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Abstract

Current Diagnostic Challenges in Dry Eye Disease
Dry eye disease (DED) is a challenging condition to pin down, given the various probable aetiologies, signs, and symptoms. 
DED is characterised by its loss of tear-film homeostasis, ocular surface inflammation, hyperosmolarity, eye discomfort, and 
visual abnormalities [1]. However, the signs of DED are occasionally inconsistent with the symptoms stated by patients [1]. 
There is presently no one clinical test that can uniformly pinpoint DED [1]. DED is diagnosed using a variety of subjective 
tests and symptom questions, including tear breakup time (TBUT), Schirmer's test (ST), fluorescein and lissamine green 
staining of the corneal (CSS1) and conjunctival surface (CSS2), and the ocular surface disease index (OSDI) [1]. Furthermore, 
the differentiation of different tear film breakup patterns is thought to be at the centre of a tear film-oriented diagnosis, which 
helps elucidate the pathophysiology of DED (i.e., identify the insufficient component of the tear film or of the corneal surface 
epithelium responsible for TFBU), sub classify DED, and select the optimal topical therapy (decide on the most appropriate 
treatment) [2]. Additionally, although meibomian gland dysfunction (MGD) is the leading cause of evaporative DED and one 
of the most common conditions encountered in DED, diagnosing MGD can be difficult due to the non-specific nature of the 
symptoms and great inter-examiner variability in grading clinical variables associated with MGD [3]. As a result, standardised 
and universal diagnostic and decision-making tools in DED are highly valued. 
Artificial intelligence (AI) through machine learning (ML) and deep learning (DL) has garnered attention in the ophthalmological 
field, particularly in the screening and diagnosis of retinal and optic nerve conditions [4]. These AI algorithms perform image-
intensive analyses on fundus or optical coherence tomography (OCT) images [4]. Similarly, in the current practices of DED, AI 
is expected to facilitate the data-intensive analysis of DED signs and symptoms when diagnosing, triaging, and managing DED 
patients.

Keywords: Artificial Intelligence; Optical Coherence Tomography; Eye; Cornea

https://medwinpublishers.com/OAJO
https://portal.issn.org/resource/ISSN/2578-465X#
https://medwinpublishers.com/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.23880/oajo-16000310


Open Access Journal of Ophthalmology 
2

Carolyn YTW, et al. Artificial Intelligence in Dry Eye Disease: Benefits, Challenges and Future Directions. J 
Ophthalmol 2024, 9(1): 000310.

Copyright©  Carolyn YTW, et al.

Abbrevations: OCT: Optical Coherence Tomography; 
ST: Schirmer’s Test; AI: Artificial Intelligence; ML: Machine 
Learning; DL: Deep Learning.

AI in the Automated Diagnosis of DED

Videography and photography of the ocular surface 
collected during a slit lamp examination can assist in 
the diagnosis of DED because they provide information 
on tear film stability (TBUT) and volume (tear meniscus 
height (TMH)) [5]. However, the evaluation of videos and 
photographs frequently exhibits poor reproducibility 
and repeatability due to a lack of tools for consistent, 
objective, and quantitative analysis, and the incorporation 
of AI will hopefully aid in the establishment of precise data 
interpretation tools and reliable DED diagnostics [5].
 

Shimizu E, et al. [4] devised a DL model that uniformly 
diagnoses DED from the TBUT information presented by slit 
lamp videos of a portable device (Smart Eye Camera) and the 
OSDI reported by patients. The model interpreted a patient 
as having DED when it estimated a TBUT ≤5 seconds and 
OSDI input >13. After being trained on 16,440 fluorescence-
enhanced blue light ocular video frames annotated for TBUT, 
the model was able to estimate TBUT with high accuracy 
(0.789) and area under curve (AUC) (0.877), and diagnose 
DED with high sensitivity (0.778), specificity (0.857), and 
AUC (0.813). Chase C, et al. [6], on the other hand, has 
leveraged TMH information captured by anterior segment 
optical coherence tomography (AS-OCT) images to diagnose 
DED. Having been trained and tested on 27,180 AS-OCT 
images, the model exhibited a high accuracy, sensitivity and 
specificity of 84.62%, 86.36%, and 82.35% respectively in 
the diagnosis of DED. The model even outperformed the 
diagnostic accuracy of CSS1, CSS2, and ST1 (P < 0.05), which 
are standard clinical tests used to diagnose DED. 

