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Abstract

Background: According to preliminary sequences from 2010, 99.7% of the nucleotide sequences of the modern human 
and Neanderthal genomes are identical, compared to humans sharing around 98.8% of sequences with the chimpanzee. In 
contrast, the difference between chimpanzees and modern humans is approximately 1,462 mtDNA base pairs. 
Materials and Methods: Neanderthal-inherited genetic material is found in all non-African populations and was initially 
reported to comprise 1 to 4 percent of the genome. This fraction was later refined to 1.5 to 2.1 percent. We had gone through 
many researches of Neanderthals affected gene flow in humans. 
Results: It is estimated that 20 percent of Neanderthal DNA currently survives in modern humans. Modern human genes 
involved in making keratin, a protein constituent of skin, hair, and nails, have especially high levels of introgression. For 
example, approximately 66% of East Asians contain a POUF23L variant introgressed from Neanderthals, while 70% of 
Europeans possess an introgressed allele of BNC2. Our finding shines a light on an enzyme called dipeptidyl peptidase-4 
(DPP4). Scientists already know the protein allows another coronavirus, which causes Middle Eastern respiratory syndrome 
(MERS), to bind to and enter human cells. The new analysis, of DPP4 gene variants among COVID-19 patients, suggests the 
enzyme also provides SARS-CoV-2 with a second door into our cells, along with its usual infection route via the angiotensin-
converting enzyme 2 (ACE2) receptor on cell surfaces. Conclusion: Most Europeans, Asians, and Native Americans harbor a 
handful of genes from Neanderthals, up 1.8% to 2.6% of their DNA. Studies of ancient DNA in Neanderthal fossils have shown 
the hominin’s DPP4 gene subtly differs from the typical human one.
Conclusion: The hominin’s DPP4 gene inherited from Neanderthals plays a major role in Immune System Disorders and 
Lower Immune response in many diseases. This gene plays a major role in affecting humans with COVID-19 and spreading 
it through the world. All humans contain this gene from 1 to 4 percent. East Asians, Europeans, Middle and South Americans 
conveys more, hence; native Africans contain less amounts of hominin’s DPP4 gene. Therefore; East Asians, Europeans, Middle 
and South Americans are prone to severe COVID-19.
 
 Keywords: Neanderthals; Hominin’s DPP4 Gene; DNA Viruses; RNA Viruses; COVID-19 

Abbreviations: DPP4: Dipeptidyl Peptidase-4; MERS: 
Middle Eastern Respiratory Syndrome; ACE2: Angiotensin-
Converting Enzyme 2; AMH: Anatomically Modern Humans.

Introduction

Neanderthal Ancient DNA 

Genetic studies on Neanderthal ancient DNA became 

possible in the late 1990s [1,2]. The Neanderthal genome 
project, established in 2006, presented the first fully 
sequenced Neanderthal genome in 2013. Since 2005, 
evidence for the substantial admixture of Neanderthals DNA 
in modern populations has accumulated [3-5]. The divergence 
time between the Neanderthal and modern human lineages 
is estimated at between 750,000 and 400,000 years ago. The 
more recent time depth has been suggested by Endicott P, et 
al. [6] and Rieux A, et al. [7]. A significantly deeper time of 
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separation, combined with repeated early admixture events, 
was calculated by Rogers AR, et al. [8]. On July 3, 2020, a 
team reported finding that a major genetic risk factor of the 
Covid-19 virus was inherited from archaic Neanderthals 
60,000 years ago [9,10].

