb, Zineb)  and systemic fungicides 
such as benomyl (Benlate) [35]. However, the procedure 
necessitates the use of fungicides on a regular basis, making 
it prohibitively expensive for small growers. Ethiopian 
farmers are another example [52-54].

Genetic Control

In Ethiopia, the majority of wheat genotypes are 
susceptible to Septoria tritici blotch (STB), and resistance 
breeding has been unsuccessful. Almost all high-yielding 
wheat cultivars grown in Ethiopia are now susceptible to 
STB foliar disease. The principal line of defense against this 
disease is genetic resistance, particularly for resource-poor 
smallholder farmers in developing countries [44]. Planting 
cultivars with durable genetic resistance is the most cost-
effective, long-lasting, and environmentally friendly way to 
control Septoria tritici blotch. Finding and using sources of 
resistance are top priorities in most breeding programs [55].

Genetic Resistance to Septoria Tritici Blotch

There are different genetic mechanisms for STB disease 
resistance breeding programs to select and improve both 
qualitative and quantitative traits. Breeding for qualitative 
disease resistance is controlled by one or two large-effect 
alleles, called resistance (R) genes, and are further referred to 
as major genes [46,56]. Qualitative disease resistance, race-
specific vertical resistance based on main genes, generally 
exhibits gene-for-gene interactions and often results in the 
recognition of physiological races or pathotypes and quickly 
degrades due to the rapid evolution of new pathogen races 
[57]. Most qualitative resistances are unlikely to be durable 
and some formerly effective genes have been overcome by 
the evolution of pathogen virulence. The breeding method for 
horizontal or vertical/race-specific resistance is similar to 
the methodology used for other complex traits such as grain 
yield [56].

Qualitative resistance is strong and is usually controlled 
by major genes with a powerful effect While for STB disease- 
resistant breeding use of major genes is not likely to be 
effective in the long term due to the rapid breakdown of some 
resistance genes, so it would be best to select for quantitative 
resistance or at least to pyramid several STB genes into 
a single cultivar since some of the most resistant cultivars 
seem to contain multiple STB genes [58,59].

Major gene pyramiding provides more durable 
resistance to multiple pathogen races into a single line 
[56]. Successful implementation of major genes relies on 
identifying the useful sources of the genes, finding the 

linked markers, confirming the effect in different genetic 
backgrounds, and finally, deploying said major genes [56,60]. 
Major gene implementation is further complicated when 
it comes to selecting multiple major genes simultaneously 
for gene pyramiding. Horizontal or minor gene resistance 
is defined as a non-race-specific or general resistance to a 
range of pathogens or pests [61] as a result of many genes 
expression with minor additive effects. As it is controlled 
by the cooperative effects of numerous genes horizontal 
resistance is important to control a broad range of pathogen 
races [62,63].

The minor non-race specific genes often show 
intermediate responses and typically combinations of more 
than three genes are required to attain a commercially 
acceptable level of resistance. The presence of horizontal 
genes slows down the rate of disease development. Similar 
to qualitative resistance, selecting for quantitative resistance 
can be completed throughout the breeding process. The 
majority of variation in STB field resistance is dictated by 
quantitative resistance, and the well-defined progress in STB 
disease-resistant breeding over the last 30 years is thought 
to have resulted from the slow accumulation of minor genes. 
The symptoms of STB disease, chlorosis, necrosis, and 
pycnidia, have recently been discovered to be genetically 
controlled in different ways [64].

Because it relies on multi-resistant alleles, breeding 
for quantitative or horizontal resistance conferred by 
a combination of minor and major genes produces 
more durable resistance in breeding lines. Breeding for 
quantitative or horizontal resistance necessitates multiple 
breeding cycles to gradually improve resistance [56,65]. In 
exact resistance breeding, both qualitative and quantitative 
types of resistance are frequently combined. Major genes are 
easy to manage, but quantitative or horizontal resistance is 
more difficult to select and complex, but it is expected to last 
longer, making it useful in resistance breeding [56,66].

