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Abstract  

Studies in the past decade have demonstrated that endoplasmic reticulum (ER) stress is closely associated with 

pathogenesis of hypertension. Signaling pathways involving AMP-activated protein kinase (AMPK) and NADPH-oxidase 

(Nox) have been identified to regulate ER stress; whilst ER stress contributes to the imbalance production between nitric 

oxide (NO) and reactive oxygen species (ROS). The present article reviews the protective effects and the potential 

therapeutic implication of ER stress inhibition by drugs or natural products in hypertension. 
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Introduction 

Endoplasmic reticulum (ER) is a crucial organelle in 
which protein synthesis, maturation, folding and 
trafficking take place. Only properly folded proteins can 
be destined to cellular organelles or cell surface; 
nevertheless, misfolded or unfolded proteins are retained 
in the ER to be degraded eventually [1]. Disruption of the 
aforementioned processes results in the accumulation of 
newly synthesized unfolded proteins in the ER and this 
condition is referred to as ER stress [2]. ER stress occurs 
in different pathological conditions, including ischemia, 
hypoxia, altered glycosylation, nutrient deprivation, 

oxidative stress and Ca2+ depletion of ER stores; and 
consequently activates ER membrane-associated proteins 
and complex downstream signaling pathways to regulate 
targeted gene expression [3]. Studies have demonstrated 
that chronic ER stress performs a role in the pathogenesis 
of diseases including atherosclerosis [4], hypertension [5], 
diabetes mellitus and obesity, as well as the associated 
vascular dysfunctions [6], neurological disorders [7] and 
cancer [8]. Moreover, several drugs and natural 
compounds have been identified to reduce ER stress and 
thereby show protective effects against ER stress-
associated pathologies. The present article provides an 
overview of suppressing ER stress by drugs and natural 
products on the potential therapeutic implication against 
hypertension. 
 

Suppression of ER Stress Reverses the 
Pathogenesis in Hypertension 

Several evidence supports the implication of ER stress 
in hypertension and pharmacological inhibition of ER 
stress ameliorates the pathological conditions. Chemical 
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chaperones 4-phenyl butyric acid (4-PBA) and taurine-
conjugated ursodeoxycholic acid (TUDCA) are approved 
by US Food and Drug Administration (FDA) for treating 
urea cycle disorders and biliary cirrhosis respectively. 
Nox (NADPH-oxidase) subcellular compartmentalization 
contributes to oxidative and ER stress, resulting in 
increased proliferation of vascular smooth muscle cells 
(VSMCs), protein hyperoxidation and vascular 
dysfunction in hypertension; and 4-PBA attenuates 
hypercontractility and vascular reactive oxygen species 
(ROS) formation in the stroke-prone spontaneous 
hypertensive rats (SHRs) [9]. Oral administration of 4-
PBA lowers blood pressure, reduces vasoconstriction and 
enhances vasodilation in small mesenteric arteries from 
SHRs through inhibition of ER stress and oxidative stress 
[10]. Likewise, administration of TUDCA protects against 
deoxycorticosterone-acetate (DOCA) salt-induced 
hypertension and endothelial dysfunction in rats through 
reducing ER stress and apoptosis in blood vessels [11]. 
Similar results were obtained in hypertensive rats that ER 
stress inhibition by 4-PBA and TUDCA normalized blood 
pressure by suppressing Ca2+-dependent cytosolic 
phospholipase A2 (cPLA2)/ cyclooxygenase (COX) 
pathway [12]. Diabetes mellitus and hypertension are 
closely related and synergistically induce kidney injury 
through upregulation of ER stress; whilst TUDCA 
treatment reverses the blood pressure and kidney injury 
[13]. ER stress and apoptotic markers are upregulated in 
the heart from SHRs, revealing that ER stress is linked to 
myocardial apoptosis associated with hypertension [14]. 
Both TUDCA and 4-PBA can ameliorate cardiac fibrosis 
and macrovascular endothelial function via inhibition of 
transforming growth factor-beta 1 (TGF-β1) pathway in 
angiotensin II (Ang II)-induced hypertensive mice [15]. In 
addition, ER stress in brain has been implicated in Ang II-
induced hypertension which can be reversed by 
treatment with TUDCA [16].  