COVID-19

SARS-CoV-19 which is better called COVID-21, are a 
group of viruses that cause diseases in mammals and birds. 
In humans, the beginning of Coronaviruses in 1919 cause’s 
respiratory tract infections those are typically mild, such as 
some cases of the common cold. Rarer forms can be lethal, 
such as SARS, MERS, and COVID-19. Symptoms vary in 
other species: in chickens, they cause an upper respiratory 
tract disease, while in cows and pigs they cause diarrhea. 
Coronaviruses constitute the subfamily Orthocoronavirinae, 
The genome size, coronaviruses ranges from approximately 
27 to 34 kilobases, the largest among known RNA viruses. 
In recent months, COVID-19 has become more severe which 
targets Respiratory Organ, Liver, Kidneys, Hearts and etc. 
The polarity of this virus is positive-sense ((+) ssRNA). 
Positive sense viral RNA is similar to mRNA and thus can 
be immediately translated by the host cell. Recombination 
in RNA viruses appears to be an adaptation for coping with 
genome damage. Recombination can occur infrequently 
between animal viruses of the same species but of divergent 
lineages. The resulting recombinant viruses may sometimes 
cause an outbreak of infection in humans. RNA viruses have 
very high mutation rates this is one reason why it is difficult 
to make effective vaccines to prevent diseases caused by 
RNA viruses. The resulting recombinant viruses cause an 
outbreak of infection in humans. 

Materials And Methods

The question of possible interbreeding between 
Neanderthals and anatomically modern humans (AMH) had 
been looked into since the early archaeogenetic studies of the 
1990s. In 2006, no evidence for interbreeding had yet been 
found [11]. In 2009, analysis of about one-third of the full 
genome of the Altai individual was still reported as showing 
no sign of admixture. The variant of microcephalin common 
outside Africa, which was suggested to be of Neanderthal 
origin and responsible for rapid brain growth in humans, 
was not found in Neanderthals. Nor was a very old MAPT 
variant which is found primarily in Europeans [12]. Positive 
evidence for admixture was first published in May 2010 [13]. 
Neanderthal-inherited genetic material is found in all non-
African populations and was initially reported to comprise 
1 to 4 percent of the genome [14]. This fraction was later 
refined to 1.5 to 2.1 percent [15].

It is estimated that 20 percent of Neanderthal DNA 

currently survives in modern humans [16]. Modern human 
genes involved in making keratin, a protein constituent of skin, 
hair, and nails, have especially high levels of introgression. 
For example, approximately 66% of East Asians contain a 
POUF23L variant introgressed from Neanderthals, while 
70% of Europeans possess an introgressed allele of BNC2. 

Neanderthal variants affect the risk of developing 
several diseases, including lupus, biliary cirrhosis, Crohn’s 
disease, type 2diabetes, and severe COVID-19 [17-19]. The 
allele of MC1R which was originally linked to red hair in 
Neanderthals is not found in Europeans, but is present in 
Taiwanese Aborigines at a frequency of 70% and moderately 
high frequencies in other East Asian populations; hence, 
there is no evidence that Neanderthals had red hair [20]. 
While interbreeding is viewed as the most parsimonious 
interpretation of these genetic findings, the 2010 study still 
could not conclusively rule out an alternative scenario, in 
which the source population of non-African modern humans 
was already more closely related to Neanderthals than other 
Africans were, because of ancient genetic divisions within 
Africa [21,22]. 

Research since 2010 has refined the picture of 
interbreeding between Neanderthals, Denisovans, and 
anatomically modern humans. Interbreeding appears to have 
occurred asymmetrically among the ancestors of modern-
day humans, and that this is a possible rationale for differing 
frequencies of Neanderthal-specific DNA in the genomes of 
modern humans. Vernot B, et al. concluded that the relatively 
greater quantity of Neanderthal-specific DNA in the genomes 
of individuals of East Asian descent than those of European 
descent cannot be explained by differences in selection [23]. 
They further suggest that “two additional demographic 
models, involving either a second pulse of Neanderthal 
gene flow into the ancestors of East Asians or a dilution of 
Neanderthal lineages in Europeans by admixture with an 
unknown ancestral population” are parsimonious with their 
data [23]. Similar conclusions were reached by Kim BY, et al. 
[24]. “It has been hypothesized that the greater proportion 
of Neanderthal ancestry in East Asians than in Europeans is 
since purifying selection is less effective at removing weakly 
deleterious Neanderthal alleles from East Asian populations. 
Using simulations of a broad range of models of selection 
and demography, we have shown that this hypothesis cannot 
account for the higher proportion of Neanderthal ancestry 
in East Asians than in Europeans. Instead, more complex 
demographic scenarios, most likely involving multiple pulses 
of Neanderthal admixture, are required to explain the data”.