The quantitative nature of phenotypes displayed by 
the host-pathogen interaction has frequently led to the 
identification of STB resistance genes using QTL mapping 
techniques [67]. To confer resistance, the plant has a 
dominant resistance (R) gene that encodes a product that 
recognizes a pathogenicity factor (produced by a dominant 
Avirulent or Avr gene) in the pathogen [68]. The pathogen 
is not recognized by the plant if the R gene is missing in the 
plant and/or the avirulence gene is missing in the pathogen. 
This activates the pathogen virulent gene, making the plant 
susceptible [69] (Table 1).
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Resistance or susceptibility gene in the plant
Virulence or a virulence gene in the pathogen R(resistant) dominant r(susceptible) recessive

A(avirulent) dominant AR(-) Ar(+)
A(virulent) recessive aR(+) ar(+)

Table 1: Summary of host–pathogen reaction types based on the gene-for-gene concept.
-Signs indicate incompatible (resistant) reaction and therefore no infection,
+Signs indicate compatible (Susceptible) reaction and therefore infection develops. Source: [46,62].

The term ‘QTL’ as a qualitative gene has been used in the 
literature when a large percentage of genotypic variation is 
explained by the QTL and/or a specific interaction with one 
or more isolates is observed. QTL are quantitative genes with 
low heritability, and small genetic and accumulative effects in 
classical genetics [20]. In wheat, adult plant resistance genes 
express partial STB resistance phenotypes except under 
very specific conditions and this is characterized by less and 
slower pathogen growth without a necrotic response. In crop 
plants, there are a variety of resistance screening methods. 
Effective disease resistance selection in plant populations 
necessitates precise, cost-effective screening approaches that 
allow thousands of plants to be tested quickly. Field testing 
under natural disease pressure and greenhouse/growth 
room screening procedures in which plants are inoculated 
with specific pathogen strains are two common disease 
screening techniques [24].

Greenhouse Seedling inoculation allows for rapid 
assessment of disease reactions, reduction of some sources 
of environmental variation through the use of characterized 
pathogen strains and defined inoculum concentrations, 
and avoidance of confounding effects from other pests 
or diseases and seedling screening allows researchers to 
assess the efficacy of resistance against a diverse range of 
strains [70,71]. Two indicators were utilized for STB disease 
severity in the extensive investigation of the interaction 
between M. graminicola isolates and host cultivars: necrosis 
and the presence of pycnidia, both of which were scored as 
percentages coverage of leaf area [72].

Marker-Assisted Breeding

Wheat breeding’s ultimate goal is genetic gain in terms 
of measurable parameters such as agronomic performance, 
disease resistance, and grain quality. In most cases, 
selection involves evaluating a breeding population in field 
or greenhouse trials for one or more traits. Plant breeding 
purposes to produce new varieties with more necessary 
gene combinations. The breeding method, picking desirable 
plants for traits with higher heritability begins in early 
generations. However, for traits with low heritability, the 
assortment is frequently delayed until the lines become 
more homozygous in later generations [73,74]. Phenotype 

evaluation for agronomic traits, disease resistance, and grain 
quality as well as laboratory tests for quality or other traits, 
are used in the selection of larger plants. When the breeding 
populations become homozygous, they can be gathered in bulk 
and confirmed in replicated field trials. The entire process 
takes a long time around 5–10 years for best elite lines to be 
identified. While conventional breeding has the potential to 
improve yields for a long time further, nowadays technologies 
such as biotechnology will be compulsory to maximize the 
probability of success chances in breeding for many traits 
[74-77].

Marker characters are characters that can be easily 
identified, easily detected by phenotype, or molecular 
techniques during genetic analysis referred to as a marker. 
Markers associated with variations in DNA fragments 
generated by restriction endonuclease enzymes are called 
DNA markers or genetic markers [78]. DNA marker technology 
is one area of the new technologies in biotechnology that 
holds great promise for plant breeding [79]. Development 
of this technology in the 1980s changed the fate of plant 
breeding. Different types of molecular markers have been 
developed and accelerated crop improvement. The evolution 
of DNA marker technology made in molecular plant 
breeding, genetics, genomic selection, and genome editing 
has contributed to a more comprehensive understanding 
of molecular markers and made a deeper understanding of 
the diversity available for crops and greatly complemented 
breeding stratagems [80].

