Transposition and Toric Transposition

Partha Haradhan Chowdhury ${ }^{1 *}$, Brinda Haren Shah ${ }^{2}$ and Nripesh Tiwari ${ }^{3}$
${ }^{1}$ M.Optom, Associate Professor, Principal, Department of Optometry, Shree Satchandi

Short Communication
Volume 3 Special Issue 1
Received Date: September 11, 2018
Published Date: October 03, 2018

Jankalyan Samiti Netra Prasikshan Sansthan, Pauri, Affiliated to Uttarakhand State Medical Faculty, Dehradun, India
${ }^{2}$ M. Optom, Guest Lecturer, Department of Optometry, Shree Satchandi Jankalyan Samiti Netra Prasikshan Sansthan, Pauri, Affiliated to Uttarakhand State Medical Faculty, Dehradun, India
${ }^{3}$ D.Optom, General Secretary and Chief Optometrist, Department of Optometry, Shree Satchandi Jankalyan Samiti Netra Prasikshan Sansthan, Pauri, Affiliated to Uttarakhand State Medical Faculty, Dehradun, India
*Corresponding author: Partha Haradhan Chowdhury, M. Optom, Department of Optometry, Shree Satchandi Jankalyan Samiti Netra Prasikshan Sansthan, Pauri, Affiliated to Uttarakhand State Medical Faculty, Dehradun, India, Email: optometrypublish@gmail.com

Introduction

Rules for Transposition

$>$ Axis will be changed from the 90 degree apart
$>$ Cylinder sign will be changed
$>$ Cylinder value will remain same
$>$ Spherical power will be adjusted to cylinder value

Examples

A. \quad +4.00 Ds / +4.00 Dcyl*90
$>$ Rule about Axis - Here, axis will be 180
$>$ Cylinder sign - Here, cylinder value will be in minus form
$>$ Cylinder value will be same
$>$ Spherical power will be adjusted to spherical value
Here, $[+4.00+(+4.00)]=[+8.00]$
$>$ So, final answer will be
+8.00 Dsph / -4.00 Dcyl*180
B. $\quad+8.00$ Dsh/-4.00 Dcyl*90
$>+8.00+(-4.00) /+4.00 * 180$
$>+(8.00)-(4.00) /+4.00 * 180$
$>+4.00 /+4.00 * 180$

Example 1

First Step

Prescription cylinder sign will be matched with the base curve sign.
Eg:
Suppose: [Base curve $=-6.00$]
Prescription: $-2.00 /+5.00 * 180$
Here, Base curve is in minus form and prescription cylinder is in plus form, so transposition is needed [1].
$>-2.00+(+5.00) /-5.00 * 90$
$>+3.00 /-5.00 * 90$

Second Step

Always minus will be done between Base curve and spherical power.
Here, spherical power is +3.00 D and Base curve is -6.00 D
So, +3.00-(-6.00)
$>+3.00+6.00$
$>+9.00$
It will be used on the tool.

Toric Transposition

Third Step

Base curve axis will be completely perpendicular to the final prescription axis (after transposed) [2].

Open Access Journal of Ophthalmology

So, $-6.00 * 180$
Fourth Step
Always addition will be done between Base Curve and cylinder [3].
So,
$\rightarrow \mathrm{BC}=-6.00$
\rightarrow Cylinder $=-5.00$
$>-6.00+(-5.00) * 90$
$>-6.00-5.00 * 90$
$>-11.00 * 90$
Final,
$+9.00$
$-6.00 * 180 /-11.00 * 90$

Example 2

Prescription -3.00/+5.00*90
Base curve -6.00

First Step

Transpose the prescription so that base curve sign will be similar to the base curve sign
$>+2.00 /-5.00 * 180$

Second Step

Minus should be done between spherical and base curve power.
$>-6.00-(+2.00)$
$>-6.00-2.00$
>-8.00
It will be used in a tool

Third Step

Base curve axis will be completely perpendicular with the prescription (which is transposed)
So, axis will be
$>-6.00^{*} 90$
Fourth Step
Add Base curve and cylinder power
$>-6.00+(-5.00) * 180$
$>-11.00 * 180$
So, final
-8.00
$-6.00 * 90 /-11.00 * 180$

References

1 William J Benjamin (2006) Borish's Clinical Refraction $2^{\text {nd }}$ (Edn.).

2 Theodore Grosvenor, Theodore P Grosvenor (2007) Primary Care Optometry. $5^{\text {th }}$ (Edn.).

3 Sir Stewart Duke-Elder, David Abrams (1978) DukeElder's Practice of refraction.

