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.   Abstract  

Detonation nanodiamonds have 4-5 nm size primary particles, stable inert core, high surface area and tunable surface 

structures. They are very attractive from pharmaceutical point of view as a drug delivery vehicle. Nitrogen impurity like 

defect in detonation nanodiamonds structure are absorbed light at wavelengths of visible, infrared or ultraviolet spectral 

region, and emit bright fluorescence. This allows their use as agent for imaging biological processes and tracking 

treatment approaches. 
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Introduction 

     For nanodiamonds were produced for first time in 
1962 in Russia. The researchers started to produce them 
from outdated military explosives trotyl and hexogen 
with the sole purpose to increase the life of their tanks. 
The second half of the 20th century, after number of 
important studies started a broader interest to these 
particles. Detonation nanodiamonds (DNDs) present a 
new class of carbon family nanoparticles [1]. 
 
     Based to their primary particle size, NDs are classified 
into nanocrystalline particles (1 to≥150 nm), 
ultrananocrystalline particles (2 to 10nm) and 
diamondoids (1 to 2nm) [2]. Diamond particles with a 
primary particle size of 4 to 5 nanometers are of interest 
for biomedical applications, as research has focused on 
detonation nano diamonds (DNDs) [3]. 
 

Synthesis and Purification 

     NDs were first produced by detonation technique. 
Oxygen-deficient explosive mixture of trinitrotoluene 

(TNT)/hexogen (in the proportion 60:40) is detonated in 
a closed chamber in an atmosphere of inert gases and H2O 
or ice. To prevent diamond transformation into graphite 
at the high temperature generated by the detonation, the 
cooling rate of the reaction products should be no less 
than 3000 K/min [4]. DNDs are formed at the front of 
detonation wave in a fraction of a micro second. They 
consist of carbon predominantly in diamond phase to an 
extent of 80-88% [5]. An important feature of the DNDs 
structure is the presence of various functional groups 
such as carboxyl, hydroxyl, lactone, anhydride, ketone and 
ether on the surface of the particles (often called "a coat of 
functional groups") [6]. These groups are formed during 
detonation synthesis, when in the too short time 
(microsecond) during the explosion and non-stationary 
regime DNDs failed to stabilize their electron shell [7]. 
The yield of the obtained DNDs depends on the heat 
capacity of the cooling medium in detonation chamber. 
The diamonds are extracted from the soot by the use of 
liquid oxidants such as HNO3, a mixture of H2SO4 and 
HNO3, K2Cr2O7 in H2SO4, or HClO4. To remove non-carbon 
impurities, the product is subjected to HCl. Non-diamond 
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carbon can be oxidized by ozone-enriched air at elevated 
temperatures, like cheapest and more ecological 
alternative method. Ozone-purified DNDs have a smaller 
aggregate size in aqueous dispersions, higher content of 
single particles compared to this purified with a help of 
liquid oxidants [8]. 
 
     Single DND particles have diameters of 4–5 nm. Firstly 
aggregates are formed from single DND particles with 
coherent and non-coherent boundaries with C-C bonds 
(directly under explosion conditions). The aggregation 
continues as a result of realized bonds between functional 
groups on the surface of DND particles and due to Vander 
Waals forces [7]. Another theory is the aggregation 
mediated through graphitic soot [9]. Graphitic soot 
embryos which are obtained after lowering of the 
temperature and the pressure start to coagulate and are 
arranged like an irregular graphitic shell around the 
particle before formed a core aggregate of DNDs. 
 
     Other methods of synthesis of ND are: laser ablation, 
plasma assisted chemical vapour deposition (CVD), 
autoclave synthesis from supercritical fluids, chlorination 
of carbides, ion irradiation of graphite, electron 
irradiation of carbon ‘onions’ and ultrasound cavitation 
[10-16]. 

  

De-Aggregation and Surface Modification 

     Formation and maintenance of de-aggregated DNDs 
formulation is very important for possible biomedical 
application. They are physical, chemical and combination 
methods for de-aggregation of NDs. Physical approaches 
are chosen when NDs aggregation is mediated through 
graphitic layering, while chemical methods are based on 
the functionalization of the surface. Chemical approaches 
use the conjugation of various organic or inorganic 
molecules on the surface of NDs to control aggregation 
and to impart them specific properties. 
  
     De-aggregation of ND in suspensions is obtained by 
milling with ceramic micro beads (ZrO2, SiO2) or 
ultrasonic disintegration with micro beads, dry milling 
with sodium chloride or coarse sucrose, high-temperature 
hydrogen treatment, ultrasonic treatment in borane 
presence [17-20]. There was data that purification and 
oxidation in air allow to isolate a stable hydrosol of 
particles 4-5 nm in diameter by centrifugation [21]. By 
the first method are yielding colloidal solutions of 
individual NDs 4-5 nm in diameter, but during the bead 
milling graphitic layer are formed around primary 
particles. Liquid oxidants are used to remove it following 
of the formation of new aggregates. The second method is 

cheap and allows particles and small aggregates of 5-
20nm to be achieved without additional contamination. 
Obtained by high-temperature hydrogen treatment NDs 
have size 2-4 nm. Ultrasonic treatment in borane 
presence, reduce aggregates size to ~20-nm. The possible 
re-aggregation of ND particles is prevented by 
ultrasound-assisted treatment in the presence of sodium 
chloride. It is assumed that Na+ repels each other when 
they are attached to the surface of the individual particles 
[18]. 
 