 
 Apart from the common ER stress alleviators 4-PBA 

and TUDCA, other drugs and natural products have also 
been demonstrated to have beneficial effects in 
hypertension through inhibition of ER stress. 
Hyperhomocysteinemia is associated with hypertension 
and homocysteine (Hcy) is also well-known to induce ER 
stress [17]. Hcy induces cell death of vascular endothelial 
cells by activation of JNK and ATF3 through IRE1/TRAF2 
pathway [18] and by eIF2α induction of the T-cell 
associated gene 51 (TDAG51) [19]. Administration of 
enalapril, a common antihypertensive drug, reverses 
blood pressure and pathological changes including 
elevated plasma Hcy and angiotensin converting enzyme 

(ACE) levels, and increased contractile response and ER 
stress in aortas in rats on methionine-enriched diet 
(MED) [20]. Furthermore, black tea consumption for 2 
weeks has been found to reduce ER stress and oxidative 
stress in aortas and thereby ameliorate vascular 
dysfunction and normalize plasma Hcy level and blood 
pressure in hypertensive rats [21].  

 
Studies have suggested that AMP-activated protein 

kinase (AMPK) is a physiological suppressor of ER stress. 
Apart from regulating systemic energy balance and 
metabolism [22], AMPK activation protects endothelial 
function which is attributed to inhibiting proliferation of 
VSMCs and increasing nitric oxide (NO) production from 
endothelial cells [23]. Pharmacological or genetic 
activation of AMPK has shown to mitigate ER stress in 
endothelial cells and enhance the endothelial-dependent 
relaxation in mouse aortas [24]. A widely-used anti-
diabetic drug metformin is well known to activate AMPK 
in different tissues in humans and rodents [25,26]. 
Recently, metformin has been found to decrease blood 
pressure by activating AMPKα2 and suppressing ER 
stress in VSMCs in Ang II-induced hypertensive mice [27]. 
Treating with JNK inhibitor SP600125 enhances 
neurological function and neuron survival via reduction of 
ER stress in hippocampal tissues from SHRs with cerebral 
ischemia [28]. 
 

Inhibition of ER Stress Protects against 
Pulmonary Arterial Hypertension 

ER stress has been found to be activated in the 
vasculature of mice with hypoxia-induced pulmonary 
arterial hypertension (PAH); and administration of 4-PBA 
significantly reduced pulmonary hypertension, arterial 
remodelling and right ventricular (RV) hypertrophy [29-
31]. Of note, mice with conditional deletion of GATA-6, a 
member of the GATA family of zinc-finger transcription 
factors, in endothelial cells display elevation of ER stress 
markers and worsening of hypoxia-induced PAH [32]. 
This result reveals that endothelial cells play critical role 
for triggering ER stress in hypoxic mice. In peripheral 
blood mononuclear cells isolated from patients with 
limited cutaneous systemic sclerosis and PAH, ER stress 
markers are upregulated and in positive correlation with 
IL-6 level and severity of pulmonary artery pressure [33]. 
Moreover, daily treatment of docosahexaenoic acid (DHA) 
[34] and exogenous H2S [35] attenuate PAH through 
inhibition of ER stress. Table 1 summarizes the beneficial 
effects of drugs or natural products with suppression of 
ER stress in different hypertensive models. 
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Drugs or 
natural 

products 
Dosages Effects Animal models References 

4-PBA 
1 g/kg/day, 5 weeks, 

orally 

 ↓blood pressure

SHRs [10] 
 ↓contractility and ↑endothelium-
dependent relaxation in small mesenteric 
arteries

