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Abstract

Background: Screening is the predominant strategy for early detection of ROP. However, image analysis is dependent on 
the experience of ophthalmologists, which introduces subjective variables into the interpretation of data. Computer-aided 
diagnostics has recently become more widely employed as a second-reader tool, reducing doctors' diagnostic uncertainties. 
Based on this, the development of such systems is critical, and it may be done by refining its processes, namely, more 
accurate segmentation and disease detection. Given this circumstance, the current study presents the use of two well-known 
convolutional neural networks (CNNs) developed for segmentation, U-Net and SegNet, to segment blood vessels (BV), optic 
discs (OD), and demarcation lines/ridges in ROP fundus images. Defining which architecture is most suited for such a task can 
assist in reducing the stress on ophthalmologists for ROP screenings and triage. 
Methods: CNNs are used in segmentation to classify each pixel in an image using self-trained weights. Using three data subsets, 
each containing 50 RetCam images of ROP and their corresponding masks regarding the BV, OD, or ridge of interest, retrieved 
from the only publicly available ROP segmentation dataset, i.e. HVDROPDB, we compared the automatic segmentation 
performed by the U-Net and SegNet using different configurations and in different segmentation tasks related to ROP diagnosis.
Results: Among the two proposed architectures, U-Net obtained better overall results in all segmentation tasks, obtaining 
accuracies of 0.933-0.8751, dice coefficients of 0.49-0.648, and took less training time than the SegNet, which achieved 
accuracies of 0.933-0.80 and dice scores of 0.40-0.648.
Conclusion: The two networks can segment RetCam images of ROP with useful accuracy depending on their configuration, 
with U-Net being generally faster to train and more accurate.
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Abbreviations: ROP: Retinopathy of Prematurity; CAS: 
Computer-Aided Systems; ML: Machine Learning; DL: Deep 
Learning; CNN: Convolution Neural Networks; TP: True 
Positives; FP: False Positives; TN: True Negative.

Introduction

Retinopathy of Prematurity (ROP) is a vasoproliferative 
illness that primarily leads to visual impairment in preterm 
neonates that weigh less than 1750 g and are born before 34 
weeks of gestation [1]. Premature births are susceptible to 
delays in the normal physiologic process of retinal vascular 
development [2]. These immature vessels could grow 
entirely without ROP development or progress to various 
ROP stages [3]. 

In ROP, immature vessels are linked to oxygen-induced 
vascular damage and abnormal neovascularization that 
develops in the vitreous rather than the retina [2]. ROP in 
stages 1 (demarcation line), 2 (ridge), or 3 (extraretinal 
fibrovascular proliferation) might regress spontaneously 
with subsequent natural vessel growth in certain newborns. 
When ROP reaches stage 3 with plus disease, it can advance 
to stages 4 (partial retinal detachment) and 5 (complete 
retinal detachment), resulting in permanent blindness 
[4]. Stage 3 ROP with plus disease has to be addressed 
[2]. Currently, 53,000 children from 15 million preterm 
births worldwide require ROP treatment [3]. Primary and 
secondary prevention of ROP are critical in reducing the 
worldwide burden of ROP and preventing ROP-related early 
childhood blindness [5]. Primary prevention requires better 
neonatal care, whereas secondary prevention entails early 
screening and identification of the disease [5]. 

Screening at-risk newborns with proper scheduling of 
examinations and follow-up is crucial to track the progress 
of the phases and identify infants in need of treatment [6]. 
Typically, ophthalmologists ought to screen “at risk” babies 
with a specialized digital wide-field camera, like the RetCam 
camera [7], or a binocular indirect ophthalmoscope. The 
advantage of camera-based screening is that it can be done 
by trained paramedics. Ophthalmologists may evaluate these 
photographs at base hospitals rather than neonatal care 
units, where preterm babies are commonly hospitalised. 
Early detection by ROP specialists is beneficial in terms of 
disease therapy and management [8]. 