Ekaterina EK, et al. [25], a German-Russian-Chinese 
collaboration, compiled a consensus Neanderthal genome 
based on the genome of the Altai individual and of three 
Vindjia individuals. This was compared to a consensus 



Open Access Journal of Mycology & Mycological Sciences3

Niknamian S. The Negative Impact of the Hominin’s DPP4 Gene Inherited from Neanderthals to 
Pandemic of COVID-19. J Mycol Mycological Sci 2021, 4(1): 000135.

Copyright©  Niknamian S.

chimpanzee genome as the out-group and to the genome of 
eleven modern populations (three African, three East Asian, 
and three European). Beyond confirming the significantly 
higher similarity to the Neanderthal genome in non-
Africans than in Africans, the study also found a difference 
in the distribution of Neanderthal-derived sites between 
Europeans and East Asians, suggesting recent evolutionary 
pressures. Asian populations showed clustering in functional 
groups related to immune and hematopoietic pathways; 
while Europeans showed clustering in functional groups 
related to the lipid catabolic process. Evidence for AMH 
admixture to Neanderthals at roughly 100,000 years ago was 
presented by Martin K, et al. [26].

Figure 1: How Neanderthals affected gene flow in humans.

There have been at least three episodes of interbreeding. 
The first would have occurred soon after some modern 
humans left Africa. The second would have occurred after the 
ancestral Melanesians had branched off these people seem to 
have thereafter bred with Denisovans. The third would have 

involved Neanderthals and the ancestors of East Asians only 
[27-29].

A 2016 study presented evidence that Neanderthal 
males might not have had viable male offspring with AMH 
females. This could explain why no modern man to date has 
been found with a Neanderthal Y chromosome [30]. A 2018 
study concluded that interbreeding between Neanderthals 
and modern humans led initially to the exposure of each 
species to unfamiliar viruses. Later on, the exchange of genes 
granted resistance to those viruses, too [31].

On July 3, 2020, scientists reported finding that a major 
genetic risk factor of the Covid-19 virus was inherited 
from archaic Neanderthals 60,000 years ago [7,8,32]. It is 
estimated that 16% of Europeans and 50% of South Asians 
have the particular sequence on chromosome III, with 63% 
of Bangladeshis having these gene sequences. Africans, 
Middle Easterners, and East Asians reported the presence of 
the chromosome in very negligible amounts [33-35].

If someone becomes infected with the coronavirus SARS-
CoV-2, he/she might wish there was a fast way to check his/
her Neanderthal ancestry. A small but significant number of 
people have an ancient gene variant from the extinct hominin 
that may double, or even quadruple, their risk of serious 
complications from COVID-19. The finding shines a light on 
an enzyme called dipeptidyl peptidase-4 (DPP4). Scientists 
already know the protein allows another coronavirus, which 
causes Middle Eastern respiratory syndrome (MERS), to bind 
to and enter human cells. The new analysis, of DPP4 gene 
variants among COVID-19 patients, suggests the enzyme also 
provides SARS-CoV-2 with a second door into our cells, along 
with its usual infection route via the angiotensin-converting 
enzyme 2(ACE2) receptor on cell surfaces [36-39].

Figure 2: Evolutionary relationship of modern human, Neanderthal, and chimpanzee.
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Figure 3: DNA sequences were generated on the Illumina 
HiSeq platform and constitute an average 50-fold coverage 
of the genome. 99.9% of the 1.7GB of uniquely mappable 
DNA sequences in the human genome are covered at least 
ten times Hugo Z, et al. [10].

Contamination with modern human DNA, estimated 
from mitochondrial and nuclear DNA sequences, is around 
1%. The figure shows a tree relating this genome to the 
genomes of Neanderthals from Croatia, from Germany 
and from the Caucasus as well as the Denisovan genome 
recovered from a finger bone excavated at Deniosva Cave. 
It shows that this individual is closely related to these other 
Neanderthals. Thus, both Neanderthals and Denisovans have 
inhabited this cave in southern Siberia. Other groups looking 
in genetic databases for factors that influence COVID-19 
severity have not flagged the DPP4 gene. But the work is 
provocative because it suggests some diabetes drugs, which 
target the cell surface protein, could help treat the disease. 
We want to put this finding out there quickly so people can 
systematically test if DPP4 could be a therapeutic target in 
patients with Coronavirus [40,41].

