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PREFACE

Trends in Pharmaceutical and Food Sciences I is the first issue of an open access E-book devoted to scientific and technical 
research that covers the entire spectrum of drug and food research, including medicinal chemistry, pharmacology, drug delivery, 
microbiology and biochemical studies, as well as relevant developments in nutrition, food safety and analytical innovation. 

The first chapter, Different techniques to detect G protein coupled receptor heteromers, describes state of the art techniques based 
in biophysical principles applied to detect oligomeric aggregates formed by G-protein coupled receptors in the cell membrane, 
and describes how the knowledge generated can be applied to design new compounds for the treatment of neurological and 
mental diseases.

Obesity has become a worldwide problem and it is well known that causes and exacerbates many health problems by promoting 
profound changes in physiological functions. Chapter 2, Analysis of the role of diet in the appearance of neurodegenerative 
processes, reviews the consequences of these metabolic alterations while considering their effects in the development of Type 2 
Diabetes Mellitus, and their role in the appearance of cognitive impairments such as the sporadic forms of Alzheimer’s disease.

The development of new cultivars facing climate change is an issue of great interest for the agrochemical industry and can 
be approached in different ways. Chapter 3, Arabidopsis Thaliana A Model for the Study of Plant Speciation, reviews different 
aspects of the plant immune system and the different layers of the plant immune response and signaling. The emerging field in 
plant research that studies how soil microbiota influences plant basic mechanisms is also discussed.

Chagas disease is endemic in Latin America, but recently and due to human migrations, it is becoming a global health problem. 
In chapter 4, Trypanosoma cruzi infection diagnosis: New insights, challenges and perspectives, a group of experts from 
several institutions describe the different techniques that can be used for the serological diagnosis of the infection and the 
characterization of Trypanosoma cruzi,  discuss the advantages and drawbacks of each method and propose improvements that 
would entail important savings for health institutions.

Chapter 5, Nutrients, Control of Gene Expression and Metabolic Homeostasis, focuses on the molecular mechanisms that control 
metabolism by means of regulating gene expression in response to dietary inputs, to design new therapeutic strategies based 
on nutritional interventions against metabolic diseases. In this context, involvement of FGF21 hormone in the regulation of lipid 
metabolism during amino acid starvation is described, thus reinforcing its important role as an endocrine factor in coordinating 
energy homeostasis under a variety of nutritional conditions. This raises the possibility of dietary modulation of circulating 
levels of FGF21 as an alternative approach to its pharmacological administration. 

Biodegradable polymeric nanoparticles encapsulating neuroprotective drugs have enormous potential to treat neurodegenerative 
diseases, including Alzheimer´s disease and glaucoma. Recent advances in the field are described in chapter 6, Polymeric 
nanoparticles for the treatment of neurodegenerative diseases: Alzheimer’s disease and glaucoma, specifically the preparation 
of engineered polymeric nanoparticles with attached peptides or antibodies to increase their bioavailability, favoring their 
transport through the blood brain barrier and the blood retinal barrier,  avoiding at the same time possible drug adverse and 
toxic effects.

The last chapter, Pentacyclic triterpenes in table olives: Determination of their composition and bioavailability by LC-M, is a 
review on the pentacyclic triterpenes contained in table olives, natural compounds of enormous interest due to their beneficial 
effects on human health, including hepatoprotective, anti-diabetic, antiviral, cardioprotective and antitumor activities. Authors 
describe a selective and sensitive LC–MS method for the simultaneous determination of the main triterpenic compounds present 
in Olea europaea L.  This opens the possibility to bioavailability studies after consumption of different foods, or administration of 
plants widely used in traditional medicine, with the aim of studying in depth the beneficial effects of these compounds in human 
beings.

We hope that this new volume will attract the interest of all the scientific community, especially those working in the fields of 
pharmaceutical, medical, biological, chemical and food sciences.

Dr. Yolanda Cajal
Dr. Carlos J. Ciudad

Dr. Diego Muñoz-Torrero 
Dr. Joan Vallès
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Abstract

Identification of protein-protein interactions at the plasma membrane level is essential to comprehend the properties 

of molecular networks controlling intercellular communication. Since the nineties, it was believed that G protein coupled 

receptors (GPCR) acted as individual units. Resonance energy transfer techniques have been fundamental in demonstrating 

the existence of protein-protein interactions, discovering that GPCR can form oligomeric functional units. Sequential 

resonance energy transfer technique (SRET) has been designed by combining BRET and FRET to demonstrate trimeric 

complexes formation; and by combining Bimolecular Fluorescence complementation (BiFC) and BRET, BRET with BiFC it 

has been created a new technique to demonstrate tetrameric complexes. These are two invaluable techniques to identify 

higher order complexes, which will enable us to better understand how signals are integrated at the molecular level. 

The use of these techniques should help to design novel compounds for treatment of neurological and mental diseases. 

Keywords:  GPCR; Heteromers

Chapter 1: Different Techniques to Detect G Protein Coupled 
Receptor Heteromers
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RET: Resonance Energy Transfer; FRET: Fluorescence Energy 
Transfer; BET: Bioluminescence Energy Transfer Technique; 
BiFC: Bimolecular Fluorescence Complementation; YEP: 
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Introduction

G-protein coupled receptors (GPCR) or seven 
transmembrane domains (7TM) are the largest and most 
versatile group of cell surface receptors involved in signal 
transduction [1]. GPCRs are encoded by a large family of 
genes; in the case of the human genome, they are more than 
1000 proteins of which more than 90% are expressed in the 

Central Nervous System (CNS) [2].

GPCR are activated by a wide variety of ligands, both 
endogenous and exogenous, including hormones, peptides, 
amino acids, ions and photons of light. These receptors 
transduce the signal through a large number of effectors 
such as adenylate cyclase, phospholipases or ion channels, 
among others. They perform many functions in the CNS 
and in the periphery, controlling biological processes 
such as proliferation, cell survival, metabolism, secretion, 
differentiation, inflammatory and immune responses or 
neurotransmission [3,4] (Figure 1).

The G protein-coupled receptors owe their name to the 
interaction with the heterotrimeric G proteins, constituted by 
the subunits α (39-46 kDa), β (37 kDa) and γ (8 kDa). When 
the receptor is activated by a ligand, conformational changes 
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are induced that are transmitted from the receptor to the G 
protein that cause the α subunit to release GDP and bind a GTP. 
This action allows for a conformational change between the 
α subunit and the βγ subunits, altering their structure. Both 
the Gα subunit and the Gβγ complex are signaling molecules 

that, acting with different effector molecules, can activate or 
inhibit a large variety of second messengers. The signal ends 
when the intrinsic GTPase activity of Gα hydrolyses GTP to 
GDP and phosphate [5].

Figure 1: Endogenous ligands and cellular signaling mechanisms responsible for the 
various biological functions of the G protein-coupled receptors.

There are four large families for the Gα subunit in 
mammals, which are characterized by their primary 
structure and by the signaling cascade they activate [6]. 
The Gαs family stimulates adenylate cyclase, Gαi/o inhibits 
adenylate cyclase, Gαq / 11 activate phospholipase Cβ (PLCβ) 
and Gα12 / 13 regulate Rho proteins.

The structural characteristics and subcellular localization 
of the G protein-coupled receptors allow these receptors to 
interact with other proteins both on the intracellular and 
extracellular side of the plasma membrane, as well as to 
exhibit protein-protein interactions with other receptors or 
ion channels at the plasma membrane level [7].

GPCR have a topology that allows them to interact with 
a wide variety of proteins. These interactions determine the 
properties of the receptor, such as cell compartmentation 
or the selection of a signal and can promote their assembly 
into complexes that integrate a function. The proteins that 
interact with GPCR are mainly involved in the organization 
of supramolecular structures in which all types of receptors, 
proteins involved in signal transduction and even cytoskeletal 
proteins are included [7].

On the intracellular side, both the carboxy-terminal 
and the third intracellular loop of GPCR may present a 
considerable size. Thus, these regions are the most likely to 
interact with proteins involved in signaling or in subcellular 
localization of the GPCR, like cytoskeletal proteins or 

proteins related to receptor trafficking. These interactions 
may be transient or much more stable. An example of 
a cytosolic protein that interacts with GPCR would be 
calmodulin (CaM), a small peptide with the ability to bind to 
different cytoplasmic domains of different GPCR, including 
the C-terminal end of the adenosine A2A receptor or the third 
intracellular loop of dopamine D2 receptor, developing a 
calcium-dependent signal [8,9].

At the level of the plasma membrane, since the mid-1990s, 
several studies have demonstrated the oligomerization of 
many GPCR [2]. Nowadays, it is accepted that oligomerization 
is a common occurrence in the biology of these receptors and 
that they can form higher order homodimers, heterodimers 
and / or oligomers [10-12]. When a GPCR participates in an 
oligomer, its functional characteristics can change, thus the 
oligomerization confers new properties to the receptors, 
which establishes a possible mechanism to generate new 
functions in these receptors. This phenomenon has given 
rise to a new level of complexity that governs the signaling 
and regulation of these proteins.

Traditionally, the mechanisms of ligand binding and 
signal transduction for the G protein-coupled receptors were 
based on the assumption that they acted as monomers or 
independent proteins with 1: 1 stoichiometry with respect 
to their G protein. However, since 1990s several studies have 
demonstrated the oligomerization of numerous GPCR and 
the relevance that this implies for their regulation.
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Certain indirect pharmacological evidence led 
researchers to think that the G-protein coupled receptors 
could act as dimers. The complex binding curves, both of 
agonists and antagonists of these receptors, were interpreted 
as evidence of a cooperativity that could be explained by 
interactions between monomers in dimeric or multimeric 
complexes [13,14].

Maggio, et al. using chimeras of α2-adrenergic receptors 
and muscarinic M3 receptors composed of the first five 
transmembrane domains of one of the receptors and the last 
two domains of the other receptor and vice versa, carried 
out complementation and coimmunoprecipitation studies 
and suggested the formation of heterodimers [15]. When 
each chimera was expressed independently, no binding or 
signaling was observed after ligand exposure, but when both 
were co-transfected, binding and signaling was recovered for 
both adrenergic and muscarinic ligands. The dimerization 
of GPCR is not limited to homodimerization, that is, the 
physical association between identical proteins, but it 
also comprises the association of a receptor with another 
receptor or distinct protein, namely heteromerization. This 
association can take place between two monomers to form 
dimers or between multiple monomers to form oligomers. 
The term dimer is often used in the understanding that it 
is the simplest form of an oligomeric functional unit, due to 
the difficulty of distinguishing between dimers or oligomers 
with current techniques.

The interactions between GPCR are crucial to 
understand the varied cross-talk that is observed between 
neurotransmitter receptors. The oligomerization of receptors 
makes it possible to formulate hypotheses about the high 
degree of diversity and plasticity that is characteristic of a 
highly organized and complex structure such as the brain. 
A higher level of organization has been described by which 
the G protein-coupled receptors form structures composed 
not only of homo- or heterodimers, but by supramolecular 
complexes formed by several receptors and a variety of 
proteins that modify the activity of the receptor (RAMPs: 
Receptor Activity Modifying Proteins). These complexes 
interact both along the membrane (horizontal interactions), 
and through it (vertical interactions), and when activated by 
hormones or neurotransmitters they are redistributed in the 
membrane, resulting in clusters. The clusters would suppose 
a higher level of regulation of the receptors and associated 
enzymes and could be regulated by other receptors in these 
complexes and by other molecules that do not physically 
interact with them, but they do communicate with each 
other in the cluster [16].

The growing number of publications in this field has 
made it necessary to establish new definitions and provide 
nomenclature to the homomers and heteromers of GPCR 

[17,18].

Energy Transfer Techniques

One of the most used biochemical techniques 
for investigating GPCR dimerization has been the co-
immunoprecipitation of receptors labeled with different 
epitopes. The first study that used this technique 
demonstrated the specific interaction between β2-adrenergic 
receptors [19]. Since then, similar strategies have been used 
to document the homodimerization of the metabotropic 
receptors mGlu5R [20], δ-opioids [21] and serotonin 5-HT2c 
[22], among others. Co-immunoprecipitation studies have 
also been used to demonstrate the heterodimerization of 
receptors of the same neurotransmitter, such as GABAB1 and 
GABAB2 [23] or as κ- and δ-opioid [24], and even among less-
related receptors such as the CB1 cannabinoid and dopamine 
D2 receptors [25].

Although it is commonly used to study protein-protein 
interactions, co-immunoprecipitation of GPCR requires 
the solubilization of membranes by detergents, which can 
cause the formation of artifactual dimers by incomplete 
solubilization, due to the hydrophobic nature of these 
receptors. Despite all the controls used to rule out this 
possibility, the widespread acceptance of GPCR dimerization 
depended on a direct demonstration that these complexes 
exist in living cells. This was possible with the development 
and implementation of biophysical methods based on 
resonance energy transfer (RET).

Fluorescence Energy Transfer Technique 
(FRET)

In 1948 Theodor Förster formulated the theory of 
energy transfer by resonance [26] that was later applied to 
the study of GPCR interactions. This biophysical approach 
is based on the transfer of non-radiative energy (dipole-
dipole) from a chromophore in an excited state (donor) to 
a nearby absorbing molecule (acceptor). In the case of the 
fluorescent resonance energy transfer (FRET), both the 
donor and the acceptor are fluorescent molecules, while in 
the bioluminescent resonance energy transfer (BRET) the 
donor it is bioluminescent, and the acceptor is fluorescent.

For this phenomenon to take place it is necessary 
that two requirements are met. The first is that the donor 
emission spectrum and the excitation spectrum of the 
acceptor overlap, so that part of the emission energy of the 
donor is transferred directly to the acceptor fluorophore, 
which emits as if it had been directly excited. The second 
requirement is that the donor and acceptor are very close in 
space (<100 Å or 10 nm). In addition, the efficiency of the 
transfer will decrease with the sixth power of the distance 
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(Figure 2).

It should be noted that most of the multiprotein 
complexes of a cell are between 10 and 100 Å [27,28]. Thus, 
energy transfer techniques offer a unique approach that 
allows the detection of protein dimerization in living cells, 
without disturbing the environment where this phenomenon 
occurs.

For the FRET technique, the different variants of the 
green fluorescent protein (GFP: Green Fluorescence Protein) 
obtained by mutation are used. These mutations confer 
different spectral properties, so that using two different 
mutants, with the appropriate spectral characteristics, fused 

to the proteins under study, allows us to determine if they 
are close enough to transfer energy. The most widely used 
pair for the FRET experiments is the one formed by the GFP2 
variant, that is excited at 400 nm and emits at 510 nm and 
the YFP (Yellow Fluorescence Protein) variant, that is excited 
at 485 nm and emits at 530 nm. In the FRET technique, as 
outlined in Figure 2, when a beam of light excites the GFP2 
protein, it emits fluorescence at 510 nm, and if both proteins 
are sufficiently close in space, an energy transfer will take 
place. YFP will emit fluorescence with a peak at 530 nm 
[29,30]. Few years ago, it was developed another variant of 
FRET technique based on the energy transmission between 
a yellow fluorescent protein (YFP) and a red fluorescent 
protein (RFP) that was named FRET2. 