Unfortunately, there is now a poor doctor-to-patient 
ratio in ROP assessments. There are very few ROP experts 
available in diverse locations, including India [9], to cope 
with the increased occurrence of premature newborns [3]. 
Even among expert diagnosis, determining ROP can be highly 
subjective and dependent on experience. In such conditions, 
it is exceedingly difficult to obtain an accurate and consistent 

diagnosis for ROP-affected neonates and those who require 
ROP therapy. Computer-aided systems (CAS) are necessary 
to assist medical practitioners with ROP screenings [10]. An 
automated ROP screening system enables ophthalmologists 
to save time and concentrate on critical patients that require 
treatment. An automated method can screen babies efficiently 
and effectively, ensuring that they receive appropriate, timely 
treatment and avoid blindness.

With CAS for ROP screening gaining popularity among 
researchers worldwide, traditional image processing and 
machine learning (ML) methods began to be used for ROP 
screening on small image datasets [11,12]. Their shortcoming 
was that they were time-consuming and not accurate enough 
for complex problems since they used hand-crafted features 
[3]. Deep learning (DL) is gaining popularity in medical 
imaging as the number of images in the dataset grows and 
GPUs become more widely available. Unlike typical ML 
methods, DL allows machines to solve complicated problems 
with greater accuracy, even if the data source is greatly 
varied and unstructured [3]. A DL network learns high-level 
features of data sequentially, eliminating the need for human 
knowledge [3]. 

To aid the human expert in ROP screening, deep 
learning algorithms were put forward to identify ROP [13-
15]. To help physicians diagnose ROP, the first automated 
method was built utilising convolution neural networks 
(CNN) [16]. A unique CNN architecture was presented for 
detecting ROP and its severity [17]. It is made up of a sub-
network for extracting features and a feature aggregation 
operator for combining these features from diverse input 
photographs. DeepROP, an automated ROP detection system, 
was established [18] employing two distinctive DNN models: 
Id-Net was created to identify ROP. Gr-Net was designed 
for ROP grading activities. The models were constructed 
with two independent datasets: identification and grading. 
The DNN classifier was trained using a transfer learning 
technique [19]. For classification, the authors employed 
features that were automatically extracted by pre-trained 
models, including AlexNet, VGG-16, and GoogLeNet trained 
on ImageNet. A deep learning framework was developed as 
well to recognize zone I in RetCam photographs that included 
both the optic disc and the macula [20].

However, CNNs designed for simple image classification 
of ROP’s RetCam images might struggle to perform well. This 
lies within the inherent weaknesses of the RetCam images. 
The low contrast between blood vessels and retina, variable 
illumination in the image due to wide-field view, relatively 
low image resolution, the presence of choroidal blood vessels 
interfering with the detection of the hallmark ROP vessels in 
RetCam ROP images, and the inherent presence of noise may 
impede the accurate localization of ROP pathologies using 
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simple classification networks [21]. Image segmentation 
allows for more accurate and easy scrutiny of blood vessel 
morphology and retinal abnormalities [22]. Segmentation 
is a vital component in the CAS for ROP screening because 
separating the lesions from the background allows for more 
precise ROP differentiating and classifying practices. 

Research is currently underway to improve the accuracy 
of ROP image segmentation using various architectures, 
functions, and methods. The ultimate goal is to improve 
the analytical ability and accuracy of CADx systems for 
ROP diagnosis and classification. The current work takes a 
first step towards that objective by examining two widely 
used and credible segmentation CNNs (U-Net and SegNet) 
that have been tailored to our ROP image dataset. We aim 
to accurately segregate the BV and optic disc areas in ROP 
RetCam photos. To determine how CNN performs better on 
this task, we trained both networks with different activation 
units and loss functions and compared the results against 
segmentation labels manually produced by experienced ROP 
specialists.