DPP4 may play a role in the infection of SARS-CoV-2. 
DPP4 should be a good binding partner for the protein 
called spike on the surface of the SARS-CoV-2 virus, based on 
comparing amino acid sequences and crystal structures of 
the enzyme and spike’s established partner, ACE2. Another 
team, however, had earlier ruled out DPP4 as a SARS-CoV-2 
receptor after finding the virus did not bind with it in cell line 
studies [42].
 

Hugo Z, et al. [10], also an evolutionary geneticist at Max 
Planck, have now highlighted DPP4 again. Most Europeans, 
Asians, and Native Americans harbor a handful of genes from 
Neanderthals, up 1.8% to 2.6% of their DNA. 

Studies of ancient DNA in Neanderthal fossils have 
shown the hominin’s DPP4 gene subtly differs from the 
typical human one. Hugo Z, et al. [10], examined whether 
that Neanderthal gene variant or others from the extinct 
species appear more often in people with severe cases of 
COVID-19 than in uninfected people. For that, they turned to 
the latest data released in October from the COVID-19 Host 
Genetics Initiative, which has collected genome information 
and COVID-19 status on many people from other studies 
or data banks [43-48]. They only searched for Neanderthal 
versions of genes in people who had severe COVID-19, which 
gave them a quick way to see whether these archaic genes 
influenced how living people responded to the coronavirus. 
The Neanderthal version of DPP4 popped up at a higher 
frequency in the genomes of 7885 people hospitalized with 
severe COVID-19 than in a control group. If a person had a 
single copy of the Neanderthal gene variant, they had double 
the risk of severe COVID-19 when infected, if both their 
copies of DPP4 were Neanderthal, their risk quadrupled [49].

The researchers estimate that between 1% and 4% of 
Europeans and Asians have inherited a Neanderthal version 
of the DPP4 gene [50-52]. A 2018 study by David Enard 
found that living humans have inherited a disproportionate 
number of Neanderthal variants of immune genes that target 
RNA viruses like coronaviruses, compared with genes that 
respond to DNA viruses [53,54].

Science’s COVID-19 reporting is supported by the 
Pulitzer Center and the Heising-Simons Foundation. It’s 
one of the pandemic’s puzzles: Most people infected by 
SARS-CoV-2 never feel sick, whereas others develop serious 
symptoms or even end up in an intensive care unit clinging to 
life. Age and preexisting conditions, such as obesity, account 
for much of the disparity. But geneticists have raced to see 
whether a person’s DNA also explains why some get hit hard 
by the coronavirus, and they have uncovered tantalizing 
leads [55-57].

A U.K. group studying more than 2200 COVID-19 
patients has pinned down common gene variants that are 
linked to the most severe cases of the disease, and that point 
to existing drugs that could be repurposed to help. Each one 
provides a potential target for treatment [58-72].

Conclusion

The hominin’s DPP4 gene subtly differs from the typical 
human one. Hugo Z, et al. [10], examined whether that 
Neanderthal gene variant or others from the extinct species 
appear more often in people with severe cases of COVID-19 
than in uninfected people. For that, they turned to the latest 
data released in October 2020 from the COVID-19 Host 
Genetics Initiative, which has collected genome information 
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and COVID-19 status on many people from other studies or 
data banks. They only searched for Neanderthal versions of 
genes in people who had severe COVID-19, which gave them a 
quick way to see whether these archaic genes influenced how 
living people responded to the Coronavirus. If a person had a 
single copy of the Neanderthal gene variant, they had double 
the risk of severe COVID-19 when infected, if both their 
copies of DPP4 were Neanderthal, their risk quadrupled. The 
fact is Neanderthal Genes in modern humans, lowered the 
Immune System and faced them with many diseases such as 
HPV, Diabetes, Flu, COVID-19 and many infectious diseases. 
All humans contain this gene from 1 to 4 percent. East Asians, 
Europeans, Middle and South Americans conveys more, 
hence; native Africans contain less amounts of hominin’s 
DPP4 gene. Therefore; East Asians, Europeans, Middle and 
South Americans are prone to severe COVID-19.
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