Figure 2: Schematic representation of Fluorescence Resonance Energy Transfer technique (FRET).

Bioluminescence Energy Transfer 
Technique (BRET)

Similar to the FRET and with the same requirements, the 
technique of energy transfer by bioluminescent resonance, 
BRET, can be considered. In this technique, bioluminescence 
is the result of the catalytic degradation of a certain substrate 
by the enzyme Renilla luciferase (Rluc) in the presence of 
oxygen, generating light. This light is transferred to a variant 
of the GFP protein, which in turn emits fluorescence at a 
characteristic wavelength if both proteins are close enough, 

indicating the dimerization of the proteins fused to Rluc and 
GFP [29,30]. 

Two variants of this technique have been described, 
BRET1 and BRET2. In BRET1, the enzyme Rluc metabolizes 
the substrate coelenterazine H generating light with a peak 
emission of 480 nm, emission that allows excitation of the 
YFP protein, that will emit at 530 nm. In the BRET2 the Deep 
Blue C substrate is oxidized by the Rluc, emitting light at 400 
nm so that it can excite the GFP2 protein that will emit at 510 
nm (Figure 3).

Figure 3: Schematic representation of Bioluminescence Resonance Energy Transfer technique (BRET).
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The advantages of this phenomenon have been used 
by researchers for the study of GPCR dimerization. For this 
purpose, two different fusion proteins are generated and 
co-expressed, one of them carrying the fluorescent protein 
GFP or one of its variants at the carboxy terminal end of 
one of the receptors of interest and the other one carrying 
the luminescent protein Rluc at the carboxy terminal 
of the other receptor. These energy transfer techniques 
have demonstrated the existence of homodimers of the 
β2-adrenergic receptors [31], δ-opioid [32] and µ-opioid 
receptors [33], among others. A similar approach has also 
been carried out for the study of heteromers of G-protein 
coupled receptors, such as the interactions between 
somatostatin receptors SSTR2A and SSTR1B [34], the A2A 
adenosine and D2 dopamine receptors [35], the dopamine 
D1 or D2 receptors and histamine H3 [36], glutamate 2 and 
serotonin 2A [37] or ghrelin and oxytocin receptors [38].

Bimolecular Fluorescence 
Complementation (BiFC)

In recent years, variations of the FRET technique have been 
developed, such as FRET photobleaching or time-resolved 
FRET [30]. One of the most interesting results has been 

recently obtained using the energy microscope by resonance 
in milliseconds. With this technique, a conformational cross-
talk between the α2-adrenergic and μ-opioid receptors has 
been demonstrated [39]. The binding of morphine to the 
μ-opioid receptor triggers a conformational change in the 
α2-adrenergic receptor occupied by norepinephrine that 
inhibits the signaling of the hormone.

The discovery of techniques such as BiFC (Bimolecular 
fluorescence complementation) has provided a new and very 
effective way to detect protein-protein interactions in living 
cells. This technique uses two non-fluorescent fragments of 
the sYFP protein (nYFP and cYFP). When the sYFP protein 
is reconstituted from the direct interaction between two 
proteins fused with these fragments, a fluorescent signal is 
generated [40] (Figure 4). This signal is only generated if the 
fusion proteins are very close in space (less than 6 nm). Later, 
in the same line of research, techniques have been developed 
that use two fragments of the Rluc protein. When the proteins 
fused to these fragments interact, the enzymatically active 
Rluc protein is reconstituted [41]. Finally, very recently, the 
multicolored BiFC technique (mcBiFC) has been developed 
that uses different fragments of different proteins facilitating 
the investigation of networks of regulatory protein complexes 
[42].

Figure 4: Schematic representation of Bimolecular Fluorescence Complementation technique (BiFC).

SRET

Since the nineties, BRET, FRET and BiFC techniques have 
been widely used to demonstrate the formation of a variety of 
GPCR heteromeric complexes in living cells. However, these 
techniques present some important limitations, as they can 
only demonstrate direct or indirect interactions between 
two different proteins. The demonstration of higher-order 
complexes involving more than two units requires the 
implementation of new techniques. A sequential BRET-FRET 
(SRET) technique allows the identification of heteromers 
formed by the physical interaction of three different proteins 
in living cells (Figure 5).

In this technique, bioluminescence is the result of the 
catalytic degradation of Cohelenterazine H (BRET1) or Deep 
Blue C (BRET2) substrates by the enzyme luciferase (Rluc) 
in the presence of oxygen, generating light. This light is 
transferred to the first acceptor protein, a variant of the GFP 
protein (YFP for BRET1 or GFP2 for BRET2), which in turn 
emits fluorescence at a characteristic wavelength, exciting a 
second acceptor protein (RFP for BRET1 or YFP for BRET2). 
If all three proteins are close enough an energy transfer will 
be detected, indicating the existence of a heterotrimeric 
complex formed by the proteins fused to Rluc, GFP2 or YFP 
and YFP or RFP [43].
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Figure 5: Schematic representation of Sequential Resonance Energy Transfer technique (SRET).

BRET with BiFC

Another technique to demonstrate heteromeric 
complexes of more than two receptors is the combination 
between BRET and Bimolecular fluorescence 
complementation (BiFC). 

In this technique, bioluminescence is the result of 
the catalytic degradation of Coelenterazine H by the 
complementation of two non-bioluminescent fragments of 

the Rluc protein (nRluc and cRluc) fused to two different 
proteins. The reconstituted Rluc enzyme catalyzes the 
oxidation of coelenterazine H substrate in the presence 
of oxygen, generating light. This light is transferred to two 
non-fluorescent fragments of the sYFP protein (nYFP and 
cYFP) fused to different proteins. When the sYFP protein 
is reconstituted from the direct interaction between two 
interacting fused proteins, it emits fluorescence at 530 nm, 
demonstrating the formation of tetrameric complexes [44] 
(Figure 6).

Figure 6: Schematic representation of BRET with Bimolecular Fluorescence Complementation (BRET+BiFC).

Functional Role of Dimerization

The availability of a large number of techniques for 
the study of GPCR dimerization has greatly facilitated the 
investigation of the functional role of these receptors. 
Dimerization is involved in the regulation of the functionality 
of the receptors at different levels, from the modulation of the 
expression of the receptors at the cell surface to the fact of 
conferring new pharmacological properties on the receptors 
forming the dimer. This has provided a new perspective to 
consider which is the GPCR signaling unit, as well as a new 
way to design drugs that act through these receptors.

Although in many cases the physiological relevance 
is not completely known, several studies carried out in 
heterologous expression systems have suggested different 
functional roles for GPCR oligomerization (Figure 7). 

For example, oligomerization may be involved in GPCR 
ontogenesis, that is, in the quality control of folding and 
membrane targeting of de novo synthesized receptors. Also, 
in some cases, a regulation of the formation / separation 
of oligomers present in the plasma membrane mediated 
by ligand has been observed. It has also been found that 
oligomerization confers pharmacological diversity, since the 
binding of a ligand to a receptor of the dimer can influence 
the binding of another ligand to the second receptor within 
the dimer. Oligomerization can also modify the signaling 
properties of a given ligand, affecting the selectivity of 
interaction between the corresponding receptor and its 
G protein, resulting in an enhancement, attenuation or 
coupling with another G protein. Finally, it has also been 
seen that oligomerization can alter the endocytic pattern for 
a given receptor [45] (Figure 7).
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Figure 7: Oligomerization roles.

Conclusion

Resonance energy transfer techniques constitute a 
powerful tool to detect protein-protein interactions localized 
in the plasma membrane level and also in the cytosol. GPCR 
form molecular networks and local circuits that allow 
the identification of subcellular structures relevant for 
understanding the physiological and pathological roles 
of different tissues and organs. This new knowledge will 
provide novel therapeutic approaches for neurological 
diseases, mental disorders and drug addiction. 
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Abstract

Metabolic alterations due to the development of obesity and other diseases has become a serious problem in the 
world. Genetic predisposition or the intake of unbalanced diets is, in many cases, the reason for the appearance 
of these conditions and pathologies. In the present review, some of the consequences of metabolic alterations are 
explained in detail while considering their effects in the development of Type 2 Diabetes Mellitus. Also, their role in the 
appearance of cognitive impairments is reviewed and, the concept of Type 3 Diabetes is highly featured, as the possible 
mechanism for the development of neurodegenerative pathologies such as the sporadic forms of Alzheimer’s disease. 
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Introduction

Nutrition, as it is defined by the World Health 
Organization (WHO), is the intake of food a person consumes 
considered in relationship to the dietary needs of the body. 
A good nutrition is defined as an adequate, well balanced 

diet combined with regular physical activity that allows the 
individual to be in good health. Poor nutrition will be the 
source of reduced immunity, impaired physical and mental 
development and reduced productivity [1]. Also, it is involved 
in the appearance of diseases like heart complications, 
stroke, cancer and diabetes [2].

Healthy diet practices begin early in life through 
breastfeeding. Proper nutrition on newborns will allow 
for better growth and cognitive development, as well as a 
reduction on the risk to develop overweight or obesity states 
during their adulthood [3,4]. In adults, the WHO has defined 
the standards of energy intake: total fat should not exceed 
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30% of the total [5] and, of that, no more than 10% should be 
saturated while trans-fats should not go over 1% [6,7]. Also, 
free sugars should not take up more than 10% [2,8]. 

The calculation of the body mass index (BMI) was 
described in order to evaluate the biometrics of an 
individual. The Centre for Disease Control and Prevention 
(CDCP; Division of Nutrition, Physical Activity, and Obesity; 
USA) defines BMI as the weight of a person in kilograms 
divided by the square of his/her height in m2 [9]. Current 
standards delimit that a BMI below 18.5 kg/m2 falls within 
the underweight range while values between 18.5 kg/m2 
and 25 kg/m2 are considered normal. When the calculated 
number ranges between 25 kg/m2 and 30 kg/m2 it can be 
considered that the individual is overweight and, if it is 30 
kg/m2 or higher the person ought to be considered obese. 
Obesity is frequently subdivided in Class 1 (30-35 kg/
m2), 2 (35-40 kg/m2) and 3 (40 kg/m2 or higher), which is 
sometimes categorized as extreme or severe obesity [10].

Obesity

Over the past few years there has been a debate on how 
to define obesity. On the one hand, some authors believe that 
it is a medical condition characterized for the abnormal and 
excessive fat accumulation that may impair health (WHO). 
On the other, The World Obesity Federation argued that 
it should be considered a chronic relapsing, progressive 
disease [11]. These definitions have been the source for high 
controversy over the years but, in the end, it was established 
as a condition, since it was the best interest of patients. 
This statement was based on the idea that establishing it 
under the classification of a disease may have psychological 
repercussion, as well as cause for the appearance of disability 
labels and discriminatory behaviors in the healthcare public 
system [12].

Epidemiology

Nonetheless, what is clear is that obesity has become 
a worldwide problem. In 2017, the NCD Risk Factor 
Collaboration published an article after evaluating multiple 
epidemiological studies that had been reported between 
1975 and 2016. Final data included samples from 128.9 
million children, adolescents and adults and, demonstrated 
that in that time period there had been a three-fold increase 
on the prevalence of obesity. Specifically, there were over 650 
million adults suffering from this condition worldwide (13% 
of world population) [13]. Furthermore, it was estimated 
that by 2016 there were 41 million children under the age 
of 5, and 340 million between the ages of 5 to 19, who were 
either overweight or obese [13]. 

In another epidemiological study controlled by the WHO 
(MONICA study), further evidence on obesity was gathered. 

According to the data, there were on average 15% of men 
and 22% of obese women in Europe. These percentages 
accounted for more than half of the adult population between 
35 and 65 years [14]. Similar patterns were observed in the 
USA from the National Health and Nutrition Examination 
Surveys [15]. However, this problem is not confined on 
these regions. In the examinations from the NCD Risk Factor 
Collaboration article previously mentioned, there was an 
updated worldwide observation. Researchers concluded 
that by the year 2016 the trend on the increase of BMI has 
plateaued in high-income countries while it had severely 
accelerated in east, south and southeast Asia. Thus, if post-
2000 trends keep up at the same rate it is expected that 
obesity numbers will continue increasing worldwide [13].

Genetics of Obesity

The contribution of genetic background to the regulation 
of body weight has been established over the years through 
the analysis of family studies, investigations on parent-off-
spring relationships and the study of twins and adopted 
children. The main conclusion that these studies report 
is that there is an estimate heritability of obesity of 40-
70% [16]. Knowledge to date has determined that there 
are multiple genetic modifications that are related to the 
increased sensibility and genetic predisposition to develop 
obesity. Some of them are listed below:

•	 Alteration in genes encoding for the leptin receptor: Leptin 
is a hormone predominantly generated in the adipose 
tissue that regulates energy balances by controlling 
satiety. These modifications cause for abnormal splicing 
of the transcripts and thus, generate mutant forms of the 
receptor, lacking both transmembrane and intracellular 
domains. This causes for the receptor to circulate at high 
concentrations bound to leptin, elevating serum leptin 
concentrations without an actual cellular response 
[17]. On a clinical level, patients show normal weight 
at birth but exhibit rapid weight gain in the first few 
months of life resulting in severe obesity [18]. Deficient 
functionality of leptin or its receptor are associated with 
hypothalamic hyperthyroidism and hypogonadotropic 
hypogonadism [19].

•	 Complete deficiency for the proopiomelanocortin (Pomc) 
gene: Patients show early life hypocortisolemia leading 
to hypoglycaemia, prolonged jaundice, susceptibility to 
the effects of infection and sometimes neonatal death 
along with marked obesity due to hyperphagia [20, 21].

•	 Clinical data reports that individuals showed severe 
early life obesity combined with other alterations 
in the enteroendocrine cells due to the improper 
processing of gastrointestinal prohormones [23]. For 
example, there is the Prohormone Convertase 1 (PC1), 
a serine endoprotease expressed in neuroendocrine 
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tissues, responsible of the activation of prohormones 
and neuropeptides like proinsulin, proglucagon and 
POMC [22]. The effects of its deficiency have been 
reported in both, humans and mouse preclinical models. 
Alterations on the functionality and expression of PC1 
cause high mortality rates in embryos and, in those who 
survive, there is a significant reduction in their size and 
development due to the reduced productivity of growth 
hormone [24].