Marker-assisted selection (MAS) is the use of DNA 
marker technology in plant breeding and is a component of 
the new discipline of molecular breeding. The discovery of 
molecular techniques opened the way for the study of the 
genetics of disease resistance at the DNA level. Molecular 
breeding, or MAS, refers to the technique of using DNA 
markers that are tightly linked to phenotypic traits to assist 
in a selection scheme for a particular breeding objective 
[81]. Molecular markers are so helpful for quick and precise 
identification of Zymoseptoria resistance genes in a large 
set of wheat germplasms to develop broad and /or durable 
resistant wheat materials for effective control of the disease 
[9]. The molecular mechanism of breeding disease resistance 
in plants is essential for devising sophisticated breeding 
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strategies leading toward crop protection. Trait-linked DNA 
markers have been identified for numerous traits in wheat, 
including disease resistance and grain quality. Using such 
markers in MAS gives considerable advantages to wheat 
breeding when compared to traditional phenotypic selection 
and rigorous grain quality analyses. Early development of 
desirable traits in the breeding program, as well as marker-
assisted backcrossing to transmit agronomically significant 
genes from wild relatives to cultivated wheat, are among the 
advantages.

The scale of breeding programs also highlights the 
difficulties of incorporating a relatively expensive technology 
like MAS. The primary advantages of MAS over traditional 
phenotypic selection are that it may be simpler than 
phenotypic screening, saving time, resources, and selection 
can be done at the seedling stage [76]. This could be useful 
for a variety of traits, particularly those expressed later in 
development. Unwanted plant genotypes can thus be quickly 
eliminated, and single plants can be selected. Because 
single-plant selection is unreliable due to environmental 
factors, plant families or plots are grown using conventional 
screening methods for many traits. Individual plants can be 
selected using MAS based on their genotype.

Conventional phenotypic screening cannot distinguish 
between homozygous and heterozygous plants for most traits. 
Breeders can take advantage of these advantages to speed up 
the breeding process. Target genotypes can be selected more 
effectively, allowing certain traits to be fast-tracked, resulting 
in faster line development and variety release. Markers can 
also be used in place of phenotyping, allowing selection in off-
season nurseries and making it more cost- effective to grow 
more generations per year [76,82,83]. Another advantage of 
using MAS is that the total number of lines that must be tested 
can be reduced. Because many lines can be discarded after 
MAS early in a breeding scheme, it allows for more efficient 
use of glasshouse and/or field space, which is often limited 

because only important breeding material is kept. Many 
molecular marker systems are restriction fragment length 
polymorphism (RFLP), randomly amplified polymorphic 
DNA (RAPD), amplified fragment length polymorphism 
(AFLP®), simple sequence repeats (SSR), sequence-related 
amplified polymorphisms (SRAP), expressed sequence 
tags (EST), Diversity Array Technology (DArT) and single 
nucleotide polymorphism (SNP) have been developed in 
wheat and subsequently employed to locate loci associated 
with qualitative and quantitative trait loci including for STB 
resistance [84-87].

In earlier years, several investigations identified STB 
resistance genes using molecular methods. The first three 
qualitative STB resistance genes to be discovered were Stb1, 
Stb2, and Stb3 [88].  STB resistance was once assumed to be 
a quantitative, polygenic trait. Stb6 was discovered on the 
short arm of chromosome 3A in the cultivar Flame. This is 
the only STB-resistant gene known to interact with an Avr 
gene in the pathogen through a gene-for-gene interaction 
between certain R genes in the host. Later research revealed 
Stb6 to be among the most common STB-resistant genes in 
European wheat [89,90]. Stb16q is the gene of particular 
interest, which has shown effectiveness against all Z. tritici 
isolates tested thus far, and certain QTLs have been identified 
at or near the locus of qualitative genes, including Stb6, 
which is present in multiple sources of resistance. There are 
21 stb genes that have already been identified and mapped, 
and they play important roles in the regulation of genetic 
diversity and in the development of qualitative resistance. 
Since there are few avirulent Z. tritici isolates, it has been 
shown that many STB resistance genes are genotype-specific 
[88].

There are currently several molecular markers 
associated with these genes that can be utilized for marker-
assisted selection. Various septoria disease resistance genes 
have been identified in wheat by MAS (Table 2).

