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Abstract

Retinal vessel segmentation plays a crucial role in the automated examination of fundus images for screening and diagnosing 
diabetic retinopathy, a common complication of diabetes leading to sudden vision loss. Automated segmentation of retinal 
vessels can detect these changes more efficiently and accurately compared to manual assessment by an ophthalmologist. The 
proposed method aims to precisely identify blood vessels in retinal images while simplifying the segmentation process and 
reducing computational complexity. This approach can enhance the accuracy and reliability of retinal image analysis, aiding in 
the diagnosis of various eye diseases. The Attention Gated U-Net architecture is a key component in retinal image segmentation 
for retinal pathologies like diabetic retinopathy, showing promising results in improving segmentation accuracy, especially in 
scenarios with limited training data and ground truth. This method involves incorporating an attention mechanism into the 
U-Net to focus on relevant regions of the input image, enhancing the performance of semantic segmentation models. Extensive 
experiments conducted on a retinal segmentation dataset demonstrated that the proposed approach outperformed existing 
methods in terms of performance.
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Introduction

The retinal vascular system contains valuable information 
regarding the eye’s condition [1], and segmenting retinal 
vessels is a crucial task for analyzing eye fundus images and 
diagnosing fundus diseases [2,3]. This process is essential 
for various advanced applications, including evaluating 
artery/vein ratios [4], analyzing blood flow [5], assessing 
image quality [6], registering and synthesizing retinal images 

[7,8], and aiding in the early detection of systemic vascular 
diseases [1]. Consequently, the automatic segmentation of 
retinal blood vessels from fundus images has emerged as a 
prominent research focus in the medical imaging domain [1].

Early methods for retinal vessel segmentation were 
unsupervised and utilized traditional image processing 
techniques such as mathematical morphology [9,10] or 
modified edge detection operations [11]. These approaches 
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aimed to enhance vessel intensities in retinal images 
through pre-processing and subsequent thresholding for 
segmentation. Despite ongoing research into advanced 
filtering methods for retinal vessel segmentation in recent 
years [12,13], these techniques have struggled to achieve 
competitive performance on standard benchmarks. This 
limitation is likely attributed to their challenges in effectively 
handling images with pathological structures and adapting 
to various appearances and resolutions.

On the other hand, artificial intelligence (AI)-based 
methods, including machine learning (ML) and deep learning 
(DL), have demonstrated more promising outcomes and 
superior performance compared to traditional approaches 
[3]. Liskowski P, et al. [14] introduced a supervised 
segmentation technique utilizing a deep neural network 
trained on a large dataset preprocessed with global contrast 
normalization, zero-phase whitening, and augmented with 
geometric transformations and gamma corrections. Suryani 
E, et al. [15] employed a self-organizing graph artificial 
neural network for blood vessel segmentation, involving 
preprocessing, segmentation, and performance analysis 
stages. Wang S, et al. [16] proposed a supervised method 
based on feature and ensemble learning. Zhou L, et al. [17] 
suggested a discriminative feature learning approach using a 
convolutional neural network (CNN) for the dense conditional 
random field model. Fu H, et al. [18] treated retinal vascular 
segmentation as a boundary detection task, incorporating 
multi-scale context information, a side output layer for 
hierarchical structure learning, and conditional random 
fields for long-term pixel dependence modeling. Zhou Y, et 
al. [19] presented an end-to-end synthetic neural network 
with components like a symmetric equilibrium generative 
adversarial network, multi-scale features refine blocks, and 
an attention mechanism to enhance vessel segmentation 
capabilities. Xiuqin P, et al. [20] proposed a retinal vessel 
segmentation method based on an improved deep learning 
U-Net model to address performance degradation issues in 
residual networks with extreme depth.

To address the challenges of low segmentation accuracy 
and incomplete segmentation of small vessels, this study 
introduces an enhanced segmentation model called the 
attention-gated U-Net. This model incorporates an attention 
gate to improve segmentation performance. Our methodology 
integrates adaptive histogram equalization with contrast 
limitation (CLAHE), median filtering data normalization, 
and multi-scale morphological transformation to enhance 
vascular-feature information. Additionally, artifact 
correction is achieved through adaptive gamma correction. 
The preprocessed results are then segmented using the 
attention-gated U-Net (AG-U-Net) model to accurately 
segment fine vessels.

Methodology

U-Net 

Our proposed algorithm is based on the U-Net 
architecture, which is well-suited for biomedical image 
segmentation due to its efficiency and accuracy. The U-Net 
model features an encoder and decoder, as illustrated 
in Figure 1. The encoder, the initial component of the 
U-Net structure, involves downsampling and max-pooling 
following a convolution block to represent input images as 
featured images at multiple levels [21]. The decoder, situated 
in the latter part, utilizes convolution, upsampling, and 
concatenation to transform low-resolution feature images 
from the encoder into high-resolution pixel space, generating 
categorized dense blocks [22]. In this study, we employed the 
U-Net architecture shown in Figure 1 for retinal blood vessel 
segmentation.