Methods

We attempted to conduct the study in accordance with 
Transparent Reporting of a Multivariable Prediction Model 
for Individual Prognosis or Diagnosis Standards [23]. As 
of the time of writing, specific reporting guidelines for AI 
were still being developed, and none were available [24]. To 
correctly present the key words and results, we referred to 
the recently released Consolidated Standards of Reporting 
Trials-AI extension (developed for clinical trial reporting 
using AI) [25].

Dataset

We retrieved three sets of 50 images and their 
corresponding masks from the HVDROPDB database [26], 
the only publicly available ROP database designed for 
segmentation, to create data subsets for training three 
distinct ROP segmentation tasks: BV segmentation, OD 
segmentation, and ridge/demarcation line segmentation. 
The HYVDROPDB-BV, HYVDROPDB-OD, and HVDROPDB-
RIDGE RetCam image datasets [26] were used to train the 
segmentation networks separately. 

The images are 256 × 256 pixels, captured directly 
from an 8-bit video signal (256 grayscale levels), and 
saved in TIFF format. Trained optometrists acquired the 
photos utilising two Neo or RetCam cameras with a 120◦ 
field of view. A team of ROP experts with at least 5 years of 
experience annotated them, with supervision from a senior 
ROP expert with 25 years of experience. Prior to annotation, 
an interobserver variability test was conducted (Kappa 

=0.92). However, the possibility of subjective bias cannot be 
discounted because no external expert was involved in the 
annotation. To save training time, the images were resized 
to 224 x 224 pixels during pre-processing. We didn’t employ 
contrast enhancement or speckle reduction during pre-
processing since we aimed to measure the networks’ ability 
to learn image features as independently and authentically 
as possible. We also avoided the practice of re-annotation 
since this approach is prone to bias in the absence of external 
annotators and blinding. Figure 1 shows examples of an 
image-mask pair. 

Figure 1: Original Images and their Associated Manually 
Delineated Segmentation Masks.

The data was divided into three sets: training, validation, 
and test, with 70%, 10%, and 20% allocations, respectively. 
Data augmentation was not employed to minimise 
computing costs and avoid introducing more noise to the 
original set. We were merely interested in assessing the 
performance of different networks in segmenting BV, OD, 
and demarcation line or ridge, not to develop a generalizable 
model for deployment. The three sets were normalised using 
the training set’s mean and standard deviation, as the test 
set should be reasonably representative of the training set; 
hence, we must assume that the mean and standard deviation 
are the same. 

Hardware and Software

Python 3.6.8 was employed as the programming language 
in this work, coupled with the Tensor Flow and Keras libraries 
for DL. The testing platform was a LINUX-based PC with an 
Intel Core i7-7740X CPU @ 4.30GHz, 32 GB of RAM, and a 
GeForce GTX 1080 Ti graphics card running at a clock speed 
of 33 MHz. Nvidia’s driver version was 390.59. The statistical 
analysis was carried out using MATLAB R2015a.

U-Net

U-Net, founded in 2015 at the University of Freiburg’s 
Computer Science Department, is a CNN engineered to 
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provide swift and precise image segmentation in an array 
of biomedical applications. It features a contracting path 
for capturing context and a symmetric expanding path for 
exact localization. The encoder receives the input image and 
repeatedly applies two unpadded convolutions, followed by 
an activation unit and a max pooling operation with stride 2 
for downsampling. These operations are repeated four times 
before passing onto the decoder.

The steps throughout the expansive path are similar. It 
comprises an upsampling of the feature map, a concatenation 
with the corresponding feature map of the contracting path, 
and two convolutions followed by activation. The U-Net’s 
merging with the map from the contraction map sets it apart 
from other networks. The goal of this expanding path is to 
provide exact localization in conjunction with contextual 
information from the contracting path. This contributes to 
predicting a good segmentation map. The last layer generates 
an output containing the segmentation result.

SegNet	

SegNet is a CNN with a similar general architecture 
to U-Net that was created for multi-class pixel-wise 
segmentation by members of the University of Cambridge’s 
Computer Vision and Robotics Group. The network is based 
on the layout of the VGG-16 network and has been adapted to 
pixel-wise segmentation. It is capable of achieving excellent 
scores while using less memory.