•	 As another example, the deletion of the Melanocortin 
4 receptor (MC4R), a receptor linked to the control 
of energy balance in rodents [25], also causes severe 
obesity in homozygous mice. Heterozygotes show body 
weight values intermediate between wild-type and 
homozygous [26]. In humans, the first report of these 
alterations was in 1998. It was described that mutations 
of Mc4r are highly dominant and have the same pro-
obesity effects [27,28]. Since then there have been 
multiple descriptions of human heterozygous mutations 
[29-31].

•	 Also, there is the neurotrophin receptor TrkB. The brain-
derived neurotrophic factor (BDNF) is the ligand to this 
receptor and has been shown to be associated with 
the activity of leptin in mechanisms of brain plasticity. 
Also, it has been demonstrated that deficiencies in the 
functionality of the TrkB receptor cause increases in 
body weight [32].

Environmental Factors

The key environment-related components that influence 
obesity are energy expenditure and intake. Both elements 
need to be levelled up in order to avoid a tendency towards 
body weight gain or loss. Only in the year 2000, 15% of 
deaths that occurred in the USA were due to excess weight, 
resulting from poor diet and physical inactivity [33].

Energy expenditure includes the energy spent on regular 
metabolic activities of the body and physical activity, which 
can represent 20-50% of the total expenditure. In developed 
countries there is a significant relationship between low 
levels of physical activity and obesity [34]. 

Energy intake must be analysed further. Food availability 
and portion size is one way in which the environment 
promotes obesity. By providing more frequent and larger 
opportunities in food ingestion, societies have increased 
their tendency towards body weight increase [35]. Also, the 
ingestion of high-fat and high-sugar content diets has proven 
to have significant pro-obesity effects [36].

Consequences

 Whether it is derived from a genetic background or 

an environmental effect, the main problem with obesity 
is that it causes and exacerbates many health problems by 
promoting profound changes in physiological functions [37]. 
This relationship is approximately linear for a range of BMI 
indexes lower than 30 kg/m2 but becomes greatly increased 
for those subjects with higher BMI values, independently of 
gender [37]. In particular, it has been classically associated 
with the development of coronary heart diseases, certain 
forms of cancer, sleep-breathing disorders and type 2 
diabetes mellitus (T2DM) [38].

Overall, obesity causes alterations in cellular glucose 
metabolism in tissues like muscle, liver and others. In initial 
stages, the pancreas compensates for these alterations by 
creating a state of hyperinsulinemia, allowing for increased 
response by the cell. But, over time, and with increasing 
concentrations in free fatty acids and insulin, a state of 
insulin resistance appears due to the insulin receptor 
internalization and a reduction of its signalling by the 
upregulation of multiple cellular inhibitory mechanisms that 
eventually become the disease known as T2DM [37].

T2DM, formerly known as non-insulin dependent 
or adult-onset diabetes, is a chronic, metabolic disease 
characterized by elevated levels of blood glucose which leads 
over time to serious damage to the heart, blood vessels, eyes, 
kidneys and nerves. Symptoms are similar to those of Type 
1 diabetes mellitus (unexplained weight loss, high hunger 
and thirst, fatigue…) but are often less marked or absent. As 
a result, the disease may go undiagnosed for several years 
until complications have already arised [39]. Epidemiological 
data on adults has shown that in 1980 there were 108 
million diagnosed patients with T2DM and, this number had 
increased to 422 million by 2014 which accounted for 1 for 
each 11 adults worldwide [39]. Worryingly, for many years 
this disease was mostly reserved to adults, but it has severely 
increased its prevalence in children due to their upward 
trend to develop conditions like obesity [40,41].

Another obesity-related complication is the chronic 
development of low-grade proinflammatory responses 
due to the increased plasma levels of C-reactive protein 
and inflammatory cytokines, among other molecules [42]. 
These have been highly correlated with affectations in 
insulin signalling that would further aggravate the situation 
of insulin resistance previously described [42], as well as 
vascular and endothelial dysfunctions related to many other 
pathologies [43]. There is also evidence that the activation 
of macrophages in the adipose tissue is strongly associated 
with complications in obesity both in rodents and in humans 
[44]. Finally, significant evidence has been reported on the 
negative effects of obesity on gut microbiota [45]. These 
alterations are believed to be a source of further increases in 
body weight, proinflammatory responses and impairments 
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in the proper functioning of the insulin receptor [46].

In the end, these dysfunctions do not only affect 
peripheral tissues. Many theories have been proposed to 
link the appearance of metabolic dysregulations, specially, 
alterations to the sensitivity of insulin, with the development 
of neurodegenerative processes in the central nervous 
system [47,48]. There is evidence that supports how obesity 
favours cognitive impairment [49-52]. In fact, the Whitehall II 
study reported that obesity at 50 years of age was associated 
with high risk of dementia [53]. One of the main pathologies 
that would be the result of these alterations is the late-onset 
or sporadic form of Alzheimer’s disease (LOAD) under the 
hypothesis of Type 3 Diabetes.

Type 3 Diabetes and Alzheimer’s Disease

Alzheimer’s disease (AD) is a relentless neurodegenerative 
pathology that englobes 70% of clinically diagnosed 
dementias [54]. Classically, it has been characterized by the 
presence of insoluble amyloid β (Aβ) accumulations (senile 
plaques) and the presence of neurofibrillary tangles derived 
from the hyperphosphorylation of TAU protein [54]. 

It has been described that Aβ soluble oligomers have 
high cytotoxic effects [55,56]. Yet, even though Aβ is a clearly 
relevant element of the neuropathology of AD, it may not be its 
cause but, merely, an aggravator that becomes overproduced 
due to aging and other alterations. Multiple data have been 
reported that would disprove the amyloidogenic hypothesis. 
For example, there are many studies of patients that showed 
clear clinical features of the pathology but showed none 
or very few Aβ depositions in the brain and, healthy aged 
individuals with significant numbers of senile plaques [57]. 
Furthermore, it was observed that 95-97% of patients had 
no genetic background that predisposed them to suffer the 
disease (genetic or early-onset disease). Actually, it seemed 
that in the vast majority of them the cognitive impairment of 
LOAD had a multifactorial origin [58]. These controversies 
and new observations fed the idea that there may be other 
theories to explain the origin of the pathology. In fact, over 
the years many theories have been already postulated. 

The metabolic hypothesis of AD describes how 
alterations in the periphery affect negatively the functionality 
of the central nervous system. Specifically, many of these 
studies have been focused on the activity and sensitivity of 
the insulin receptor, which is central to the proper activity 
of neurons [59,60]. Dr. Siegfried Hoyer started presenting 
data on this line of research in 1985 and reported a clear link 
between the insulin receptor and a posterior appearance 
of LOAD [61]. Later on, in 1999 The Rotterdam study, an 
epidemiological trial conducted in the Netherlands, showed 
a clear causative relationship between those patients that 

suffered from T2DM and their risk to develop AD [62].

Moreover, modern diagnostic clinical techniques 
allowed for examinations and comparative evaluations of the 
metabolism of glucose in the brain between healthy patients 
and those diagnosed with AD, where a clear decline and 
impairment was observed [63]. Also, in a study conducted 
by Grillo and colleagues, they administered anti-insulin 
receptor lentiviral particles into the hippocampus of Sprague-
Dawley rats and showed how it caused severe impairments 
in the cognitive capabilities of the animals after behavioural 
examinations through the Morris Water Maze test [64].

In the end, the idea of considering AD as a neuroendocrine 
disorder based on the alteration of the metabolism of 
glucose was labelled under the name of Type 3 Diabetes [65]. 
Specifically, this concept corresponds to a chronic insulin 
resistance plus insulin deficiency state that is mostly found 
in the brain but, can overlap with T2DM, representing a 
major pathogenic mechanism of AD neurodegeneration [66] 
(Figure 1).

Hence, multiple therapies that modulate metabolism have 
been proposed to alleviate and treat AD-affected patients. 
Initial studies proposed the intranasal administration of 
insulin but, results in clinical trials were not significantly 
relevant. Worse, patients developed insulin desensitization 
because of the overstimulation on the receptor [67,68]. 
Moreover, antidiabetic drugs like metformin have been 
proposed for the treatment of the disease and clinical results 
seem favourable [69]. Other research groups proposed 
the use of agonists of the glucagon-like peptide 1 like 
liraglutide and lixisenatide or, multi-target molecules that 
would modulate other targets like glucagon or the glucose-
dependent insulinotropic polypeptide.

Figure 1: The paradigm of T3D establishes a relationship 
between the development of LOAD and alterations in the 
metabolism, specially linked to phenomena of insulin 
resistance. Obesity and the metabolic complications 
associated with it, increase the risk for the appearance of 
neurodegenerative pathologies in advanced age.

Finally, our research group has been studying the c-Jun 
N-terminal Kinases (JNK) as possible new targets to treat 
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LOAD. The JNKs are a subfamily of the Mitogen Activated 
Protein Kinases that respond to cellular stimuli and regulate 
multiple mechanisms within the cell [70]. There are three 
isoforms (JNK1, JNK2 and JNK3) which have differential 
bodily distributions and functions. In a recent publication 
from our group we showed how the lack of JNK2 through 
genetic modification caused increases in body weight, a 
decrease in insulin sensitivity and, eventually, cognitive 
affectations through different cellular mechanisms [71]. 
Also, already published data from JNK3 transgenic animals 
show that this alteration produces severe increases in body 
weight and metabolic affectations in high fat diet-induced 
obesity preclinical models [72]. Thus, our main interest 
focuses on JNK1. Reported data has already established that 
its ablation favours a reduction of body weight, as well as 
an increase in insulin sensitivity through the modulation 
of mechanisms like the activation of the insulin receptor 
[73,74] (Figure 2). Consequently, it is possible that inhibition 
of JNK1 would also provide benefits in the prevention and 
amelioration of neurodegenerative pathologies. Our research 
group has evidenced that licochalcone A, a product of the 
roots of liquorice that can specifically inhibit JNK1 activity, 
reduces neuronal death and seizures in a preclinical model 
of temporal lobe epilepsy [75].

Figure 2: Some of the cellular mechanisms directly 
controlled by JNK1 in the brain. The activity of the 
insulin receptor and its substrate is highly regulated by 
its inhibitory phosphorylation control by JNK1. Other 
mechanisms may also be directly or indirectly controlled 
by JNK1 both in the central nervous system and in the 
periphery.

Conclusions

Obesity has become a major problem worldwide and 
new strategies need to be established in order to reduce 
the increasing prevalence. This condition can be the result 
of either a genetic predisposition or an environmental 
effect but, nonetheless, it is the source of many other 
more severe pathologies like heart failure and T2DM. 

Metabolic alterations have been demonstrated to affect 
the central nervous system and lead to the development of 
neuropathological dysregulations like Type 3 Diabetes and 
LOAD. New treatments are focusing on the modulation of 
metabolism in order to ameliorate cognitive impairments. 
Our research group proposes the modulation of JNK1 as a 
strategy for the future treatment of Type 3 Diabetes.
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Abstract

The identification of the genetics and molecular bases of plant speciation is of great interest for evolutionary studies and plant 

breeding. The development of new cultivars facing climate change is an issue of great interest for the agrochemical industry, 

which finds its roots in pharmaceutical sciences. Although changes in ploidy level represent the most frequent cases of plant 

speciation, other more moderate changes in the genome have an identical outcome. These are the bases for a number of 

postzygotic reproductive isolation barriers based on the Dobzhansky-Dobzhansky-Muller (DM) model. In the recent decades 

it has become possible to identify genes and pathways underlying deleterious DM incompatibilities in different plant species, 

and in particular in Arabidopsis. Here we discuss the usefulness of this model species for investigating the bases of plant 

speciation and how DM incompatibilities can be attenuated by molecular approaches or even shaped by the environment.

Keywords:  Arabidopsis thaliana; Immunity; Natural variation

Abbreviations: CRISPR: Clustered Regularly Interspaced 
Short Palindromic Repeats; CC: Coiled-Coil domain; DAMP: 
Damage-Associated Molecular Pattern; ETI: Effector-
Triggered Immunity; GWAS: Genome-Wide Association 
Study; Hpa: Hyaloperonospora arabidopsidis; HI: Hybrid 
Incompatibility; LRR: Leucine-Rich Repeat; LD: Linkage 
Disequilibrium; NBD: Nucleotide Binding Domain (NBD); 
PAMP: Pathogen Associated Molecular Patterns; PTI: PAMP-
Triggered Immunity; PRR: Pattern Recognition Receptors; 
Pst: Pseudomonas syringae; QTL: Quantitative Trait 
Locus; SNP: Single Nucleotide Polymorphism; TIR: Toll/
Interleukin-1 Receptor domain; T3SS: Type Three Secretion 
System.

Introduction

The model plant model Arabidopsis thaliana (L.) was 
first discovered by Johannes Thal (1542-1583; Germany) in 

the sixteenth century at the Harz Mountains (Germany), and 
hence its specific epithet of “thaliana”. However, the first one 
to summarize the potential of the species as a model for plant 
genetics was Prof. Friedrich Laibach [1,2], with prominent 
contributions from other plant researchers afterwards. 
Arabidopsis thaliana (L.) was the first plant with the whole 
genome sequenced and a T-DNA mutant collection developed 
in the beginning of this century [3]. 

Evolutionarily, A. thaliana was also the first one to diverge 
from its relatives Arabidopsis around 3.8-5 millions of years 
ago (Mya), whereas the remaining species began to separate 
2 Mya [4]. For example, when A. thaliana is compared with its 
closest relative, Arabidopsis lyrata (L.), 56% of the genome 
cannot be aligned and their genome size varies by 40%. 
This is because A. thaliana has less transposable mobile 
elements (TE) than A. lyrata. These TE are important for 
gene expression regulation of neighboring genes.
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Morphologically, A. thaliana has a well-defined basal 
rosette, with small-ovate juvenile leaves of smooth margins, 
and bigger ovate adult leaves with partially serrated 
margins. Leaves have long and simple-forked trichomes. The 
central inflorescence has bifurcations emerging secondary 
inflorescences, carrying lanceolate caulinar leaves, and 
white-color flowers with four sepals, four petals, six stamens 
and two carpels. Fruits in siliques contain about 20 seeds 
per fruit [5]. Arabidopsis thaliana has a short lifecycle and 
produces a large number of seeds. It has a small size but a 
large plasticity to adapt to different environments and growth 
conditions. A. thaliana is currently one of the best models to 
investigate basic biological processes: primary metabolism, 
defense, seed-dormancy, abiotic stress adaptation, and 
evolutionary biology [6–9]. 