Stb gene Original cultivar source SSR Markers Linkage distance (cM) Location Reference

Stb 1 Bulgaria 88
Xbarc74 2.7 cM prox 5BL

[91]
Xgwm335 7.4 cM prox 5BL

Stb 2 Veranopolis
Xbarc008 5 cM 1BS

[92]Xwmc230 Tight 1BS
Xwmc406 6 cM 1BS

Stb 3 Israel 493 Xwmc83 3cM 7AS [86]
Stb 4 Tadinia Xgwm111 0.7cM 7DS [93]
Stb 5 Synthetic 6x Xgwm44 6-7cM 7DS [94]
Stb 6 Flame Xgwm369 Flanking 3AS [89]
Stb 7 ST6 Xwmc313 0.3cM 4AL [95]

https://medwinpublishers.com/OAJMB
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Stb 8 Synthetic W7984
Xgwm146 3.5cM 7BL

[96]
Xgwm577 5.3 cM 7BL

Stb 9 Courtot Xwmc317 7cM 6AS [97]
Stb10 Kavkaz-K4500 Xgwm848 Flanking 1D [98]

Stb11 TE9111
Xbarc008 Flanking 1BS

[66]
Xbarc137 Flanking 1BS

Stb12 Kavkaz-K4500 Xwmc219 0.8cM distal 4AL [98]
Stb13 Salamouni Xwmc396 7-9cM 7BL [99]
Stb 14 Salamouni Xwmc623 5cM 3B

[99]
Xwmc500 2cM 3BS

Stb 16 M3 synthetic W7976 Xwmc494 1-5 cM 3D [90]
Stb 17 M3 synthetic W7976 Xhbg247 1-5 cM 5A [90]
Stb 18 Balance Xgpw5176 1-5 cM 6DS [70]
Stb 18 WW2451 Xgpw3087 1-5 cM 6DS

StbWW WW1842,WW2449, Xbarc119b 0.9–4.1cM 1BS [100]
TmStb1 MDR043(T.Monococcum) Xbarc174 23.5cM 7A [101]

Table 2: List of wheat resistance genes against STB disease and closely linked molecular markers.
Note: Stb 1-TmStb1 Z tritici blotch resistance genes against Z tritici blotch. A, B, and D = A, B, and D genomes of bread wheat, S= 
short arm, and L= long arm of a chromosome Source: [88,102].

Stb16 holds promise for future breeding of effective and 
long-lasting STB resistance. Single qualitative resistance 
genes in Z. tritici have easily overcome so quantitative 
resistance, on the other hand, is thought to be more durable. 
This is due to the pathogen facing less selection pressure as 
a result of the smaller resistance effects of individual QTLs. 
Furthermore, because quantitative resistance is frequently 
polygenic, mutation of one gene does not always result 
in complete disease resistance [103,104]. Understanding 
host-pathogen interaction, STB resistance inheritance, 
STB resistance loci localization, and the identification 
of molecular markers associated with STB resistance in 
common wheat have all made significant progress in recent 
years. This has occurred in a number of countries around the 
world. However, the use of molecular tools in Zymoseptoria 
tritici resistance breeding is severely lacking in Ethiopia. In 
Ethiopia, research is currently being conducted to use tightly 
linked markers to screen for Zymoseptoria tritici resistance 
genes in wheat (Triticum aestivum L.). The technique is 
very efficient, economical, and fast to select the resistant 
genotypes which may take several seasons and years in field 
or greenhouse germplasm evaluations. Thus, developing 
countries including Ethiopia shall start the use of modern 
molecular tools in their crop improvement program [9,105].

Conclusion

Wheat (Triticum aestivum L.) is among the most important 
staple food crops in Ethiopia. Regardless of its incredible 
contributions, the average wheat productivity of the country 
is far below the global average. The low productivity is 

because of both biotic and abiotic factors. Among these, 
diseases play a significant role in yield reduction. In Ethiopia, 
wheat is susceptible to more than 30 types of diseases which 
highly affect its yield. Septoria tritici blotch, caused by the 
fungus Zymoseptoria tritici is becoming the major wheat 
devastating foliar disease globally including in Ethiopia. 
The disease is economically significant and widespread 
throughout Ethiopia’s wheat-growing regions where there is 
under favorable environmental conditions can cause relevant 
yield losses and reduced grain quality. The fungus persists 
on dead leaves and other plant residues to initiate primary 
infection. Screening and selection of wheat genotypes for 
resistance to disease are currently hampered by the dearth 
of knowledge on the variability of pathogens in the world 
as well as in Ethiopia. Plant breeding has made remarkable 
progress in crop improvement, which must be maintained. 
Although the impact on resistant breeding has been minimal, 
Marker-assisted selection could greatly assist plant breeders 
in achieving this goal. Marker-assisted selection provides 
new solutions for selecting and maintaining desirable 
genotypes. Marker-assisted selection can be performed in 
early segregating populations and at early stages of plant 
development for pyramiding the resistance genes, with the 
ultimate goal of producing varieties with durable or multiple 
disease resistance.
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