Similarly, utilising the tear meniscus information 
captured on AS-OCT images, two DL models that adopted 
a direct tear meniscus segmentation approach (DSA) and 
a region of interest localization followed by segmentation 
approach (LSA) have been constructed to diagnose DED 
[7]. The DSA and LSA models segmented the tear meniscus 
for DED diagnosis at a sensitivity of 96.36% and 96.43%, 
a specificity of 99.98% and 99.86%, and a Jaccard index 
of 93.24% and 93.16%, respectively. Keratography videos 
capturing patients’ TBUT and TMH have also been exploited 
to develop a DED diagnostic model via the transfer learning 
approach [8]. The model trained on 244 videos demonstrated 
a high diagnostic accuracy of 0.98 in the detection of DED. 
The lower paracentral cornea was reported by the network 
activation maps to be the most significant region for DED 
detection.

AI in the Understanding of DED 
Pathophysiology

Tear film interferometry is a promising technique 
for scrutinizing the tear film dynamics and tracing the 
pathophysiological cause of DED. Tear inferometric colour 
and fringe patterns reflect the balance between the aqueous 
and lipid layers of the tear film and can be used to trace the 
aqueous deficient (AD-DED) or evaporative nature (EDED) 
of the DED [9]. The knowledge of the DED’s nature type may 
facilitate targeted treatment actions to tackle the root causes 
of DED for optimal symptom and sign relief [9,10]. For 
instance, applying lipid-containing eye drops to improve the 
lipid layer in EDED [10] and administering aqueous-based 
artificial tears to improve aqueous deficiency in AD-DED 
[11].

Da CLB, et al. [12,13] derived two ML models that 
classified the inferometry images into five fringe patterns 
(debris, fine fringes, coalescing fine fringes, strong fringes, 
and coalescing strong fringes). Using 106 interferometry 
images retrieved from the VOPTICAL_GCU dataset to train the 
two ML classifiers separately, the best-performing Random 
Forest-based classifiers differentiated the fringe patterns 
at high area under the receiver operating characteristic 
curves (AUROCs) of 0.99, Kappa indexes of 0.995-0.96 and 
F-Measures of 0.996-0.97. Kikukawa Y, et al. [14], on the other 
hand, harnessed the power of ML to classify tear inferometric 
patterns into nine categories for the fine-grained analysis of 
tear film dynamics in different DEDs. With the help of data 
augmentation and transfer learning, the model re-trained on 
9,089 inferometric image patches achieved an AUC of 0.898, 
sensitivity of 84.3%, and a specificity of 83.3%.

Furthermore, Arita R, et al. [15] designed an algorithm 
for the classification of AD-DED and EDED subtypes based on 
interferometric fringe patterns. The algorithm corresponded 
the three fringe patterns: pearl-like appearance, jupiter-like 
appearance, and crystal-like appearance to the diagnosis of 
normal tear condition, AD-DED, and EDED, respectively. After 
training with 138 inference images of each fringe pattern 
type, the algorithm demonstrated high F-scores of 0.954, 
0.806 and 0.762 for AD-DED, EDED and normal condition 
diagnoses, respectively.

AI in the Interpretation of Meibomian Gland 
Dysfunction

Infrared meibography provides insights into the two-
dimensional silhouette of meibomian glands (MGs) and 
delivers information such as the amount of dropout, the 
area of the MG’s acini, and the length of the MG’s duct [5]. 
Such information are vital for evaluating the degree of 
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MGD and the DED associated with it, hence encouraging 
the formation of individualised treatment plans [5]. The 
manual interpretation of infrared meibography is vulnerable 
to diagnostic quality fluctuations caused by image quality 
and inter-oberver variability [16]. As a result, an automated 
segmentation approach for infrared meibography assures 
diagnostic consistency, quality, and neutrality in the 
deciphering of MGs and MGD-related DED. 

Yu Y, et al. [17] developed a meibography image 
grading model using 1878 annotated meibography images. 
The model achieved good performance in terms of MG 
area detection and segmentation as reflected by the small 
validation loss values (validation loss < 0.35-1.0) and high 
mean value of average precisions (mAP) (mAP > 0.92-
0.976). Similarly, Setu MAK, et al. [16] utilized 728 clinical 
infrared meibography images to build a DL model for MG 
segmentation and morphology assessment. The model 
achieved an average precision, recall, F1 score, AUROC, 
and dice coefficient of 83%, 81%, 84%, 0.96, and 84%, 
respectively, for MG segmentation.

In another study by Saha RK, et al. [18] 1600 
meibography images were employed to develop a MG and 
eyelid segmentation model for the detection of individual 
MGs and quantification of meibomian gland area and area 
ratio. The model achieved 73.01% accuracy for meiboscore 
classification on the validation set and 59.17% accuracy 
when tested on images from an independent center, which 
were superior to the 53.44% validation accuracy by MGD 
experts. Koh YW, et al. [19] constructed a ML algorithm that 
differentiates healthy and unhealthy infrared meibography 
images by automatically detecting the length and width of 
MGs. The model successfully attained a specificity of 96.1% 
and a sensitivity of 97.9% in detecting healthy and unhealthy 
meibography images. The user-free computational method 

was claimed to be fast and did not suffer from inter-observer 
variability.