Moreover, one of the main characteristics that 
distinguishes A. thaliana from other Arabidopsis relative 
species is the capacity of self-fertilization, being A. thaliana 
an autogamous plant, not like other Arabidopsis genus 
species. The capacity of self-pollination provides some short-
term advantages [10]. Autogamous plants can produce more 
seeds than the outcrossing ones. This enables proper seed 
dissemination and the capacity to colonize new unoccupied 
niches [11]. Acquired mutations or genomic variants 
are maintained in the progeny and will become fixed in 
the population, also depending on fitness effects of such 
mutations. However, self-pollination produces inbreeding 
negative effects such as the inbreeding depression (ID) 
associated with the increased homozygosity [12,13]. 

Arabidopsis thaliana recently became a self-compatible 
plant through independent and gradual fixation of disabling 
mutations at the S-locus. S-locus codifies for two proteins: 
S-locus receptor kinase (SRK) on stigma epidermal surface 
and S-locus soluble ligand cysteine-rich protein (SCR) on 
pollen wall [14,15]. Loss-of function mutations at the SI-locus 
can trigger negative effects. One of these negative effects is 
the decrease in genetic recombination between individuals 
that can produce lower diversity and plant adaptation 
capacity. On the other hand, self-compatibility provides in 
some cases a reproductive-improvement when the pollinator 
is absent or lacks the synchrony of flowering-time. Hence, 
self-compatibility and the acquisition of loss-of-function 
mutations at the SI locus can be considered important for 
speciation by reproductive isolation [16,17]. An example 
for the importance of self-incompatibility breakdown for 
speciation are the diploid species Capsella rubella and C. 
grandiflora (2n = 2x = 16). Recent studies have suggested the 
occurrence of a self-incompatibility breakdown event in a 
local Greek population of C. grandiflora. This population was 
likely exposed to an extreme bottleneck and forced to self-
reproduce from a single or few individuals, and to generate 
a fertile offspring with the consequent appearance of C. 

rubella. Finally, C. rubella has spread in the Mediterranean 
region together with agriculture practices [10].

Hereafter we summarize some aspects on the plant 
immune system as well the different layers of the plant 
immune response and signaling using as a model plant model 
A. thaliana. We focus on the hybrid incompatibilities, which 
can represent an incipient way of speciation by reproductive 
isolation. We describe some of the techniques that we 
currently use to suppress plant hybrid incompatibilities 
and to study the complex mechanism of immune signaling, 
epistasic interactions and the contribution in the resistance 
and growth tradeoff.

Natural Variation in Arabidopsis thaliana

Ecologic and geographic isolation drive genetic 
divergence and the accumulation of polymorphism. Natural 
variation refers to the differences in the genetic material 
between individuals and populations that may (or not) have 
adapted to deal with different local environmental conditions 
[18]. Humans are the unique animal species on Earth able 
to see and exploit natural variation for its benefit. Crosses 
between species have resulted in plant domestication and 
the advance of agriculture [19].

Arabidopsis thaliana has a worldwide geographical 
distribution with a strong anthropogenic influence of 
dispersal and colonization of new habitats [20]. It is native 
from the Northern Hemisphere (Eurasia) but has spread 
by human activity and naturalized in other geographical 
regions such as North and South America, Africa, Oceania, 
and some islands such as Canary Islands and Cape Verde 
[21]. Arabidopsis thaliana is thought to have adapted to 
different habitats, accumulating and maintaining beneficial 
traits for its ecological niche conditions. Researchers and 
botanists have collected individuals from natural populations 
(accessions). For example, Prof. F. Laibach, collected in 1920 
(Spain) the Bla-5 and Sf-2 accessions in Blanes and Sant Feliu 
de Guixols, respectively.

During the last decades, several studies based on 
natural variation have been performed, resulting in a large 
number of genes identified that have essential biological 
activities. Importantly, many of these genes are not exclusive 
for Arabidopsis. As such, plant-breeders can extrapolate 
basic knowledge to cultivated plants, aiming at improving 
crop yields [22]. This is feasible because many pathways 
in development and defense have conserved mechanisms, 
signaling hubs or even similar genes. In conclusion, A. 
thaliana natural variation is considered a powerful tool to 
investigate the genetics and molecular changes involved in 
plant adaptation and genome evolution [20].
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Today, a big effort is being performed to sequence 
a large number of accessions for evolutionary studies 
(https://1001genomes.org/). Next generation sequencing 
(NGS) techniques are providing thousands of genetic 
variations and markers across genomic regions, not 
only in Arabidopsis but also in maize, rice, soybean and 
wheat, among other cultivars. These data enable to apply 
quantitative genetics to determine casual regions underlying 
a measurable phenotypic trait [23].
 

One of the approaches to localize or map a locus 
associated with an observed phenotype is the quantitative 
trait loci (QTL) mapping. The availability of genetic markers 
enables to apply QTL analysis using recombinant inbred 
lines (RILs) or other genotyped populations suitable for such 
analyses. The power of QTL analysis and fine-scale mapping 
relies not only on the low economical cost and quickness of 
genetic mapping, but also on the historical recombination 
event produced in nature that reduces the degree of linkage 
disequilibrium (LD) and the tight physical distance between 
causal loci and the polymorphism [24]. On the other hand, 
QTL analysis fails when there is allelic segregation between 
the parental lines or when a huge number of recombination 
occurs in the RIL population. 

LD is a nonrandom association of alleles at two or 
more loci in the general population and its use is crucial for 
genetic association studies. The chromosomic extent of LD in 
haplotypes is crucial because it determines how dense can 
be the map of the associated genomic loci [25]. LD is broken 
by recombination events and is shaped by local adaptation, 
genetic divergence, natural selection and population history. 
In autogamous plants with high homozygosity, such as A. 
thaliana, LD is strong because of the self-style of reproduction, 
whereas some events of recombination can also be found 
and interfere with the assumed association [26]. 

The strong LD in Arabidopsis produced through several 
self-pollination events, its genomic data availability, and 
the development of statistical methods, makes Arabidopsis 
a suitable plant for genome-wide association studies 
(GWAS). GWAS is a technique that uses global high-density 
single nucleotide polymorphism (SNP) data in a large set of 
accessions, and it is an alternative, or probably better to say 
a complementary method, to QTL mapping. Hence, GWAS is a 
genetic study that attempts to identify commonly occurring 
genetic variants (SNP) that contribute to the observed 
phenotype [27]. To apply the study, it is required numerical 
discrete or continue data because they improve the power of 
SNP detection. When data is a phenotypic trait with a non-
numerical value, the observed trait must be categorized in 
numerical by categorizing it in binary (e.g. 0 = non-affected; 
1 = affected) or in multiple-numerical categories. There are 
online-free applications that enable GWAS analyses, whereas 

the most powerful analyses are performed in Linux and R 
scripts. Nevertheless, findings obtained by GWAS must be 
validated by other complementary genetic approaches. 

GWAS analysis has some limitations that can lead to 
misleading associations [28]. These involve the existence of 
strong and complex population structure due to isolation, 
accessions relatedness, genetic heterogeneity, and trait 
heritability and population size. Narrow sense heritability 
is telling us how strong contributes the genetic variant 
to the phenotype variation or in other words, how much 
connected is the genotype to the phenotype. There are many 
ways to measure LD, all related to the difference between 
the frequency of co-occurrence for two alleles and the 
frequency expected when the two markers are independent. 
Furthermore, there are two commonly used LD measures: 
D’ and R2 [29,30]. The statistical mixed-linear-model (MLM) 
method takes the population structure into account by using 
a genetic estimated marker data matrix and can overcome 
the population-structure limitation as well to predict the 
heritability [31,32]. Increasing the population size will 
improve meaningful association but, can reduce variant 
recovery by weakening the polymorphism-loci correlation 
or decreasing allelic frequency [27]. Once the analysis 
is performed, it is time to analyze the significance of the 
outcome. Hence, more statistical analyzes are applied, for 
example, the 5 % Bonferroni threshold [33], Q-Q plots and 
Manhattan plot for P value inflation [34], and false discovery 
ratio (FDR) [35]. 

In Arabidopsis, GWA studies were reported in 2010 
identifying disease resistance genes against the plant 
pathogenic bacteria, Pseudomonas syringae [36]. Recently, 
GWAS has demonstrated the capacity to identify the genetic 
bases for defense traits not only in Arabidopsis, but also in 
other species such as rice, tobacco, maize, soybean and wheat, 
among others, and it is widely used for the identification of 
genes that influence other complex traits [37-41] including 
tolerance to high magnesium supply [42], identification 
of genes shaping the leaf microbiota [43], identification of 
new components involved in hydrogen peroxide signaling 
an tolerance [44], abscisic acid accumulation during abiotic 
stress [45], herbicide resistance in wheat [46], salt tolerance, 
secondary metabolites variation, morphological and yield-
trait identification in rice [47,48], among others.

The Plant Immune System

Biotic stress causes between 30% to 40% of crop losses 
with huge economical costs, while abiotic stress has an 
impact of 6% to 20% [49]. In addition, biotic stress has a 
strong negative impact on crop yield, not only on the quality 
of the product but also decreasing the potential of plant 
growth due to the metabolic cost of maintaining an activated 

https://1001genomes.org/
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immune system [50]. 

Plants are sessile organisms with no cellular, humoral 
or adaptative immune system. Their capacity to resist 
to pathogen colonization is based on the innate immune 
response and the capacity to recognize pathogens through 
resistance (R) proteins encoded by R genes or other receptors 
at the plasma membrane [51]. 

To deal with pathogen attack, the plant has different 
layers of defense according to the nature of the pathogen 
that is threating the plant. However, plant pathogens have 
different strategies to survive and adapt to their hosts. 
Pathogens can be herbivores insects, nematodes, fungi and 
viruses or microorganisms such as bacteria and oomycetes. 
Hence, fungi and bacteria have similar mechanisms to avoid 
plant recognition. The interference mechanism is based on 
the capacity to deliver into the host cell proteins known 
as effectors, virulence factors, in such a way that pathogen 
fitness is enhanced. Furthermore, the authors suggested 
an easy to interpret model (the zig-zag model) which 
summarize the plant-pathogen coevolution and the plant-
immune response [52]. Actually, the model is more complex 

and somehow not fully appropriate for the different known 
mechanisms of infection and pathogenicity (hemibiotrophic 
and necroptrophic). Nevertheless, it is still useful to acquire 
a global view of the plant-pathogen coevolution (Figure 1). 
According to the “zig-zag model”, molecules at the surface 
of bacteria, fungi or oomycetes, might represent molecular 
fingerprints called pathogen associated molecular patterns 
(PAMPs) and microbial associated molecular patterns 
(MAMPs) [53]. Recognition PAMPs or MAMPs by Pattern 
Recognition Receptors (PRR) results in a PTI response that 
arrests pathogen invasion. At a second stage, pathogen 
successfully use effector or avirulence proteins (Avr) that 
contribute to pathogen virulence by interfering in a spatial 
and temporal manner with PTI signaling and delay plant 
immune responses [54] thus resulting in effector triggered 
susceptibility (ETS). To counteract this, plants have 
developed a second line of defense comprising intracellular 
receptors or R proteins which mainly are nucleotide-binding 
site leucine-rich repeat (NB-LRR) type. Their conformational 
activation leads to ETI (effector triggered immunity). ETI 
triggers global transcriptional reprogramming, generation of 
ROS and RNS, induction of programmed cell death (PCD) and 
hypersensitive response (HR) at the infection sites [55,56]. 

Figure 1: Zig-zag model for the illustration of the quantitative output of the plant immune-system interaction with pathogen 
effectors. Fingerprint molecules such as PAMPS initiate the pathogen triggered immunity (PTI) that is an intermediate 
response enough to block or delay pathogen invasion. At second stage, some pathogens deliver proteins, known as effectors, 
that interfere with the PTI response and produce the effector triggered immunity (ETI) which is a strong and broad sense 
immune response highlighted with the induction of plant cell death (PCD), also known as hypersensitive response (HR). 
Effectors can be recognized by NLR receptors initiating the effector triggered immunity (ETI). However, variations on these 
effectors that lead to unrecognition or the lack of specific intracellular receptor, produce the effector triggered susceptibility 
(ETS). Finally, due to the effector-plant receptor coevolution, the effector variant can be recognized one more time and initiate 
the ETI. Adapted from Jones & Dangl [52].

PAMP and DAMP Triggered Immunity 

When PAMPs or MAMPs are recognized by PRRs, the 
PAMP-Triggered Immunity (PTI) initiates. PTI is an early 

and broad-range specific immune response against non-
host specialized pathogens [57]. For example, bacterial 
PAMPs such as Flagellin 22 (flg22) or the Elongation Factor 
Tu 18 (elf18) are recognized by membrane anchored PRR 
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(FLS2 and EFR, respectively). Recognition stimulates the 
recruitment of the leucine-rich repeat receptor-like kinase 
BAK1 (brassinosteroid insensitive associated receptor kinase 
1) and the receptor-like cytoplasmatic kinase BIK1 that, 
upon trans-phosphorylation, activates a plasma membrane-
anchored specific NADPH oxidase (RBOH) and mitogen-
activated protein kinases (MAPK). In A. thaliana, there are 
10 different isoforms for RBOH NADPH oxidases (RbohA - 
J). Only isoforms RbohD and RbohF have been reported to 
participate during PTI and are known to trigger the oxidative 
burst after PAMPs/MAMPs and DAMPs recognition. RBOH 
activity is regulated at post-translational level by phosphatidic 
acid (PA), Ca2+, FADH, NADPH and phosphorylation by 
BIK1 and CPKs (Ca2+-dependent protein kinases). RBOH 
are responsible for ROS production or oxidative burst, 
whereas MAPK cascades promote the expression of R genes, 
biosynthesis of antimicrobial compounds and strengthening 
of cell wall structures [58–60].

Due to the pathogen invasive activity, cell structures 
are damaged. This process produces and delivers damage-
associated molecular patterns (DAMPs) initiating the DAMP-
triggered immunity (DTI) which enhances and maintains 
both PTI and ETI responses. Thus, fingerprinting molecules 
have different nature and involve proteins, lipids, sugars, 
nucleotides, cell-wall degradation-derived products and 
maybe also polycationic molecules such as polyamines [61-
64].

Effector Triggered Immunity

Host-specialized and non-specialized pathogens have 
different invasive mechanisms. The non-specialized ones 
can only be recognized by PRR receptors and trigger PTI 
whereas host-specialized pathogens deliver avirulence 
proteins (effectors) that are recognized by intracellular 
nucleotide binding leucine-rich repeats (NLR) receptors 
that trigger ETI and hypersensitive response (HR). Very 
often, these intracellular receptors are not binding directly 
to the effectors, but they guard a host protein that is the 
target of such effectors. NLRs are present in plants, animals, 
and fungi, revealing their evolutive importance to recognize 
intracellular pathogens or their effectors. Plant NLR proteins 
can be found in angiosperms, gymnosperms, bryophytes, 
and liverworts (Hepaticophyta) but not in the unicellular 
alga Chlamydomonas. In animals, NLR receptors are found 
in mammals (also known as NOD-like receptors), chordates 
and sponges but not in nematodes or arthropods [65–68]. 