 

Figure 1: The architecture of the U-Net segmentation 
network.

Incorporating Attention in the Network

Drawing inspiration from TransNorm [23], a modified 
three-level gate module known as three-level attention 
(TLA) was developed to enhance feature focus and suppress 
irrelevant features 23. The first component of TLA is the 
attention gate (AG), which targets essential features for a 
specific task while suppressing responses from irrelevant 
background areas [24]. During down sampling, where 
small objects may exhibit significant shape variations, 
the AG utilizes a 1 × 1 channel wise convolution for linear 
transformation. The resulting feature map outputs are 
combined through element wise addition, followed by ReLU 
activation and another 1 × 1 convolution with sigmoid 
activation. Trilinear interpolation is then applied to scale 
the output. In the TLA framework, the AG is strategically 
positioned after skip connections to optimize information 
fusion [25]. This approach aids in noise reduction from the 
background and addresses potential blurred boundaries 
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during upsampling [25]. The second attention stage in TLA 
involves channel attention, which computes average and 
maximum pooling operations on the input, combines them 
through element wise addition, and passes the result through 
a multilayer perception layer with sigmoid activation to 
dynamically adjust channel weights [23]. TLA further 
incorporates two consecutive convolutional layers with 
ReLU activation and concludes with a batch normalization 
layer, aligning with standard decoder blocks in UNet models. 
The final stage of TLA involves element wise multiplication 
between Transformer coefficients and the feature map.

Dataset

The Retinal blood vessel segmentation dataset [26] is an 
openly available dataset that includes high-resolution retinal 
fundus images and ground truth labels for retinal blood 
vessels. These fundus images were captured using state-of-
the-art imaging equipment. Each image is accompanied by 
detailed pixel-level ground truth annotations that precisely 
identify the blood vessel locations. The dataset provides 
corresponding pixel-wise annotations in a binary mask 
format for each image, where blood vessel pixels are denoted 
as 1 and background pixels as 0.

For faster training, the images were resized to 224 x 
224 pixels and stored in JPEG format during pre-processing. 
The 80 images were divided into three sets: training, 
validation, and test, with proportions of 70%, 10%, and 20%, 
respectively. Data augmentation was excluded to minimise 
computational costs and avoid introducing extra noise to 
the initial dataset. Our primary objective was to assess the 
enhanced AG-U-Net’s performance and contrast it with the 
baseline U-Net segmentation model. Re-labelling was also 
sidestepped to prevent bias, considering the lack of external 
annotators and blinding [27].

Data Pre-Processing

The hue and saturation levels in individual retinal 
colour images exhibit significant variation. Each basic 
image must be converted into an intensity image, which is 
then normalised to achieve zero mean and unit variance. 
The normalised intensities are subsequently adjusted to 
fall within the range of 0 to 255. In human vision, a gamma 
correction algorithm is applied to process the images. The 
Contrast Limited Adaptive Histogram Equalization (CLAHE) 
technique is a commonly employed pre-processing method 
for retinal vessel segmentation. It enhances the quality of 
available information, thereby improving the performance 
of segmentation models. The CLAHE 27 technique is utilized 
to enhance the contrast of retinal images by controlling 
noise amplification in neighbouring regions and addressing 
low-intensity contrast issues. By strengthening the contrast 

of retinal images, the CLAHE algorithm preserves overall 
brightness and colour balance, aiding in the differentiation 
of retinal vessels from the background. This enhancement 
can boost the accuracy of segmentation models, particularly 
in scenarios where the contrast between vessels and the 
background is minimal.

Model Training, Testing and Results 
Extraction

During the development of the AG-U-Net and baseline 
segmentation models, 80 retinal images and masks were 
utilized for training. The models were configured with a 
kernel size of 3x3, a learning rate of 10-5, a batch size of 8, 
and a dropout rate of 50%. The activation function employed 
was ReLU, and the loss function used was Dice, as studies 
have indicated that these choices can enhance accuracy and 
address pixel imbalance, respectively [28,29]. 

Training and validation were conducted using 64 pairs of 
retinal images and masks, following the initial dataset split. 
The objective of the model is to minimize the loss function 
during training, while the validation set aids in fine-tuning 
the parameters. At the end of each training epoch, the model 
is saved if its validation score improves, and the training 
data is shuffled to prevent bias from the presentation order. 
Subsequently, the segmentation model is evaluated using a 
test set consisting of 16 pairs of retinal images and masks. 
Each iteration aims to produce a model that surpasses its 
predecessor in performance on the test set.

Evaluation Metrics

In vessel segmentation, various evaluation metrics can 
be utilised to gauge the performance of the segmentation 
model, including accuracy, F1 score, Jaccard score, recall 
score, and precision. These metrics rely on true-positives 
(TPs), true-negatives (TNs), false-positives (FPs), and false-
negatives (FNs) derived from comparing the predicted 
binary vessel map to the ground truth binary vessel map. 
This comparison helps evaluate the segmentation results for 
addressing the challenge of binary segmentation of retinal 
vessels. TPs represent the pixels correctly identified as 
vessels in both the ground truth and predicted maps, while 
TNs denote the pixels correctly identified as non-vessels in 
both maps. FPs indicate pixels identified as vessels in the 
predicted map but not in the ground truth map, and FNs 
refer to pixels classified as vessels in the ground truth map 
but not identified as vessels in the predicted map.