 ↓ER stress

4-PBA 
500 mg/kg/day, 4 

weeks, orally 

 ↓pulmonary artery pressure, 
pulmonary vascular resistance, 
pulmonary artery remodeling, and RV 
hypertrophy and ↑ functional capacity

hypoxia-induced pulmonary 
hypertensive mice and 
monocrotaline (MCT)-

induced pulmonary 
hypertensive rats 

[29] 
 ↓ER stress

 ↓proliferation and ↑apoptosis in 
pulmonary artery SMCs

4-PBA 
350–550 mg/kg/day, 

4 weeks, orally 

 ↓RV systolic pressure, RV hypertrophy 
and pulmonary arterial muscularization

hypoxia-induced pulmonary 
hypertensive mice 

[30] 

 ↓ER stress and inflammation in lungs

4-PBA 
500 mg/kg/day, 4 

weeks, orally 

 ↓mean pulmonary artery pressure and 
RV systolic pressure

MCT-induced pulmonary 
hypertensive rats 

[31]  ↓RV hypertrophy and remodeling

 ↓ER stress and cardiomyocyte 
apoptosis in RV

TUDCA 
150 mg/kg/day, 4 

weeks, i.p. 

 ↓systolic blood pressure and 
endothelial dysfunction DOCA salt-induced 

hypertensive rats 
[11] 

 ↑plasma nitric oxide (NO) level

 ↓ER stress in aortas

TUDCA 
200 mg/kg/day, 6 

weeks, s.c. 

 ↓blood pressure, albumin excretion, ER 
and oxidative stress, and glomerular 
injury

Diabetic-hypertensive rats [13] 

 ↑ glomerular filtration rate

enalapril 
15 mg/kg/day, 30 

days 

 ↓systolic blood pressure
MED-induced hypertensive 

rats 
[20] 

 ↓Ang II-induced contractile response 
and ER stress in aortas

 ↓plasma Hcy and ACE levels

metformin 
300 mg/kg/day, 2 

weeks, orally 

 ↓systolic and diastolic blood pressures
Ang II-induced hypertensive 

mice 
[27]  ↑phospholamban phosphorylation and 

↓ER stress in human VSMCs

Black tea 
extract 

15 mg/kg/day, 2 
weeks, orally 

 ↓blood pressure

Ang II-induced hypertensive 
rats 

[21] 

 ↓plasma Hcy level

 ↑relaxations in aortas, carotid arteries, 
mesenteric resistance arteries, and renal 
arteries

 ↓ER stress, ROS level and Hcy metabolic 
enzymes in aortas

DHA 
100 mg/kg/day, 4 

weeks, orally 

 ↓mean pulmonary arterial pressure, 
pulmonary vascular remodeling and RV 
hypertrophy

MCT-induced pulmonary 
hypertensive rats 

[34] 

 ↓ER stress
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 ↓inflammation in lung and adventitia of 
resistance pulmonary arteries

GYY4137 
(H2S donor) 

4 weeks, i.p. 

 ↓mean pulmonary artery pressure and 
total pulmonary resistance

hypoxia-induced pulmonary 
hypertensive rats 

[35] 

 ↓pulmonary artery remodeling and RV 
hypertrophy

 ↑functional capacity

 ↓ER stress in pulmonary arteries

 ↓mitochondrial ROS and Nox4 levels in 
pulmonary artery SMCs

Table 1: beneficial effects of drugs or natural products with suppression of ER stress in different hypertensive models. 
 

Conclusions 

Taken all together, increasing evidence proves the 
crucial role of ER stress in pathogenesis of hypertension. 
ER stress alleviators 4-PBA and TUDCA and drugs such as 
metformin and enalapril as well as natural products 
including DHA and black tea alleviate hypertension 
through suppression of ER stress. A better understanding 
of the cellular interactions of ER stress and other specific 
pathways in different vascular beds contributing to 
pathogenic condition will enhance the developing 
therapies to prevent or reverse hypertension.  
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