In gram-negative bacteria, such as Pseudomonas syringae, 
effector delivery is mediated through the Type Three Secretion 
System (TTSS) [54]. An example of the guard-guardee model 
is RIN4, a plasma-membrane associated protein that is 
target of TTSS effectors AvrRpm1, AvrB and AvrRpt2. RIN4 

is guarded by the NB-LRR proteins RPM1 and RPS2, which 
sense perturbations in RIN4 homeostasis. When AvrRpm1 
or AvrB target RIN4, this protein becomes phosphorylated 
and activates RPM1. In contrast, AvrRpt2 cleaves RIN4 and 
this leads to RPS2 activation. Activation of ETI via NB-LRR 
receptors induces an HR response at the site of infection 
and promotes disease resistance [52,69-71]. Filamentous 
pathogens can deliver effectors from the intercellular space 
by hyphae or haustoria [72]. Hyaloperonospora arabidopsidis 
(Hpa) is an obligate biotrophic oomycete that grows under 
high humidity and can infect A. thaliana [73,74]. 

Arabidopsis has NB-LRR receptors (Recognition of 
Peronospora parasitica 1, RPP1) that recognize allelic 
variants of the Hpa ATR1 effector. Some additional receptors 
show sequence similarity to RPP1 and are referred to as 
RPP1-like [75,76], although their recognition specificities 
are still unknown [77]. Furthermore, it is widely accepted 
that NB-LRR mediated immune responses are only effective 
in obligate biotrophs (e.g. Hpa, Ustilago spp., Uromyces., 
Phytophthora spp.) that require living hosts to exploit 
their metabolites, but not effective against necroptrophic 
pathogens (e.g. Botrytis spp., Fusarium spp., Sclerotinia spp., 
Pythium spp.). Necrotrophs kill and destroy the host by 
exhaustive use of the organic material and nutrients for its 
own growth [78]. Moreover, some hemibiotrophic pathogens 
establish a biotrophic interaction with the host at the 
beginning but switch to a necrotrophic lifestyle afterwards 
[79]. 

NLR Regulation and Signaling 

NLR receptors can be categorized according to their 
N-terminal domain. TIR-NB-LRR (TNL) receptors carry a 
toll-interleukin-1 domain in their N-terminus. CC-NB-LRR 
(CNL) carries a coiled-coil domain in their N-terminus and 
RPW8-NB-LRR (RNL) has a powdery mildew-8 domain 
[80]. TIR and CC domains of NLR receptors are required for 
downstream signaling and can trigger cell death [81,82]. The 
NB domain contains STAND motifs with a regulatory activity 
via ATP hydrolysis that induces protein conformation 
changes [83]. Between the NB domain and the LRR, an 
interspace separating sequence can be found (NL-LINKER). 
Structural variation of the NL-LINKER sometimes correlates 
with NLR activity, suggesting an intrinsic variation that 
modulates receptor activity [84]. The C-terminal sequence 
of NLR is composed of several leucine-rich repeats (LRR) 
domains. This region is highly variable and can bind effector 
proteins and interact with the NB domain thus inducing 
the conformation changes required for activation [82,84]. 
Mutations in the different NLR domains can affect receptor 
activity and lead to self-activation, incapacity to bind 
molecules (e.g. effectors and nucleotides) or to oligomerize 
and trigger an autoimmune response. 
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TNL signaling requires the nucleocytoplasmatic lipase-
like protein, enhanced disease susceptibility 1 gene (EDS1), 
its coreceptor phytoalexin deficient 4 (PAD4) and senescence 
associated gene 101 (SAG101) that promotes SA biosynthesis 
by stimulating salicylic acid induction deficient 2 (SID2) / 
isochorismate synthase 1 (ICS1) gene expression [85,86]. SA 
and EDS1/PAD4 have a positive feed-back relationship. CNL 
receptors are almost EDS1/PAD4 independent, but NDR1 
dependent [87-89].

ETI activation induces a global immune response 
that can be transmitted throughout the plant to prevent 
disease [90]. This broad-spectrum immune response is the 
systemic acquired resistance (SAR) and requires SA gradient 
accumulation and conformational changes (S-nitrosylation) 
of the master SAR protein NPR1 (non-expressor of PR-1) that 
translocates into nuclei and promotes gene expression (via 
TGA transcription factors) of WRKY transcription factors, 
redox regulation, DNA repairment and membrane traffic 
readjustments [59,91-95].

The Batseon-Dobzhansky-Muller (BDM) 
Model of Reproductive Isolation and Plant 
Autoimmunity

Arabidopsis natural variation can be a useful tool to 
study underlying speciation processes derived from genetic 
divergence [96]. How natural populations with genomic 
variants evolve to new species without being incompatible 
in the ancestral population and without passing through any 
deep adaptive valley was an enigma for Darwin an others 
evolutionary biologist [97,98]. Studies have described ways 

of plant speciation through the occurrence of reproductive 
barriers at pre-zygotic or post-zygotic stages. Zygote 
formation can be affected during the step of pre pollination 
or postpollination. Handicaps of prepollination underlie 
ecological isolation (when fitness is reduced in heterospecific 
habitat), phenological isolation (e.g. differences in flowering 
time) and/or pollinator specialization. On the other hand, 
reproductive barriers after pollination are related to pollen-
stigma interactions in which foreign pollen is recognized and 
ovule fertilization blocked [99]. Furthermore, postzygotic 
reproductive barriers occur when the zygote is formed but 
the hybrid exhibits sterility or is not viable. Hybrid seeds can 
also be defective, and germination or fitness strongly affected 
in F1 or F2 generations [98]. 

The BDM or Bateson-Dobzhansky-Muller [100-102] 
model of genetic incompatibilities explains the process of 
speciation through postzygotic reproductive isolation (Figure 
2). The theory underlying this speciation model considers 
an ancestral population where two alleles (AABB) coexist 
with no impact on growth and fitness. When the ancestral 
population is split in two, alleles A and B mutate and generate 
new alleles (a and b) in the respective populations. Through 
transition states (AaBB or AABb) variants become fixed in the 
two populations (aaBB vs AAbb) with no costs on fitness. The 
problem emerges when individuals from these two diverged 
populations mate and evolved alleles are forced to co-exist 
in the same genome, leading to a lethal epistatic interaction 
between them that is the basis for hybrid incompatibility. 
Incompatible hybrids are sterile or lethal. Other symptoms 
such as hybrid weakness might be related to intermediate 
stages towards the complete reproductive isolation. 

Figure 2: The Bateson-Dobzhansky-Muller (BDM) model for genetic incompatibilities. An ancestral population has two 
coexisting alleles (AABB). After a split, two new populations appear and exhibit independent allele divergence originating 
alternative alleles “a” or “b”, which become fixed. When individuals from these two diverged populations are crossed, an 
epistasic deleterious interaction between the two new alleles occurs that leads to hybrid incompatibility. Adapted from 
Alcázar, et al. 2012.
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There are many examples of HI in different plant 
species involving epistatic interactions with at least one 
immune R gene. These hybrids exhibit an autoimmune 
response which has a strong impact on plant growth and 
fitness. Dwarfism, cell death and sterility are hallmarks for 
immune-related. These hybrids are not only useful to study 
underlying mechanisms of reproductive isolation, but they 
also highlight molecular mechanisms that enable fine-tuning 
defense responses or guard-guardee relationships. Other 
mechanisms of hybrid incompatibility have been reported 
such as cytonuclear incompatibilities and differences in 
ploidy level [103], but these are not the focus of this study. In 
the recent years, immune-related HI has been focused on the 
identification of causal genes. Here, we have studied what are 
the effects from the genetic suppression of immune-related 
hybrid incompatibilities on plant growth, overall fitness and 
resistance against pathogens. 

Most of the described HI in plants includes incompatible 
interactions between R genes and other immune-signaling 
pathway related proteins (e.g. NLR receptors, RLK, receptors 
like proteins, and other types of immune-signaling proteins). 
Among the NLR-based HI, TIR-NB-LRR receptors are the most 
frequent but involved although CC-NB-LRR incompatibilities 
have been described [104]. In rice, deleterious interactions 
leading to self-immune activation were described between 
NLR-RLK, two CNL receptors, and two RLK proteins [105,106]. 
In other species such as, wheat, lettuce and Capsella spp., 
incompatibilities involving CNL, RIN4, and NPR1 were 
reported, too [107–109]. Moreover, in Arabidopsis TNL-
based incompatible interaction was described by Bomblies, 
et al. [96]. Alcázar, et al. [75,110–112], and Chae, et al. [113] 
identified additional genetic deleterious interactions often 
involving a common locus, RPP1-like HI (Figure 3). 

Figure 3: Temperature dependent hybrid incompatibilities between two natural A. thaliana accessions, Ler and Kas-2. The 
incompatibility implies the deleterious epistasic interaction between the RLK protein, SRF3, from accession Kas-2 and the Ler 
RPP1-like haplotype which codifies for TIR-NB-LRR receptors. When F2 hybrids Ler/Kas-2 are grown under the Arabidopsis 
environmental natural temperature of 14 ºC – 16 ºC, a self-immune activation is revealed by the stunted growth or dwarfism 
(A), sterility and massive cell death as hypersensitive response detected by Trypan blue stain (B). 

During last decades, plant breeders have used different 
strategies in order to obtain new plant varieties with specific 
commercial or adventurous traits. Plant researchers use 
mutagenesis techniques as basic tool to study gene function 
and investigate main plant physiology (Figure 4). First 
mutagenesis techniques were based on the use of energetic 
radiations such as X-ray, γ-ray and fast neutron bombardment. 
X-ray produces high destructive changes and, in many cases, 
leads to a non-viable plant. γ-ray is less destructive and 
causes point mutations and small deletions, whereas fast 
neutron bombardment is used to induce large deletions and 
chromosomic translocations. UV-B and UV-C are non-atomic 
radiations that are also used for plant mutagenesis with 

different degrees of success [113]. 

Chemical mutagenesis is an alternative. The advantage 
of this technique relies on the easiness of application in a 
basic equipped laboratory and the known nature of induced 
mutations. For example, the ethyl-methane sulfonate 
(EMS) alkylates guanine bases causing the shift GC to AT 
during DNA-polymerase replication. Sodium azide (Az) 
and methylnitrosourea (MNU) are chemicals also used in 
combination (Az-MNU). They induce a GC to AT or AT to GC 
shifts but are less stable, more toxic and tedious for work 
[114]. 



Citation: Yolanda Cajal, et al. Trends in Pharmaceutical and Food Sciences I. Pharm Res 2020, 000eB-001.

25 Open Access Journal of Pharmaceutical Research

Figure 4: Ethyl-methane sulfonate (EMS) mutagenesis 
screen on a hybrid incompatible (HI) Ler/Kas-2 population. 
Plants with a suppressed HI when are grown under long 
day conditions, 14 ºC – 16 ºC, 70% of relative humidity 
(RH), and 160 µm photons m-2·s-1 of light intensity. Casual 
point-mutation identification can be carried out by next 
generation sequencing (NGS) techniques or by genetic 
mapping. 

Finally, since the development of CRISPR/Cas9 genome 
editing tools in plants, specific change can be induced in a 
target gene with high precision (Figure 5). For instance, loss-
of function mutants can be isolated when gene-mutant is not 
available or for non-model plants [116].

Figure 5: CRISPR/Cas-9 gene directed mutagenesis on 
the incompatible near isogenic line (NIL) Ler/Kas-2. 
Loss of function mutations at R2, R3 and R8 suppress the 
occurrence of hybrid incompatibility and allows the study 
of individual gene contribution of the eight genes described 
into the Ler RPP1-like haplotype as well, the motifs related 
with the protein functionality [115].

Plant Growth Promoting Bacteria 

Recently, there is a growing interest to investigate plants 
in their habitats, and more specifically the study of the 
rhizosphere, phyllosphere and the interplay microbiota-plant 
growth and health. Soil microbiota plays a key role in plant 
immunity, pathogen resistance, water availability, nutrient 
assimilation, turnover and competition. It was suggested 

that the small microbiota community interacting with plants, 
in comparison with the huge quantity of taxa found in soil, 
can be explained by the host genotype and has an effect 
on plant health [117-119]. Lebeis, et al. [120] suggested 
that SA plays a role on the root-microbiome community 
composition. Castrillo, et al. [121] have demonstrated that 
root microbiota drives phosphate integration and immune 
response during phosphate starvation by regulating the 
master transcriptional phosphate response factor, PHR1, 
prioritizing phosphate intake than defense. Zamioudis, et al. 
[122], have demonstrated the induction of the transcription 
factor MYB72 by rhizobacteria VOCs and photosynthetic 
related signals, enhancing iron-assimilation and inducing 
systematic resistance in plant. MYB72 has also been reported 
to regulate coumarin scopoletin root exudate, which is 
an iron-mobilizing phenolic compound that shapes root 
microbiota and improves plant growth and resistance [123]. 
Root exudates composition, such as carbohydrates, amino 
acids, and organic compounds (e.g. coumarin, rosmarinic 
acid), is genotype and environmentally dependent and shape 
the root microbiome [118,124]. However, little is known 
about the role of root microbiota, soil physicochemical 
composition and the source of nitrogen (ammonium and 
nitrate), and their role in the plant immune response. In this 
regard, future studies should address the study of defense 
responses in combination with the study of microbial 
populations in roots and the nutrient compositions of soils. 
Our early results carried out on the Ler/Kas-2 NIL line and 
in another incompatible hybrid between accessions Uk-1 
and Uk-3 [96], are suggesting a key role of the plant mineral 
nutrition on the modulation of the plant autoimmunity 
(unpublished data). For instance, we have determined 
that an increase on ammonium in soil or by irrigating with 
high-ammonium media, suppress highly the HI phenotype. 
Actually, a validation of endophytic plant-growth promoting 
bacteria PGPB), isolated from a local population of A. 
thaliana (Natural Park of Collserola, Barcelona, Spain), is on 
course. Also, we are determining the levels and the types of 
polyamines that PGPB produces and their effect on the plant 
resistance against biotic and abiotic stress. 