The number of convolutions differs from the U-Net. 
In the first two steps, there are two convolutions followed 
by batch normalisation and activation before the pooling 
process, and three convolutions follow in the next three 
steps. The decoder portion mirrors the encoder, with the 
only distinctions being upsampling instead of downsampling 
and a 1 × 1 last convolution for pixel-wise categorization. 
SegNet’s primary innovation is the reuse of pooling indices. 
Instead of transferring the full map like U-Net, the decoder 
upsamples its input feature maps using the encoder’s max 
pooling indices, which are memorised. Reusing memorised 
indices requires less memory from the system.

Network Training, Validation, Testing and 
Results Extraction

During the segmentation model construction process, we 
trained the U-Net and SegNet networks using three RetCam 
image data subsets (HYVDROPDB-BV, HYVDROPDB-OD, and 
HVDROPDB-RIDGE). We made adjustments to the kernel size 
(3 × 3, 5 × 5, and 7 × 7) and learning rate (10-3, 10−5, and 
10−6), as well as the functions between ReLU and PReLU for 
activation, and between dice and cross-entropy for loss. In 
their original architectures, both networks employ ReLU and 

cross-entropy; however, subsequent studies recommended 
the usage of PReLU for boosting accuracy [27] and dice loss 
as the degree of pixel imbalance grows [28]. We also used 
1,000 epochs in U-Net and 2,000 in SegNet because SegNet 
took much longer to stabilize.

We used 35 photos for training and 5 images for validation, 
based on our initial dataset split. While the model attempts 
to fit the training data by minimising the loss function, the 
validation set refines the parameters. In each training epoch, 
the model is saved if its validation score is higher than the 
previous one, and the training data is shuffled to remove any 
bias in the presentation order. Following that, we assess each 
segmentation model on a test set of 10 photos.
	

Each experiment aims to produce a model that 
performs better on the test set than the previous one. We 
experimented with different combinations of the batch size, 
kernel size, dropout rate, and learning rate, until we found 
the ideal configuration for each network using its original 
architecture. Then we compared the outcomes of different 
loss and activation functions. 

The segmentation evaluation metrics indicate the 
correctly segmented image pixels relative to the ground truth. 
We calculated a few well-known evaluation metrics, including 
accuracy, precision, recall, and dice score. True positives 
(TP) are pixels that have been successfully recognised as 
foreground (white) pixels, but false positives (FP) are the 
ones detected incorrectly. True negative (TN) are pixels 
correctly segmented as background (black) pixels, but false 
negative pixels (FN) are the ones wrongly segmented. Since 
a class imbalance issue tends to exist for the segmentation 
BVs, OD and ridge due to the few foreground pixels compared 
to the background pixels, even 90% accuracy will struggle 
to accurately label the class. As a result, the dice coefficient 
(F1-score) is the most often used measure for colour 
image segmentation, calculating the similarity between 
ground truth images (manually segmented images) and 
automatically segmented images. The dice coefficient, also 
known as the overlap index, is calculated using the equation 
2xTP/(2xTP+FP+FN) and runs from 0 to 1, with 0 indicating 
no overlap and 1 indicating complete overlap between 
predicted and ground truth.

Results

When assessing the performance of the U-Net and SegNet 
on the HVDROPDB RetCam image subsets, the configurations 
for the U-Net that generally yielded the best results were 
found to have a learning rate of 10–5, a 3 × 3 kernel size, a 
batch size of 8, and a 50% dropout rate. Average dice scores 
for the testing output images and the training time for each 
activation-loss duo in the U-Net architecture are presented 
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in (Table 1 & Figure 2) shows the comparisons between 
the manually delineated segmentation masks and the 
U-Net predicted segmentation masks for BV, OD and ridge 
segmentation using U-Net’s best performing configuration. 
On the other hand, SegNet performed best with the following 
settings: 5 × 5 kernel size, 10-6 learning rate, 50% dropout 

rate, and 32 batch size. (Table 2) shows the average dice score 
in the training set, as well as training duration in the SegNet 
architecture. (Figure 3) illustrates the comparisons between 
the manually delineated segmentation masks and the 
SegNet predicted segmentation masks for BV, OD and ridge 
segmentation using SegNet’s best performing configuration.