Benefits, Challenges and Future Directions 
of AI in DED

AI is projected to improve consistency, impartiality, and 
efficiency in DED diagnostics. It may be possible to expand 
DED screening coverage by implementing AI screening tools 
in primary care settings and on individual smartphones. 
DED patients can also be triaged more effectively into 
distinct pathophysiology or severity groups by leveraging 
AI’s ability to aggregate multimodal data for fine-grained 
sub classification of DED type. Individualised therapy 
plans can be better developed to address the underlying 
causes of patients’ complaints. Despite the reported success 
of AI, problems and obstacles remain. Before the broad 
implementation of AI in DED practice, critical technical and 
clinical constraints must be addressed.

The quantity and quality of data are critical to the 
robustness of an AI model. The majority of the aforementioned 
AI applications in DED relied on raw data acquired by 
ophthalmologists during their clinical practice, which were 
often confined to one or a few demographic groups and of 
limited quantity. As a result of spectrum bias, the algorithm’s 
generalizability may suffer, as may its performance during 
model deployment. Additionally, the majority of AI in 
DED employs a fully supervised learning strategy, which 
necessitates high-quality data and annotations provided by 
ophthalmologists. The labor-intensive and time-consuming 
nature of manual data labelling, the discrepancy in image 
processing protocols, and the disparity in labelling standards 
and levels across labellers, make it challenging to assure DED 
data quality in AI training (Table 1).

Study Task Data Modality Dataset
Artificial 

Intelligence 
Model/ Network

Significant Findings Limitations

Shimizu E, et 
al. [4]

Automated 
diagnosis 
of dry eye 

disease (DED)

Slit-lamp 
captured 

videography

16440 
fluorescence-

enhanced blue 
light ocular 

video frames

Deep learning 
(DL) model (Swin 

Transformer)

-The model estimate tear 
breakup time (TBUT) at 
an accuracy of 0.789 and 
area under curve (AUC) 
of 0.877, and diagnosed 
DED with a sensitivity 
of 0.778, specificity of 

0.857, and AUC of 0.813.

Limited sample 
number and 

selection bias
model reliance on 

DED diagnostic 
criteria by Asia dry 
eye society (ADES)

Absence of 
inclusion of other 

data modalities 
e.g. Schirmer’s test 

(ST1)
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Chase C, et al. 
[6]

Automated 
diagnosis of 

DED

Anterior 
segment optical 

coherence 
tomography 

(AS-OCT) 
images

27,180 AS-OCT 
images DL model (VGG19)

-The model showed an 
accuracy, sensitivity and 

specificity of 84.62%, 
86.36%, and 82.35% 

respectively in the 
diagnosis of DED.

Limited sample 
number

Lack of gold 
standard in dry eye 

testing
Absence of quality 

control phase 
during model 

testing

Stegmann H, 
et al. [7]

Automated 
diagnosis of 

DED
AS-OCT images 6658 images

Two DL models 
where one 

utilized a direct 
tear meniscus 
segmentation 

approach (DSA) 
and the other used 
a region of interest 

localization 
followed by 

segmentation 
approach (LSA)

-The DSA and LSA 
models segmented 

the tear meniscus for 
DED diagnosis at a 

sensitivity of 96.36% 
and 96.43%, a specificity 
of 99.98% and 99.86%, 
and a Jaccard index of 
93.24% and 93.16%, 

respectively.

Limited images

Single device 
acquisition of 

images

Abdelmotaal 
H, et al. [8]

Automated 
diagnosis of 

DED

Keratography 
videos 244 videos DL model (transfer 

learning approach)

-The model achieved a 
diagnostic accuracy of 
0.98 in the detection of 

DED.

Limited number of 
eyes and videos
High degree of 

similarity between 
some of the 

extracted video 
frames

Single institution 
acquisition of data

Da CLB, et al. 
[12]

Classification 
of tear 

film fringe 
patterns

Inferometry 
images 106 images

DL networks 
(random forest 
(RF), Support 

Vector Machine)

-The best-performing 
RF model differentiated 
the fringe patterns at an 
area under the receiver 
operating characteristic 
curve (AUROC) of 0.99, 
Kappa index of 0.995 

and F-Measure of 0.996.