Conclusion

The model plant of A. thaliana is useful for the research 
in plant biology and genetics. Its worldwide distribution, 
adaptation to the diverse environmental niches and local 
pathogens, through natural variation mechanism, are highly 
attractive for basic plant research in abiotic and biotic stress. 
The small genome, plantlet size, and autogamous style of 
reproduction are one more of its advantages when QTL 
mapping and GWAS are performed with the aim to discover 
new genes behind physiological processes and immune 
response. The isolation between accessions and the fixation 
of new genetic variants which are thought to provide, or 
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not, some advantage can imply unexpected deleterious 
effects. For instance, deleterious epistasic interaction 
between immune receptors and receptors like kinases that 
produce self-immune activation can be considered as an 
incipient mechanism of speciation according to the Bateson-
Dobzhansky-Muller of reproductive isolation. We have 
described some of the genetics tools that can be used to 
suppress the occurrence of hybrid incompatibilities, restore 
hybrid normal growth and fitness. Random mutagenesis, 
by using chemical and physical agents, or by gene editing 
techniques such as, the CRISPR/Cas-9, had demonstrated 
their usefulness. These techniques, coupled to next generation 
sequencing, can help to identify non-synonym point mutation 
casual for the suppression of the autoimmunity and allows 
the study of the molecular mechanisms taking place during 
the plant-pathogen recognition and immune signaling. This 
is quite interesting in regard for plant breeders, because 
hybrid incompatibilities caused by immune-incompatible 
interactions are not exclusive to Arabidopsis and can be 
found in many crop-plant species (e.g. lettuce, rice, and 
wheat, among others).

Finally, the study of the plant-microbe molecular 
interaction is an emerging field in plant research. With the 
development of new strategies for the plant-associated 
microbiota isolation, the global sequencing techniques 
applied in genomics and transcriptomics, as well 
metagenomics analysis is providing a huge information of 
how plant basic mechanisms of nutrition, a biotic and biotic 
stress are shaped by soil microbiota. Furthermore, the topic 
of microbe-delivered polyamines on the plant immune 
response is not yet investigated and some early results 
are suggesting a positive effect on the pathogen triggered 
immunity acting as a priming molecule against a broad range 
of stress that plants suffer in crop fields [64,125].
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Abstract

Chagas disease (CD), caused by the protozoan Trypanosoma cruzi, is endemic in Latin America and due to human migration 
it has become and emergent health problem in non-endemic countries. CD diagnosis is complex and no single test is 
considered the reference standard. After assessing a range of techniques to diagnose CD, we propose cost-effective diagnostic 
algorithms for each stage of the disease and evaluate different approaches to T. cruzi characterization. The results of the 
studies summarized here indicate that a single serological test with a high-performance technique can improve diagnosis of 
chronic cases, whereas congenital infections can be satisfactorily diagnosed using fewer tests than current strategies. The 
application of both proposals would entail important savings for health institutions. Additionally, a fully automated molecular 
methodology was satisfactorily evaluated and could help to extend the routine use of PCR for CD diagnosis among hospitals. 
The assessment of different typing methods for T. cruzi characterization also provided useful results, although a single optimal 
method could not be established for all cases. 

Keywords:  Chagas disease; Serological diagnosis; Molecular diagnosis; Molecular characterization

Abbreviations: qPCR: quantitative real-time PCR; 
ELISAc: conventional ELISA; ELISAr: recombinant ELISA; 
WB: Western blotting; TP: True positive; TN: True negative; 
FP: False positive; FN: False negative; S/CO signal-to-cut-
off value; PAHO: Pan American Health Organization; IAC: 
Internal Amplification Control; Ct; Cycle threshold; SatDNA: 
satellite DNA, kDNA: kinetoplastid DNA; EB: EDTA-blood; 
GEB: Guanidine EDTA-blood; rs: Spearman rank correlation 
coefficient, K: Kappa coefficient; MTq-PCR: Multiplex qPCR 
using Taqman probes.

Introduction

Chagas disease (CD) is a parasitic infection caused by the 
kinetoplastid protozoan Trypanosoma cruzi Chagas, 1909 
[1]. The disease is endemic in 21 countries of Latin America 
with around six million people affected [2]. Migratory flows 
have spread CD to non-endemic areas, especially in the 
United States and Europe, and it is now a global public health 
problem [3]. Spain is the European country with the largest 
number of immigrants from Latin America [4]. 
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In endemic areas, the parasite is mainly transmitted 
by blood-sucking triatomine bugs [5]. The infection 
may also occur in both endemic and non-endemic areas 
through congenital transmission, blood transfusion, organ 
transplant, and laboratory accidents [6]. In non-endemic 
countries, mother-to-child transmission is the main route of 
infection and represents an important healthcare challenge 
[7,8]. Vertical transmission can occur at all stages of CD [9], 
in any pregnancy of an infected woman and over successive 
generations [10]. Congenital transmission occurs mainly by 
the haematogenous transplacental route [11,12]. 

T. cruzi has great genetic diversity and its natural 
populations are currently divided into six genetic 
subdivisions, known as discrete typing units (DTUs): TcI-TcVI 
[13,14]. Another DTU, first isolated from bats in Brazil, has 
been designated as the Tcbat genotype [15]. The concept of 
DTUs refers to sets of stocks genetically closer to each other 
than to any other stock and identifiable by common markers 
[13,16]. DTUs have variable distribution among endemic 
regions and in transmission cycles [14].

CD occurs in two stages: (i) the acute phase, in most 
cases without symptoms or with non-specific manifestations 
and characterized by a high parasitic burden in the blood, 
and (ii) the chronic phase, associated with cardiac and/
or gastrointestinal disorders and low and intermittent 
parasitemias. In the chronic indeterminate phase of the 
infection most patients remain asymptomatic all their lives 
[17,18]. 

In Spain and other non-endemic areas, the acute phase is 
mainly due to congenital transmission and the chronic phase 
is observed in migrants infected in their country of origin. 
The stage of the disease conditions the choice of diagnostic 
method. Parasitological and molecular tests are the most 
suitable for the acute phase and serological for the chronic 
stage [19]. In conventional serological techniques the whole 
parasite or soluble or purified parasite extracts are used as 
the antigen, whereas non-conventional tests are based on 
recombinant antigens [20]. 

Although screening for CD and early diagnosis are cost-
effective, a large number of patients are still diagnosed late 
or not at all in both endemic and non-endemic countries [21]. 
Thus, it is of great importance to establish a more effective 
diagnostic strategy to deal with T. cruzi infection [22].

T. cruzi diagnosis is often complex and no single test is 
considered the reference standard [20]. Current protocols 
are costly as they involve the analysis of a large number of 
samples by several serological tests. Serological methods, 
many of them commercially available, are widely used, 

especially in the chronic phase [23,24], but are limited 
because of (i) a high persistence of positive results in chronic 
patients after treatment [25], (ii) the transmission of passive 
maternal antibodies to the newborn [11,26], and (iii) the 
possibility of cross-reactivity with other trypanosomatids, 
such as Leishmania spp. [27]. A new generation of potentially 
more accurate tests has been developed but their usefulness 
in different population groups, infection phases and disease 
follow-up is not yet well established [28]. They involve the 
use of large mixtures of recombinant antigens combined 
with efficient detection systems. Automation, rapidity and 
high performance are other advantages of these new tests 
[28].

On the other hand, molecular methods, especially 
the polymerase chain reaction (PCR), are effective for the 
early diagnosis of congenital infection due to their high 
sensitivity [29]. They are also useful in the chronic phase to 
detect therapeutic failure in treated patients and parasite 
reactivation in immunosuppressed individuals [30]. 
Additionally, quantitative real-time PCR (qPCR) enables 
quantification of the amplification product. However, 
molecular approaches have some disadvantages, including 
less sensibility in chronic patients with low parasitic loads 
and a lack of consensus among laboratories in PCR strategies, 
which makes it difficult to compare the results obtained [31]. 
The recent introduction of new molecular T. cruzi diagnostic 
tools on the market could greatly improve CD diagnosis and 
lead to the standardization of protocols [32,33].

Finally, molecular characterization studies of T. cruzi 
have sought to identify associations between DTUs and the 
clinical development of CD [34]. There are many molecular 
markers but no agreement on the use of a specific protocol 
[35]. The genetic diversity of the parasite could play a key 
role in the management of CD and must be taken into account 
when developing diagnostic tests [36].

The wide diversity in the available diagnostic methods 
and lack of consensus in their implementation prompted our 
group to look more closely at the problems of CD diagnosis 
and the molecular characterization of T. cruzi. Accordingly, 
the following objectives were defined: (i) to assess and 
compare different diagnostic techniques, both serological 
and molecular, for the different stages of CD infection; (ii) 
to establish cost-effective diagnostic algorithms for each 
stage; and (iii) to evaluate different approaches for the 
characterization of T. cruzi genotypes in adults and newborns.

Serological Diagnosis

According to the World Health Organization (WHO) 
recommendations [20], chronic CD serological diagnosis 
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requires positive results in at least two traditional tests, 
selectable from the enzyme-linked immunosorbent assay 
(ELISA), indirect fluorescent antibody test (IFAT), and indirect 
haemagglutination (IHA). In congenital cases, serological 
tests should be performed in infants aged >8 months to avoid 
the detection of maternal anti-T. cruzi IgG antibodies [26]. 
The option of performing the test later, at >10 months, has 
been recently proposed by the WHO Technical Group [37]. 
The study of IgG kinetics can be useful in the diagnosis of 
congenital infection [18], as well as parasitological methods 
and PCR in the first weeks of life [38-40]. However, direct 
techniques are not always effective for an early diagnosis 
of congenital T. cruzi infection and, in these cases, serology 
becomes necessary. Regarding IgM antibodies, their use 
as a diagnostic tool for congenital CD is limited in that the 
presence of other antibodies such as rheumatoid factor may 
produce false positive results [41]. 

 Preliminary Study

A preliminary study to assess the usefulness of four 
serological tests for general CD diagnosis, without specifying 
the stage of the disease, was carried out. A total of 247 
sera from patients suspected of having CD attending the 
Hospital de la Santa Creu i Sant Pau of Barcelona (Spain) 
during January 2009-December 2012 were analyzed by the 
following methods: (i) IFAT with T. cruzi epimastigotes used 
as the antigen (Trypanosoma cruzi IFA test system, Trinity 
Biotech, Bray Country, Wicklow, Ireland). Double dilutions of 

sera from 1:20 to 1:5120 were used, and a dilution of ≥1:40 
were established as the cut-off. (ii) An in house ELISA with 
sonicated epimastigotes of T. cruzi as the antigen (ELISAc) 
[42]. The reaction was quantified as units (U) and the cut-off 
was established at 20 U. (iii) Recombinant ELISA (ELISAr) 
using the TcF antigen (BioELISA Chagas, Biokit, Lliçà 
d’Amunt, Spain). The reaction was measured in absorbance 
and the signal-to-cut-off value (S/CO) was ≥1 with a gray-
zone from ≥0.9 to <1. (iv) A chemiluminescent microparticle 
immunoassay (CMIA) with the recombinant antigens FP3, 
FP6, FP10, and TcF (Architect Chagas, Abbott Laboratories, 
Wiesbaden, Germany). The reaction was measured in relative 
light units and the S/CO was ≥1 with a gray-zone from ≥0.8 
to <1.

A serum was considered as definitely positive when 
at least three of the four tests yielded a positive result 
and the same criterion were used for the negatives. Sera 
were considered doubtful when only two out of the four 
tests produced a coincident result. For their classification, 
doubtful sera were analyzed by a fifth technique, an in house 
Western blotting (WB) based on lysate T. cruzi epimastigotes 
[43]. The antigenic bands of the T. cruzi profile are 28, 32, 38, 
39, 40, and 48 KDa. A serum was considered positive when at 
least five out of the six bands of the pattern were recognized. 
The final interpretation of the results was considered as the 
reference standard for the subsequent calculations. Fifteen 
out of the 247 sera produced doubtful results (Table 1) and 
were excluded from the calculations.

Case IFAT (dil.) ≥1:40 ELISAc (U) ≥20 ELISAr (S/CO) ≥1 CMIA (S/CO) ≥1 WB (bands) ≥5/6 Age
1 P (1:40) P (53) N (0.06) N (0.31) N Adult
2 P (1:160) P (31) N (0.58) N (0.08) N Adult
3 P (1:40) P (29) N (0.11) N (0.08) N Adult
4 P (1:40) P (21) N (0.57) N (0.04) N Adult
5 P (1:40) P (28) N (0.64) N (0.08) N Adult
6 P (1:40) P (30) N (0.09) N (0.32) N Newborn
7 P (1:40) N (11) P (1.74) N (0.24) N Adult
8 P (1:80) N (13) P (1.50) GZ (0.87) N Newborn
9 P (1:40) N (16) N (0.38) P (5.23) N Newborn

10 P (1:160) N (17) N (0.17) P (3.00) N Newborn
11 N (1:20) P (21) N (0.61) P (3.96) N Newborn
12 N (1:20) P (26) N (0.76) P (4.17) N Newborn
13 N (1:20) P (27) N (0.88) P (4.45) N Newborn
14 N (1:20) P (32) N (0.87) GZ (0.87) N Adult
15 N (1:20) N (17) P (1.26) P (1.44) N Newborn

Table 1: Results produced by the doubtful sera (n = 15).
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The results obtained in each serum and test were 
compared to the final interpretation of results for their 
classification as true positives (TP), true negatives (TN), 
false positives (FP), or false negatives (FN). Based on 
this information, measures of diagnostic accuracy were 
calculated for each test.

Tests based on conventional antigens, IFAT and ELISAc, 
shared the largest number of positive sera (n=6), whereas 
recombinant tests, ELISAr and CMIA, gave the highest 
number of coincident negative results (n=6). All the doubtful 
sera tested negative by WB and were probably the result 
of FP reactions in the evaluated techniques. Conventional 
tests produced the highest number of positive reactions in 
the doubtful sera but most were close to the cut-off. On the 

other hand, all CMIA positive reactions in the doubtful sera 
came from children less than one year of age from chagasic 
mothers and could be attributed to the presence of maternal 
antibodies in the newborns.

The 232 samples remaining after the exclusion of the 
doubtful sera are shown in Table 2A. A review of the patient 
medical histories revealed that six sera classified as FP in the 
CMIA were from newborns. In these cases, serology values 
decreased over time, indicating the presence of passive 
antibodies. CMIA detected maternal antibodies for longer 
than the other tests, resulting in six positive sera improperly 
classified as FP. These samples were also excluded from the 
calculations, leaving a final panel of 226 sera (Table 2B). 

A
 IFAT ELISAc ELISAr CMIA

VP 145 146 145 146
FP 7 4 1 7*
VN 79 82 85 79
FN 1 0 1 0
 232 232 232 232

B

IFAT ELISAc ELISAr CMIA
VP 145 146 145 146
FP 7 4 1 1
VN 73 76 79 79
FN 1 0 1 0

226 226 226 226

Table 2: Summary of true and false positives and negatives for the four serological tests assessed. A) Results obtained after 
the exclusion of the 15 doubtful sera (n = 232). B) Results obtained after the exclusion of the 15 doubtful sera and the six sera 
incorrectly classified as false positives by CMIA (n = 226). * Six sera from newborns.