Experiment Activation Unit Loss function Average dice score Training time (h)
1 PReLU Cross-entropy 0.741±0.131 6.78
2 PReLU Dice 0.742±0.133 6.78
3 ReLU Cross-entropy 0.744±0.137 4.34
4 ReLU Dice 0.751±0.134 4.34

Table 1: U-Net experimental results. Each row considers an experiment using a different pair of activation and loss functions, 
and the fourth and fifth columns show, respectively, the average dice score, with standard deviation, in the test set and the time 
to train the model in hours.

Figure 2: Comparison between the manually annotated segmentation mask and the U-Net-produced segmentation mask 
when U-Net is in its best configuration. The original image and its associated manual label from the test set are presented in 
the first two columns. The third column shows the segmentation output of U-Net’s best-performing configuration. 

 

Experiment Activation Unit Loss function Average dice score Training time (h)
5 PReLU Cross-entropy 0.681±0.154 10.12
6 PReLU Dice 0.690±0.140 10.12
7 ReLU Cross-entropy 0.681±0.150 7.42
8 ReLU Dice 0.690±0.145 7.42

Table 2: Seg-Net experimental results. Each row considers an experiment using a different pair of activation and loss functions, 
and the fourth and fifth columns show, respectively, the average dice score, with standard deviation, in the test set and the time 
to train the model in hours.
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Figure 3: Comparison between the manually annotated 
segmentation mask and the Seg-Net-produced 
segmentation mask when Seg-Net is in its best 
configuration. The original image and its associated 
manual label from the test set are presented in the first 
two columns. The third column shows the segmentation 
output of Seg-Net’s best-performing configuration. 

 

Retinal Vessel Segmentation

(Table 3) shows the performance metrics of U-Net and 
SegNet-based segmentation on the HVDROPDB-BV dataset, 
using the top-performing setups. U-Net had an accuracy of 
0.8751, precision of 0.64, recall of 0.51, and a dice score of 
0.49. SegNet’s segmentation yielded an accuracy of 0.80, 
precision of 0.56, recall of 0.45, and dice score of 0.40. 

Accuracy Precision Recall Dice score
U-Net 0.8751 0.64 0.51 0.49

Seg-Net 0.8 0.56 0.45 0.4

Table 3: U-Net and Seg-Net performance on blood vessel 
segmentation in retinopathy of prematurity.

Optic Disc Segmentation

(Table 4) depicts the comparison of performance 
parameters of U-Net and SegNet segmentation on the 
HVDROPDB-OD dataset, best-performing configurations. 
U-Net achieved an accuracy of 0.933, precision of 0.788, recall 
of 0.55, and a dice score of 0.648. SegNet’s segmentation 
obtained an accuracy of 0.933, precision of 0.788, recall of 
0.55, and dice score of 0.648. 

Accuracy Precision Recall Dice score
U-Net 0.933 0.788 0.55 0.648

Seg-Net 0.933 0.788 0.55 0.648

Table 4: U-Net and Seg-Net performance on optic disc segmentation in retinopathy of prematurity.

Demarcation line/ Ridge Segmentation

Table 5 shows the performance of U-Net and SegNet 
segmentation on the HVDROPDB-RIDGE dataset, using 
their top-performing setups. U-Net had an accuracy of 0.9, 
precision of 0.71, recall of 0.52, and a dice score of 0.5. 
SegNet’s segmentation yielded an accuracy of 0.85, precision 
of 0.67, recall of 0.47, and dice score of 0.45. 