Accuracy refers to the percentage of correctly identified 
pixels in the predicted binary map, calculated as [(TP + TN)/ 
(TP + TN + FP + FN)]. Precision represents the proportion of 
predicted vessels correctly identified by the model, calculated 
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as [TP/ (TP + FP)]. Sensitivity, also known as recall, indicates 
the fraction of true vessels correctly identified by the model, 
calculated as [TP/ (TP + FN)]. The F1-score is the harmonic 
mean of sensitivity and precision, providing a balanced 
evaluation that considers both false positives and false 
negatives in its calculation. It is computed as [(2 × {precision 
× recall})/ (precision + recall)]. The Jaccard score, or IoU 
(intersection over union), assesses the agreement between 
the ground truth and predicted binary maps, calculated 
as [TP/ (TP + FP + FN)]. These evaluation metrics are 
essential for comparing the performance of different vessel 
segmentation models, such as AG-U-Net and baseline U-Net, 
and for optimizing the segmentation algorithm’s parameters 
to enhance overall performance.

Results 

Retinal Blood Vessel Segmentation

Table 1 presents the performance metrics of the AG-U-
Net and the baseline U-Net models for retinal blood vessel 
segmentation. The AG-U-Net demonstrated an accuracy of 
0.9488, precision of 0.8186, recall of 0.7419, a dice score of 
0.7765, and a Jaccard score of 0.6356. In contrast, the baseline 
U-Net model achieved an accuracy of 0.8865, precision of 
0.7245, recall of 0.6432, a dice score of 0.5738, and a Jaccard 
score of 0.4189.

 Accuracy Precision Recall Dice score Jaccard score (IoU)

AG-U-Net 0.9488 0.8186 0.742 0.7765 0.6356
U-Net 0.8865 0.7245 0.643 0.5738 0.4189

Table 1: The AG-U-Net and performance on retinal blood vessel segmentation in colour fundus photographs.

Discussion

The AG-U-Net model for retinal vascular segmentation 
has shown promising outcomes in accurately recognizing 
and segmenting vessels in retinal images. This enhanced 
approach focuses on specific image regions and extracts 
relevant features for segmentation through the utilization of 
global and local attention mechanisms. The AG-U-Net model 
has demonstrated an accuracy of 0.9488, precision of 0.8186, 
recall of 0.7419, a dice score of 0.7765, and a Jaccard score 
of 0.6356 in the Retinal blood vessel segmentation dataset. 
These results indicate that the AG-U-Net model outperforms 
the traditional U-Net model in terms of segmentation 
accuracy.

Additionally, a potential future improvement could 
involve incorporating a more extensive and diverse set of 
training data. The current training of the network is based 
on a limited sample of images, which may not fully capture 
the variability present in retinal scans. By expanding the 
training dataset to include a broader range of images, 
the network’s ability to generalise to new data could be 
enhanced, leading to improved performance on previously 
unexplored content. Furthermore, enhancing the AG-U-
Net model could involve incorporating different modalities 
beyond conventional grayscale images. For example, 
integrating channels like fluorescein angiography or optical 
coherence tomography could provide the network with 
additional context and information for more accurate vein 
segmentation. Utilising the TLA network for retinal vascular 
segmentation has the potential to significantly enhance the 
precision and effectiveness of retinal vessel analysis in the 

future. Moreover, a sudden decrease in Intersection over 
Union (IoU) indicates a lack of a comprehensive ground truth 
training dataset. Moving forward, efforts can be directed 
towards leveraging the existing limited training data to 
enhance the model’s generalisation capabilities. Lastly, 
improving the transparency of annotators’ qualifications 
and the consensus process for addressing inter-observer 
variability in annotation can help mitigate uncertainties and 
doubts surrounding the accuracy of ground truth labels.

Conclusion

The results demonstrate that the enhanced AG-U-
Net segmentation model outperforms the standard U-Net 
baseline model in accurately segmenting retinal blood 
vessels, achieving a high accuracy score of 0.9488 on the 
dataset. This improvement is notably superior to the baseline 
U-Net model’s performance. The enhanced method excels 
in segmentation-specific metrics like dice score and IoU, as 
well as overall performance, showcasing its effectiveness in 
accurately delineating retinal blood vessels. The approach 
exhibits adaptability and performs well even in challenging 
scenarios. Moving forward, there is potential to develop a 
more intricate model that can identify vessels with greater 
precision and enhance the connectivity of vascular structures. 
Additionally, enhancing the interpretability of deep learning 
models is essential for understanding the model’s detected 
regions of interest. Visualization techniques can aid in 
comprehending the model’s inner workings, leading to 
informed decision-making and more efficient problem-
solving.
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