Measures of diagnostic accuracy for each test are shown 
in Table 3. ELISAc and CMIA showed the highest sensitivity, 
whereas the highest specificity was obtained with ELISAr 
and CMIA. CMIA also scored highest for accuracy and was 

therefore, the test with the best overall performance. These 
results prompted us to assess this new generation technique 
in two further studies, examining its diagnostic performance 
for both chronic and congenital CD.

Measure IFAT ELISAc ELISAr CMIA
Sensitivity

95% CI
99.32

97.63-100
100

99.66-100
99.32

97.63-100
100

99.66-100
Specificity

95% CI
91.25

84.43-98.07
95

89.6-100
98.75

95.69-100
98.75

95.69-100
Accuracy
95% CI

96.46
93.83-99.09

98.23
96.29-100

99.12
97.67-100

99.56
98.47-100

Table 3: Measures of diagnostic accuracy of the serological tests assessed (n = 226).
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Chronic CD Serological Diagnosis

The overall accuracy of Architect Chagas as a single test 
for the diagnosis of chronic CD was assessed in a study of 
315 serum samples collected from adults admitted to the 
Hospital de la Santa Creu i Sant Pau from January 2009 to 
December 2012 [28]. 

Samples were classified into four panels: Panel I 
(n=107): samples from chronic seropositive patients from 
CD endemic countries with coincident positive results by 
two ELISAs (ELISAc and ELISAr). Panel II (n = 125): samples 
from non-chagasic individuals from CD endemic (n=64) and 
non-endemic countries (n=61) with coincident negative 
results by ELISAc and ELISAr. Panel III (n=12): samples from 

individuals from endemic CD countries with discordant 
serological results by ELISAc and ELISAr and tested by 
WB for a final diagnosis (11 were considered negative 
and one positive). Panel IV (n=71): samples from patients 
with other infectious diseases to evaluate cross-reactions 
(eight Leishmaniasis, seven toxoplasmosis, six amebic 
hepatic abscess, three malaria, six strongyloidiasis, one 
visceral larva migrans, three cytomegalovirus, seven human 
immunodeficiency virus, fur parvovirus B19, five Epstein-
Barr virus, five hepatitis B virus, two hepatitis C virus, nine 
syphilis, and five Lyme borreliosis).

All samples were tested by the CMIA Architect Chagas 
assay according to the manufacturer’s instructions and the 
results obtained are shown in Figure 1. 

Figure 1: Overall serum value distribution of CMIA Architect Chagas. Black circles represent TP and TN results, red circles 
indicate FP results, and blue circles show results in the gray-zone. The dashed line represents the cut-off value established by 
the manufacturer (1 S/CO) and the dotted line indicates the point of 6 S/CO on the y-axis. In the box and whiskers plot, the 
median is shown by the line that cuts through the box, the upper edge of the box represents the 25th percentile, the lower edge 
represents the 75th percentile and the whiskers extend down to the minimum value and up to the maximum value. 

The test showed a high sensitivity (100%) and specificity 
(97.6%) with only six FP, five of which were due to cross-
reactions in sera from Leishmaniasis patients (panel IV). 
The S/CO of these FPs varied from 1.83 to 4.57 (Figure 1). 
The other FP observed came from panel II and belonged 
to a patient with Leishmaniasis ruled-out and without 
information of other possible pathologies. The test also gave 
a result in the gray-zone in panel III in a serum previously 
characterized as negative by WB. No false negative results 
(FN) for Architect Chagas were observed. Most (87%) TP 
sera (n = 108: 107 from panel I and one from panel III) gave 
values >6 S/CO.

The high sensitivity of the method probably comes from 
the four recombinant proteins used as the antigen, which in 

aggregate represent 14 different antigenic regions present 
throughout the life cycle of T. cruzi [44-46]. This, coupled 
with the use of chemiluminescence as the detection system, 
makes Architect Chagas a high-performance technique. 
Other authors have reported sensitivity of around 100% 
for the same method [47,48] and the Pan American Health 
Organization (PAHO) a slightly lower 98.9% [49]. The large 
number of antigens, as well as providing high sensitivity, may 
also explain the cross-reactions with Leishmania spp., which 
should be taken into account in areas endemic for both, 
visceral Leishmaniasis and CD. 

According to our results, CMIA Architect Chagas can be 
used as a single technique for screening in blood banks and 
for routine diagnosis in clinical laboratories of non-endemic 



Citation: Yolanda Cajal, et al. Trends in Pharmaceutical and Food Sciences I. Pharm Res 2020, 000eB-001.

37 Open Access Journal of Pharmaceutical Research

areas. Only gray-zone and positive sera with results ≤6 S/CO 
would need to be confirmed by a second serological assay to 
rule out FP sera and cross-reactions with Leishmania species. 

Diagnosis of Congenital Trypanosoma cruzi 
Infection

The utility of five serological tests for the diagnosis and 

follow-up of congenital CD was assessed by the analysis of 
peripheral blood samples and sera from 67 newborns of 
Latin American Chagas-infected mothers admitted to three 
hospitals of Barcelona (Hospital de la Santa Creu i Sant Pau, 
Hospital Clínic and Hospital Sant Joan de Déu) from April 
2003 to December 2015 [50]. The mothers of the newborns 
were diagnosed by two serological assays [20].

Mother 0-1m >1-6m >9-12m >12m ≤1m pt. 5-7m pt. ≥12m pt.

Ca
se

 1

PCR - - - Pos - - - -
IFAT ≥1:5120 1:2560 1:640 1:640 - 1:640 - 1:80

ELISAc 169 - 76 - - - - 42
ELISAr 8.39 8.52 6.82 6.67 - 8.70 - 1.63
CMIA 12.31 - 7.97 - - - - 3.57
WB 6/6 - 5/6 - - - - 0/6

Ca
se

 2

PCR Pos - - - Pos - Neg Neg
IFAT 1:1280 - - - 1:1280 - - 1:80

ELISAc 200 - - - 162 - 116 54
ELISAr 7.60 - - - 5.99 - 5.11 1.35
CMIA 11.07 - - - 12.06 - 10.29 7.66
WB 5/6 - - - 6/6 - 5/6 0/6

Ca
se

 3

PCR Pos Pos - - - - - Neg
IFAT 1:2560 1:1280 - - - 1:320 - -

ELISAc 178 279 - - - 95 - 8
ELISAr 5.78 5.56 - - - 3.52 - 0.2
CMIA 10.9 11.22 - - - 5.02 - -
WB 5/6 5/6 - - - 3/6 - -

Ca
se

 4

PCR Pos Neg - - Pos - Neg -
IFAT 1:1280 1:1280 - - 1:1280 - 1:320 -

ELISAc 159 141 - - 143 - 105 -
ELISAr 2.65 3.1 - - 6.41 - 5.77 -
CMIA 12.81 - - - 11.64 - 7.21 -
WB 5/6 - - - 5/6 - 5/6 -

Table 4: Results obtained in the congenitally infected newborns (n = 4). 
m: months; pt: post-treatment.

Samples were classified into five groups according to 
the age of the infant when the sample was collected: birth-1 
month, >1-6 months, >6-9 months, >9-12 months, and 
>12 months. Sera were tested by five serological assays: 
IFAT, ELISAc, ELISAr, CMIA, and WB. In the case of WB, a 
serum was considered positive when at least two bands of 
the pattern were recognized and also when a single band 
matched the intensity of the same band in the positive 

control. Peripheral blood samples were analyzed by qPCR 
[51], after DNA extraction with the High Pure PCR Template 
Preparation Kit (Roche, Mannheim, Germany), according to 
the manufacturer’s instructions. RNAse P human gene (Life 
Technologies, Austin, TX) was included as an internal control 
of amplification (IAC). A sample result was considered valid 
when the RNAse P was efficiently amplified and positive 
when the cycle threshold (Ct) was ≤40 in at least one of the 
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three replicates. 

An infant was considered infected with T. cruzi when a 
positive qPCR was obtained and/or the level of IgG antibodies 
was maintained during the first year of life, as determined 
by at least two serological tests. Based on these criteria, four 
out of the 67 infants were diagnosed as congenitally infected 
by T. cruzi. The remaining 63 newborns were considered not 
infected due to negative qPCR and a drop in IgG antibodies. 
 

The results obtained in the four congenitally infected 
newborns are shown in Table 4. Positive results were 
obtained by all serological techniques performed and 
an antibody decline was only detected after treatment. 
Furthermore, the PCR was positive at some moment in the 
follow-up and it became negative after treatment in all tested 
cases. In case 4, a negative PCR result was obtained at birth 
and the infection was confirmed after one year, which could 
be explained by a late infection during delivery. 

In non-infected infants, from 12 months onwards all 
serological tests produced negative results in all analyzed 
samples, with the exception of the CMIA Architect Chagas 
(one gray-zone sample detected) (Figure 2). Notably, despite 
a declining trend in passive antibodies, none of the serological 
assay results seroreverted in any of the non-chagasic infants 
in the period >9-12 months, when maternal antibodies 
should have disappeared completely and a positive serology 
indicates a congenital infection [26].
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Figure 2: Results obtained by CMIA Architect Chagas 
during the five follow-up periods of non-infected infants. 
The dashed line represents the cut-off value established by 
the manufacturer (1 S/CO). In the box and whiskers plot, 
the median is shown by the line that cuts through the box, 
the upper edge of the box represents the 25th percentile, 
the lower edge represents the 75th percentile and the 
whiskers extend down to the minimum value and up to the 
maximum value.

According to our results, Architect Chagas is the most 
optimal for chronic CD diagnosis of all the studied tests. 
However, precisely due to its high sensitivity, it is not the 
best option for the diagnosis of congenital infection, at least 
when only on test is carried out at nine months of age with a 
cut-off ≥1. Architect Chagas detects maternal IgG antibodies 
in the serology of the newborn for a longer period, thus 
delaying the negativization of passive antibodies and making 
it difficult to diagnose or rule out the disease at an early 
stage. However, it should be emphasized that in non-infected 
infants of >6-9 months, at which point residual maternal 
antibodies were still detected, all samples yielded results <6 
S/CO by Architect Chagas. In the case of infected newborns, 
results for this period are not available but in two infants of 
>12 months, the results were far higher than 6. Thus, after 
a slight cut-off modification Architect Chagas could be very 
useful in congenital CD diagnosis with as well as in chronic 
CD, but further studies are needed to confirm these results.
  

Protocols and Cost-Effectiveness

There is evidence that the global financial crisis 
and austerity measures have significantly affected the 
management of CD in Europe [52]. Although T. cruzi infection 
has become a real problem for countries that receive 
migrants from endemic areas [3,53], not all European states 
have programs to monitor the disease and there is a clear 
need for a common intervention program [52,54,55]. 

In 2002, the WHO established the criteria for CD 
diagnosis [20]. Today, more than a decade later, and despite 
the availability of new and potentially more efficient 
methodologies, the same recommendations are in place. 
Recently, the PAHO published an update of the guidelines for 
CD diagnosis and treatment, but it continues to recommend 
the old diagnostic standard to confirm a suspicious case of 
CD, i.e. the coincident result of two serological tests [49].

In this context, on the basis of the results we obtained 
in chronic CD patients, we propose the application of a 
high-performance technique, CMIA Architect Chagas, as an 
alternative for the serological diagnosis of chronic CD. The 
test has enough discriminatory power to correctly classify 
negative samples and the application of a second serological 
technique would only be necessary in samples with results 
in the gray-zone and positive values ≤6, which represented 
6.3% of the samples analyzed in our study. The application 
of this proposal would result in significant savings in the 
management and control of CD. In our hospital, the savings 
would be more than €4,000/year compared to the cost of 
performing two tests for all sera, as recommended by the 
WHO [20]. 

In a posterior published research article, Pérez-Ayala, 
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et al. [56] proposes Architect Chagas as a single test for the 
diagnosis of chronic CD using a cut-off ≥3.80 S/CO. According 
to the authors, only positive results with an S/CO from 0.80 
to 3.80 need to be confirmed by a different diagnostic test 
or the provision of an additional sample. Although Pérez-
Ayala, et al. [54] analyzed a far larger number of samples 
than we did, they did not include patients with other 
infectious diseases such as Leishmaniasis to evaluate cross-
reactions. In our study, two out of the six FP sera produced 
values higher than 3.80, which might explain why the cut-
off value they propose is slightly lower. In fact, the authors 
highlight the impossibility of evaluating cross-reactions as 
the main limitation of their study and recommend the use 
of an S/CO ≥3.80 in immigrants without clinical suspicion of 
Leishmaniasis. However, patients infected with Leishmania 
spp. do not always show symptoms and asymptomatic cases 
remain a major challenge for diagnosis [57]. Furthermore, 
mixed infections of T. cruzi-Leishmania spp. can also occur 
and in fact have already been reported in countries such as 
Bolivia and Argentina [58,59].

In a more recent study conducted in Italy, Antinori, et 
al. [60] reported 100% sensitivity and 99.8% specificity for 
Architect Chagas. The authors agreed with our proposed 
strategy and, in their case, 10% of the global samples had to 

be confirmed by a second serological test.

Screening programs for Chagas disease in pregnant Latin 
American women and their children are still uncommon 
in non-endemic areas [61,62]. Only four European regions 
have implemented official prevention strategies to avoid the 
transmission of congenital Chagas disease: Tuscany in Italy 
[63] and Catalonia [64,65], Galicia [66], and Valencia [67] in 
Spain. The diversity of procedures used in control programs 
is extremely high, which emphasizes the need for a common 
strategy suitable for all regions. 

In order to improve congenital T. cruzi infection diagnosis 
and according with the results obtained in newborns, we 
propose a cost-effective strategy that reduces the number of 
tests in the algorithms implemented in European regions and 
entails significant cost savings (Figure 3). In this proposal, 
a parasitological test is performed at birth because contact 
with the mother and newborn after post-delivery discharge 
is frequently lost [61]. If this is not possible, the protocol 
could start one month after birth with a parasitological test 
and/or a PCR. If negative, a serological test would be carried 
out at nine months, which if positive, would be followed by 
another at around 12 months for confirmation.

Figure 3: Diagram for congenital T. cruzi infection diagnosis. 