Accuracy Precision Recall Dice score
U-Net 0.9 0.71 0.52 0.5

Seg-Net 0.85 0.67 0.47 0.45

Table 5: U-Net and Seg-Net performance on demarcation 
line/ ridge segmentation in retinopathy of prematurity.

Discussion

To automatically detect plus diseases, zones, and stages 
for ROP diagnosis and classification in AI systems, retinal 

structures (BV, OD, and demarcation line/ridge) ought to 
be segmented. Automated segmentations might also be 
useful in explaining the ROP diagnosis to ophthalmologists. 
In our study comparing the performance of a deep U-Net 
with a SegNet segmentation network, we found that both 
U-Net and SegNet were capable of accurately segmenting 
retinal structures of interest for ROP diagnosis and staging, 
although our deep U-Net performed better overall in ROP 
segmentation tasks. 

It was discovered that utilising PReLU as an activation 
unit significantly slowed down the training stage for both 
networks, without providing a meaningful advantage, i.e., 
enhancing segmentation accuracy. This is especially evident 
when analysing U-Net performance, which increased training 
time by about 56.2%. While transferring feature maps from 
encoder to decoder was intended to slow down U-Net 
training, slowing the learning rate and utilizing a heavier 
filter in SegNet models resulted in a greater training time. We 
highlight that the adoption of various loss functions did not 
affect training times. When analysing test time, all models 
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were able to segment the test images in less than a second.

When comparing label accuracy, U-Net outperformed 
SegNet in nearly all configurations, with the slightest 
difference being 7.39% in dice scoring. The great majority 
of the poorest segmentation outcomes, such as the lowest 
dice coefficient values, occurred in photos with minimal 
contrast between the lesion and the background, as well as 
in images that featured various dark areas. SegNet tends to 
overlook sharp edges, resulting in rounded segmentation 
maps. Analyzing each model separately while looking at 
the dice scores in Table 1, we can determine that the largest 
difference across various U-Net model versions is as low 
as 0.93%, whereas the difference in SegNet is 1.30%, as 
illustrated in Table 2.

Our results were compared to other state-of-the-art 
segmentation models, however, we were unable to acquire 
the highest scores in BV, OD, and ridge segmentations. 
According to Table 6, Gojic G, et al. [29] obtained accuracies 
of 96.6-100% using 1156 fundus images to train a 
segmentation model to segment ODs in ROP, while Nisha KL, 

et al. [30] achieved a 0.723 dice coefficient and an accuracy of 
97.5% using 178 fundus images to train a machine learning 
model to segment BVs. Raja S, et al. [4] used a MultiResUNet 
on a dataset of 4000 fundus images for BV segmentation, 
yielding a dice score of 0.824 and an accuracy of 93.4%. The 
comparatively low segmentation performance of our models 
might be attributed to input image size limits, with only 
50 ROP images available for training in each batch. Future 
efforts to increase the size of the training ROP image set may 
improve our models’ segmentation ability. 

Clinically, our findings could serve as the foundation for 
future research into the development of AI-aided systems for 
ROP screening and staging, where the segmentation of BV, 
optic disc, and demarcation line/ridge is critical to describe 
ROP characteristics in these systems for diagnosis, severity 
triaging, monitoring, and individualized management plans 
and follow-ups [31]. These AI systems could address existing 
roadblocks in ROP diagnosis and treatment, such as a 
paucity of ROP experts and subjective variation in the clinical 
identification of zones, stages, and plus attributes critical to 
ROP diagnostics [31].

Study Segmentation 
Task Dataset Architecture Accuracy Precision Recall Dice Score

Gojic G, et. al. 
[28] BV segmentation

STARE, 
FIRE, DRIVE, 
HRF, IDRiD 
and AIIMS 
datasets 

(total 1156 
fundus 

images)

YOLO model
OD 

segmentation: 
96.6%-100%

NA NA NA

Nisha KL, et. al.
[29] BV segmentation 178 fundus 

images

Machine 
learning 
model

BV 
segmentation: 

97.473%
NA NA

BV 
segmentation: 

0.72298

Raja S, et. al. [4] BV segmentation 4000 fundus 
images

Modified 
MultiResUnet

BV 
segmentation: 

93.37%
NA NA

BV 
segmentation: 

0.824

Table 6: Performance of other segmentation models designed for ROP segmentation tasks.