NA

Da CLB, et al. 
[13]

Classification 
of tear film 

fringe

Inferometry 
images 106 images

DL networks 
(random forest, 
Support Vector 

Machine)

-The best-performing 
RF model differentiated 
the fringe patterns at an 
area under the receiver 
operating characteristic 
curve (AUROC) of 0.99, 

Kappa index of 0.96 and 
F-Measure of 0.97.

Removal of certain 
relevant features

Other regions 
of interest 

segmentation 
technique not 

explored
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Kikukawa Y, et 
al. [14]

Classification 
of tear 

film fringe 
patterns 

and breakup 
patterns

Inferometry 
images

9,089 image 
patches

DL model 
(ResNet50)

-The model classified 
the fringe patterns at 

achieved an AUC of 
0.898, sensitivity of 

84.3%, and a specificity 
of 83.3%.

Limited data 
quantity

Arita R, et al. 
[15]

Classification 
of tear 

film fringe 
patterns

Inferometry 
images 138 images DL model

-The model attained 
F-scores of 0.954, 0.806 
and 0.762 for AD-DED, 

EDED and normal 
condition diagnoses, 

respectively.

NA

Yu Y, et al. [17]

Meibomian 
gland (MG) 

area 
detection and 
segmentation

Meibography 
images 1878 images Mask R-CNN DL 

model

The model achieved 
small validation loss 

values (validation 
loss < 0.35-1.0) and high 

mean value of average 
precisions (mAP) 

(mAP > 0.92-0.976) for 
MG area detection and 

segmentation.

Small dataset

Single center 
database

Setu MAK, et 
al. [16]

MG 
segmentation 

and 
morphology 
assessment

Meibography 
images 728 images

Dl model 
(Inception-
ResNet-v2)

The model achieved an 
average precision, recall, 

F1 score, AUROC, and 
dice coefficient of 83%, 

81%, 84%, 0.96, and 
84%, respectively, for 

MG segmentation.

Device specificity of 
DL model

Inter observer 
variability in 

ground truth masks
Limited sample 

number

Saha RK, et al. 
[18]

MG and eyelid 
segmentation

Meibography 
images 1600 images DL method

The model achieved 
73.01% accuracy 
for meiboscore 

classification on the 
validation set and 

59.17% accuracy when 
tested on images from 
an independent center.

NA

Koh YW, et al. 
[19]

Differentiates 
healthy and 
unhealthy 

meibography 
images by 

automatically 
detecting the 

length and 
width of MGs

Meibography 
images

Meibography 
images of 55 

patients

ML method (Scale 
invariant feature 

transform)

The model attained a 
specificity of 96.1% and 
a sensitivity of 97.9% in 

detecting healthy and 
unhealthy meibography 

images.

-Limited image 
quantity

Inter observer 
variability in 

ground truths
Table 1: Artificial intelligence applications in dry eye disease.

In response, publicly accessible benchmark datasets are 
essential, especially because they may provide an equitable 
platform for comparing the outcomes of AI models in DED. 

Currently, public DED databases are sparse. Future AI 
research in DED should consider the establishment of a large-
scale public DED dataset. A generative adversarial network 
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can generate an immense amount of random and diverse 
DED images, while federated learning can help with data 
privacy issues through its decentralised data management 
mechanism.

Furthermore, transparent AI reporting is required at 
both the model development and prospective clinical testing 
levels in order for AI to be implemented clinically effectively 
and reliably. Although established AI reporting protocols 
such as CONSORT-AI, STARD-AI, SPIRIT-AI, and TRIPOD have 
emerged charalambides M, et al. [20], report transparency 
has varied significantly between DED models, and rigorous 
adherence to standardised AI reporting is often inadequate. 
Many models neglected to include extensive demographic 
information in their training and validation data. Most 
models’ appropriate usage scopes were also ill-defined (e.g. 
principal users), making contextualising many of these DED 
models challenging. Future DED AI research will require 
reduced reporting selectivity via strengthened adoptions of 
standardised AI reporting approaches. Poor transparency 
was also seen in the AI models’ decision-making. The 
majority of the DED models were black boxes, making it hard 
for ophthalmologists to comprehend how they produced 
their predictions in the first place. To fully trust AI’s clinical 
reasonableness, future DED AI research must embrace the 
explainable AI approach, in which the AI system is dissected 
into multiple modules (e.g., pre-diagnosis module, image 
segmentation module, and final diagnosis module) for 
ophthalmologists’ thorough visualisation.

Conclusion

Finally, concerns about the attribution of responsibility 
for particular harms caused by the use or misuse of AI should 
be addressed. Ethical frameworks that define the legal 
obligations of various parties (e.g. AI firms and clinicians) 
in ensuring AI operates in a specific manner and taking 
necessary compensation steps when harm occurs. 
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