     Functionalization of the surface can also assist the 
reduction of the size of the aggregates. The above-
mentioned method with borane, lice combined method 
showed the greatest reduction of aggregates after 
functionalization [22]. 
 
     Functionalization was often use from biomedical and 
pharmaceutical utilization, thus allows loading of drug 
substances. Modification of NDs surface can be achieved 
through physical adsorption or through chemical 
interaction. Physical adsorption of NDs has been widely 
accomplished using proteins, drugs, and nucleic acids [23-
27]. 
 
     An important step before chemical functionalization of 
NDs is the unification of the surface groups of the NDs, in 
order to ensure similar behavior conjugating from the 
entire surface. Oxidation or reduction of NDs is selected 
based on the terminal functional groups required on the 
surface. Different oxidative agents give variable functional 
group distribution on the surface after oxidation. For 
example nitric acid and sulphuric acid result in 
carboxylate (COO-) rich surface, potassium permanganate 
and sulphuric acid result in SO3- or O- derivatives of 
phenol [28,29]. Reduction converted most of the 
functional groups into hydrogen or hydroxyl groups [6]. 
Therefore, reduction of NDs can create either positive 
surface through hydrogenation or negative surface 
through hydroxylation of ND surfaces. 
 
     There are three different types of surface chemistries: 
wet chemistry, gas phase methods or atmospheric plasma 
treatments.  
  
     Wet chemistry treatment use of suitable solvent 
systems to introduce functional groups. Depending of 
functional groups to be attached on the surface oxidized 
carboxylated NDs or reduced hydroxylated NDs can be 
used. Carboxylate functionalized NDs can be reacted with 
thionyl chloride to form acyl chloride functionalities 
which can be further attached to amine containing 
chemical moieties [1]. 
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     The treatment of NDs in gas or a vapor reactive 
medium is different approach. The gas phases used can 
include hydrogen, ammonia, carbon tetrachloride or 
argon. NDs treated with ammonia yield carbonyl, amine 
or cyano groups on the ND surface, while treatment with 
chlorine results in the formation of chloro-NDs or acyl-
chloride functionalized NDs. Functionalized with amino 
acids and alkyl chains via covalent bonding or alkyl-, 
amino-, and amino acid-functionalized diamonds have 
been created by chemical modification of fluorinated NDs 
with alkyl lithium, ethylenediamine, or glycine ethyl ester 
hydrochloride, respectively [30-32]. 
 
     Another approach for modifying the surface is atom 
transfers radical polymerization, when radical initiators 
(benzoyl peroxides, hydroxyethyl-2-bromoisobutyrate or 
2, 2, 2-trichloroethanol) which are attached covalently to 
oxidized NDs through esterification. Chemical groups are 
then introduced in the system which polymerize and 
arrange as brush arrays on the surface [33,34]. This 
process create hydrophilic or hydrophobic surface 
depending of the nature of polymer. Radical generation 
mechanism is used for successful grafting of carboxylic 
groups onto NDs [35,36]. 
 
     Different functional groups on the surface of NDs give 
possibilities for their conjugation with different moieties 
without compromising the useful properties of the 
diamond core [37]. As well as systems for drug delivery, 
DNDs can be used as bioimaging agents. 

 

Photoluminescence Properties 

     Fluorescence is often used interchangeably with 
photoluminescence to define spectroscopic properties of 
NDs. Nitrogen impurity is common defect that exist in the 
diamond structure as a result of detonation. The nearest-
neighbor pair of nitrogen atom, substitutes carbon atom 
and forms a vacancy in the diamond latticez [38].  
 
     Fluorescent nitrogen vacancies (N-V)0 and (N-V)-in ND 
core are formed during synthesis and are responsible for 
photoluminescence properties of NDs. They absorb light 
at wavelengths of visible, infrared or ultraviolet spectral 
region, and emit bright fluorescence at 550-800 nm 
[39,40]. To enhance the fluorescence centers in NDs are 
used techniques with irradiation of NDs with helium ions 
(He+) at 40 keV followed by thermal annealing at 800ᵒC, 
also hydrogen ions (H+) at 3 MeV to create vacancy 
centers in ND core. Directly incorporate nitrogen atoms as 
native nitrogen 14N, its isotope 15N or as cyanide (CN-) 
ions in the core is another method to create nitrogen 
vacancies. To preserve fluorescence NDs are encapsulated 

by bulky groups like phenols, which reduce the non-
radioactive decay pathways of colored centers [41-46].  
Fluorescence can also be produced through surface 
conjugation. NDs can be functionalized with a 
hydrophobic molecule octadecylamine producing bright 
blue fluorescence and can be useful for imaging 
hydrophobic components [47]. 
 

Conclusion 

     Nanodiamonds possess unique properties that make 
them attractive for medical and pharmaceutical 
technology. The possibility for amino-, carboxyl –and 
other functionalization of their surface is often used from 
biomedical utilization, thus allows loading of larger 
number of drugs, proteins, small molecules. Changes in 
pH with respect to pKa can cause variations in the charge 
of the surface functional groups which make possible 
interactions with other molecules. Combination of roles of 
drug vehicle with imaging effect is an important 
opportunity for monitoring of the delivery of cargo into 
the target cells, organs or systems. 
Major disadvantage of nanodiamond suspensions and 
powders is their tendency to aggregates. The storage of 
de-aggregated by different techniques particles form 
again aggregates with time. Therefore, the search 
continues in order to obtain single nanodiamond particles 
well dispersed and stable for a long period. 
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