Limitations

However, the input images presented a possible 
constraint for our system. There were only 50 ROP images 
per subgroup, which might have limited the segmentation 
models’ capacity to reach their full performance potential. 
We only employed high-quality retinal images from H.V. 
Desai Eye Hospital in Pune, India, taken with RetCam on 
preterm newborns with shorter gestation periods and lower 
weights. Since the RetCam imaging equipment is costly, 
many hospitals could opt for less expensive systems such 

as PanoCam (Visunex Medical Systems, Suzhou, Jiangsu, 
China), and image variations may occur as a result of device 
differences [32]. Second, during newborn screening, ROP 
was discovered in many heavier and full-term infants [32]. 
As a result, just extracting features from premature newborn 
photos may not be adequate. Third, the photographs chosen 
are of satisfactory quality and may not accurately portray 
reality. We may lose features in inferior images. Finally, there 
are concerns about the quality of the prepared ground facts 
(i.e. segmentation masks created by ROP specialists) because 
the specifics of the annotators’ qualifications and the process 

https://medwinpublishers.com/OAJO


Open Access Journal of Ophthalmology 
8

Carolyn YTW, et al. The Performance of two Well-Known Segmentation Convolutional Neural Networks, 
Unet and Segnet, for the Segmentation of Blood Vessels, Optic Disc and Demarcation Line in Retinopathy 
of Prematurity Retcam Images. J Ophthalmol 2024, 9(1): 000312.

Copyright©  Carolyn YTW, et al.

of consensus for inter-observer variability in annotating were 
not given. Ground truths used might have carried suboptimal 
quality and questionable reliability.

Future Work

In future ROP investigations, it is critical to urge for 
more collaboration across regions and hospitals to gather 
more retinal images of preterm newborns using various 
equipment. Instead of merely images from preterm 
newborns, data sets should be expanded to also include 
full-term and heavier newborn screening images to extract 
a boarder spectrum of features for ROP diagnosis. We will 
also look into more stringent, quantitative image screening 
criteria and develop preprocessing modules to provide 
image screening automatically and objectively. It would also 
be interesting to dissect and visualize the features learned by 
segmentation networks in future studies. 

Conclusion

We successfully built two convolutional neural networks 
to segment BV, OD, and ridge in RetCam ROP images, with 
good accuracies. With our recommended designs, we 
discovered that the U-Net excels over the SegNet for our ROP 
RetCam datasets’ segmentation. The SegNet takes longer 
to train and exhibited a lower dice score, with the risk of 
rounding edges and jeopardising a subsequent diagnosis. 
Though U-Net is a popular model for medical image 
segmentation, it has not received the best performance in 
our BV, OD and ridge segmentation for ROP images. This is 
mostly owing to the properties of our RetCam image sets. To 
obtain more accurate segmentation, refinements to the ROP 
RetCam datasets’ size and diversity would be needed. 

As stated in the introduction, few studies have been 
presented on the segmentation of BV, OD and ridge found in 
ROP RetCam images using U-Net and/or SegNet, and to the 
best of our knowledge, no comparison of the performance of 
those networks with different loss functions and activation 
units has been conducted. Our current work aims to analyse 
the capabilities of two well-established segmentation 
networks based on their configurations for the three critical 
segmentation tasks in ROP diagnostics and staging, with the 
goal of providing a reference for future researchers interested 
in developing segmentation-based ROP diagnostic systems. 
In fact, in the near future, it will be valuable to compare 
several segmentation approaches and networks, such as 
GAN and attention-gated U-Net, using the same ROP dataset 
to determine the best segmentation network for accurate 
ROP segmentation. 
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