The high T. cruzi burden in the first month of life [11,29,68] 
facilitates detection and test results can be considered as TP 
because a possible transmission of T. cruzi DNA from mother 
to fetus at birth would not be detected. The first serology is 
proposed at nine months because at birth positive results are 
due to the presence of passive maternal antibodies (97.4% of 
positivity in the first samples in our study). The real value of 
serology at birth lies in observing the basal level of antibodies 
for comparison with the serology at nine months to detect 
a possible drop in IgG antibodies and consequently exclude 
T. cruzi infection. However, this option entails high costs 
because of the large number of infants requiring a double 
serology determination. By applying the first serology at 
nine months, most infants would give negative results and 
fewer cases would require a follow-up at 12 months. 

Our proposal has contributed to the improvement of the 
screening programme for preventing congenital transmission 
in Catalonia implemented in 2010 by the Catalonian Health 
Department [64], which has been updated by the inclusion of 
a PCR at one month of age and a serology follow-up at 9-12 
months [65].

Molecular Diagnosis

Molecular methods, particularly PCR, represent an 
alternative to parasitological diagnosis, affording high 
sensitivity and not requiring skilled personnel for T. cruzi 
identification [18,51,69]. The qPCR is being increasingly 
used as a diagnostic tool in laboratories, and numerous 
strategies have already been developed [51,70-73]. In the 
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case of congenital infection, molecular tools may improve 
early diagnosis [38-40,74] but are not recommended until 
one month after birth, when the parasite burden is high 
[11,29,68] and also to avoid FPs results arising from parasite 
DNA transmission from mother to fetus [11].

The recent development of automated DNA extraction 
methodologies coupled to PCR systems is an important step 
toward protocol standardization, the main challenge in T. 
cruzi molecular diagnosis. In contrast with traditional and 
manual DNA extraction kits, which commonly used silica 
columns, automated extraction systems are usually based 
on magnetic separation. In reference to the subsequent 
DNA amplification by PCR, the most widely used molecular 
targets for T. cruzi diagnosis are the nuclear repetitive 
sequence of the satellite DNA (SatDNA) [51,75,76] and the 
mini-circle of the kinetoplastid DNA (kDNA) [73,77-80]. Both 
sequences are represented in a high number of copies per 
genome and have been satisfactorily test by international and 
multicentric studies [31,81]. Advantages of these combined 
technologies include time saving and the prevention of 
possible contamination of samples and reagents by human 
manipulation. 

We therefore assessed the usefulness of an automated 
DNA extraction system based on magnetic particles (EZ1 
Virus Mini Kit v2.0, Qiagen) combined with a commercially 
available qPCR assay targeting the satellite DNA (SatDNA) 
of T. cruzi (RealCycler CHAG, Progenie Molecular), a 
methodology used for routine diagnosis in our hospital. 
It was compared with a well-known strategy combining a 
commercial DNA isolation kit based on silica columns (High 
Pure PCR Template Preparation Kit, Roche Diagnostics) with 

an in house qPCR also targeting the SatDNA. We analyzed 
123 blood samples collected from Hospital de la Santa Creu 
i Sant Pau and Hospital Clínic of Barcelona during January 
2013-March 2017 [32]. 

Samples were classified into three panels: Panel I (n = 36): 
samples from non-infected individuals (19 newborns with 
chagasic mothers, 5 adults from CD endemic countries, and 12 
adults from non-endemic countries) with coincident negative 
results by two serological tests. Newborns were followed-up 
by serology until negativization. Panel II (n=65): samples from 
non-treated chronic chagasic patients with coincident positive 
results by two serological tests. Panel III (n=22): samples 
experimentally spiked with cultured epimastigotes of T. cruzi 
stocks and non-spiked samples as controls. 

Samples were distributed among eight different 
methodology protocols from A to H combining i) sample 
treatments: guanidine EDTA-blood (GEB) or EDTA blood 
(EB), ii) DNA extraction methods: Roche silica columns or 
Qiagen magnetic particles, and iii) qPCR approaches: in house 
or RealCycler, as shown in Table 5. Protocol A corresponds to 
the reference standard, previously approved by international 
studies [31,81], and protocol H is the fully automated 
methodology for its assessment (EB, Qiagen magnetic 
particles extraction method and RealCycler qPCR). For the 
in house qPCR a sample was considered inhibited when the 
internal amplification control (RNAse P human gene) gave 
negative results or the Ct was >29 and positive when the Ct 
of the target was ≤40 in at least one of the three replicates. 
In the case of the RealCycler CHAG, a sample was considered 
inhibited when the IAC gave negative results or the Ct was 
>35 and positive when the Ct of the target was ≤40.

Sample 
treatment DNA extraction method qPCR

N Positive 
samples

Inhibited 
samples

EB GEB Roche silica 
columns

Qiagen magnetic 
particles In house Real 

Cycler
A X X X 123 72 0

B X X X 123 59 0

C X X X 62 8 35

D X X X 62 25 17

E X X X 25 11 0

F X X X 25 11 0

G X X X 64 15 2

H X X X 64 15 0

Table 5: qPCR results of samples analyzed according to protocols used (A-H).

A high percentage of inhibition was observed in protocols 
C and D (Table 5), both using GEB and magnetic particles 

as extraction method but no inhibition appeared when the 
DNA was extracted within the first week after the guanidine 
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treatment. Thus, the inhibition is related to the time elapsed 
between the guanidine treatment and the DNA extraction. 
GEB samples are therefore unsuitable for the DNA extraction 
method based on magnetic particles, at least when samples 
are not processed immediately.

Regarding qPCR, differences were related to the number 
of replicates amplified in each method (three in the in house 
PCR and one in RealCycler). An equal number of replicates 

in both methods would probably significantly reduce the 
discordant results. 

Results obtained by each protocol were compared with 
values of protocol A. For each protocol combination, Cohen’s 
kappa coefficient (K) describing the level of concordance 
between two tests was calculated. The K value of 0 means no 
agreement and 1 perfect agreement [82]. The results of the 
comparison between protocols are summarized in Table 6.

Protocols A-B A-C A-D A-E A-F A-G A-H
N 123 62 62 25 25 64 64
K 0.79 0.17 0.29 0.92 0.76 0.92 1

Positive samples 59 8 24 11 10 15 15
Inhibited samples 0 35 17 0 0 2 0

N excluding inhibition 123 27 45 25 25 62 64
Discordant samples excluding inhibition 13 8 10 1 3 0 0

K value excluding inhibition 0.79 0.45 0.53 0.92 0.76 1 1

Table 6: Cohen’s kappa coefficient (K) results obtained for the different protocol combinations.

Protocols A and H were the only combination showing 
perfect agreement and no inhibition. When variations from 
the original protocols (A and H) were applied, the results 
were less convincing. The overall process therefore needs to 
be fined-tuned to obtain satisfactory results. In a quantitative 
analysis we compare the protocols by calculating a Spearman 
rank correlation coefficient (rs), in which 0 means no 
association and 1 a very strong relationship. The rs = 0.97, 
indicating high positive association between protocols. The 
15 positive samples in both protocols were also analyzed by 
a Bland-Altman plot to quantify the agreement (mean bias = 
0.12 Log10 par. eq./10 mL and SD = 0.43) [83]. The obtained 
results indicated that protocols A and H were equivalent and 
interchangeable [32].

The application of this totally automatic and commercial 
methodology (protocol H) in CD diagnosis allows results to 
be obtained easily and with minimum handling in just over 
two hours, which could encourage the implementation of T. 
cruzi PCR in more laboratories. 

Trypanosoma cruzi Molecular Characterization

The genetic diversity of T. cruzi also plays a key role 
in CD diagnosis. Although the causes of the differences in 
the clinical presentation of CD are still not understood, 
the genetic variability of the parasite is closely linked to 
many T. cruzi biomedical properties such as growth ability 
in culture, pathogenicity in mice, transmissibility by the 
vector, and susceptibility to drugs [84]. The taxonomy of T. 
cruzi, always complicated, has also been hampered by the 

lack of standardized molecular typing methods and the use 
of several alternative nomenclatures [85]: biodemes [86], 
zymodemes [87,88], clonets [89,90], schizodemes [91], 
and DTUs [13,16], among others. However, a high degree of 
consensus has currently been reached on the nomenclature 
based on DTUs. 

We assessed three different molecular typing approaches 
for the characterization of T. cruzi genotypes to identify 
DTUs in 75 peripheral blood samples from Latin American 
migrants who attended seven hospitals in the Barcelona area 
from October 2009 to February 2014 [92]. The inclusion 
criteria were samples with a positive result in two qPCRs, 
one based on SatDNA [51] and the other the conserved 
region of the minicircle of the T. cruzi kDNA [73]. The 20 
samples with two positive PCRs were from Bolivian patients, 
comprising 14 adults; two children aged 10 and 13 years, 
and four newborns from chagasic mothers. 

DTU characterization was performed using the following 
methods: i) a sequential flowchart based on multiplex qPCR 
using Taqman probes (MTq-PCR) [35]; ii) a conventional 
PCR flowchart [93,94]; and iii) SatDNA sequencing [92]. The 
flowcharts allowed the classification of T. cruzi populations 
at the level of a single DTU, whereas SatDNA sequencing 
classified samples as type I (TcI-III), type II (TcII-IV) or 
type I/II (TcV/VI) hybrid according to the position of a set 
of single nucleotide polymorphisms (SNPs) observed in the 
SatDNA sequence.

Ten out of the 20 samples gave positive results in the 
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flowcharts, 5 TcV, 3 TcII/V/VI and 2 mixed infections, one TcV 
plus TcII/VI and the other TcV plus TcII (Table 7). Five out of 
the six neonates and pediatric samples were characterized. 
The high parasitic load usual in congenitally infected infants 
facilitates DTU characterization [29,95]. All the 20 samples 
analyzed gave positive results with SatDNA sequencing, 19 
classified as type I/II hybrid and the remaining sample as 
type I (undetectable results in the flowcharts). As expected, 

the most frequent DTU was TcV, being the most common in 
Bolivia, the country of origin of our patients, and predominant 
in peripheral blood [94,96,97]. The usual limitation of most 
of characterization studies is precisely their use of peripheral 
blood samples. Other genotypes of the parasite could be 
present in low parasitic loads in blood or tissues without 
detection [98,99].

Age group N SatDNA 
par.eq./mL

Characterized 
cases (PCR) DTU Characterized cases 

(SatDNA seq.)
SatDNA 

seq. type

Newborns (≤10 m.o.) 4 937.7-20.2 4 3:TcV
1:TcV+TcII/VI 4 4: I/II

Pediatric cases (10, 13 y. o.) 2 1.5-NQ 1 1:TcV 2 2:I/II

Chronic adults (26-43 y. o.) 14 10.5-NQ 5
1:TcV
3:TcII/V/VI 
1:TcV+TcII

14 1:I 13:I/II

Table 7: DTU results obtained from the 20 samples analyzed.
NQ: non-quantifiable; m.o.: months-old; y.o.: years old; Limit of quantification (LOQ) for SatDNA qPCR: 1.53 par. eq./mL [72].

According to our results, PCR flowcharts are useful in 
cultured stocks and samples in the acute phase of CD but are 
insufficiently sensitive for samples from chronic CD patients 
due to their lower parasitemia. The MTq-PCR flowchart is 
fast, easy to interpret and avoids carry-over contamination 
[35]. The conventional PCR flowchart is more laborious, but 
it is cheaper and allows DTU identification in specimens with 
a lower parasitic burden than MTq-PCR. SatDNA sequence 
analysis enabled us to increase the number of characterized 
cases in chronic CD patients although it cannot discriminate 
between T. cruzi populations at the level of a single DTU. 
Indeed, SatDNA is a target with proven efficiency and widely 
used in CD diagnosis [31]. Thus, the use of the same target 
for the diagnosis and subsequent genotype characterization 
would represent a great advance. Ramírez, et al. [100] 
published an improved version of SatDNA sequencing that 
allows the identification of SatDNA TcI/III, TcII and TcIV 
signature patterns but is not yet capable of discriminating 
between the presence of hybrid lineages (TcV and VI) and 
the existence of mixed infections with TcI or III and TcII. 
Further studies in the field are needed but a door has clearly 
opened to the possibility of typing samples with very low 
parasitic loads, such as those from chronic patients. This, 
together with the possible association between DTUs and the 
clinical presentation of the disease, could bring considerable 
progress in the treatment of CD in the near future.

Final Considerations

More than a hundred years after the discovery of T. 
cruzi as the etiological agent of CD, diagnosis of the infection 
and characterization of the parasite remain challengingly. 

Despite the implementation and commercialization of new 
tests, established diagnostic protocols have not changed 
significantly since 2002, when the WHO published their 
recommendations for CD diagnosis. 

The studies summarized here contribute to improving 
the serological diagnosis of CD. Based on the results, 
we propose CMIA Architect Chagas as a single test for 
chronic cases and a lower number of tests for congenital 
infections with respect to the official European strategies. 
Our satisfactory evaluation of a fully automated molecular 
methodology could also lead to improvements in diagnosis, as 
could the assessment of different typing methods for T. cruzi 
characterization, although it was not possible to establish an 
optimal method for all cases. PCR flowcharts achieved higher 
sensitivity and are useful in cases of acute infection, with 
high parasitic burden, whereas SatDNA sequencing obtained 
higher specificity and is more suitable for chronic patients 
with low parasitemia. 

Conclusion

i) Architect Chagas is a highly effective assay for chronic 
CD diagnosis, with 100% sensitivity, and allowed the 
correct diagnosis of most samples when applied as a single 
technique. In contrast, precisely because of it high sensitivity, 
Architect Chagas is not the most suitable technique for T. cruzi 
congenital infection when a single serology is performed at 
nine months. 

ii) Architect Chagas can be used as a single test for chronic CD 
diagnosis. Only gray-zone and positive serum samples with 
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a result ≤6 S/CO would need to be confirmed by a second 
serological assay to avoid FP sera and cross-reactions with 
Leishmania species. The application of this proposal would 
result in important savings in the cost of CD diagnosis and 
therefore in the management and control of the disease. 

iii) For congenital infection diagnosis, we propose a new, 
more cost-effective strategy with a reduced number of 
tests. The protocol could start at one month of age with a 
parasitological test and/or a PCR. If negative, a serology 
would be carried out at nine months, followed by a 
confirmatory serological testing at around 12 months of age 
in case of positive results. The application of this proposal 
entails significant cost savings. 

iv) For molecular diagnosis, the fully automated and 
commercial protocol assessed (EB samples, EZ1 Virus Mini 
Kit v2.0 and the RealCycler CHAG) is a good option for 
routine diagnosis of T. cruzi infection. When variations of the 
original protocols were applied, less convincing results were 
obtained, which indicates a need to fine-tune the overall 
process for satisfactory results. Our findings may contribute 
to the standardization of protocols between laboratories and 
the application of qPCR in diagnostic laboratories associated 
with health centers.

v) Finally, in the case of T. cruzi characterization, PCR-
based flowcharts proved very useful for DTU identification 
in T. cruzi natural populations during acute infection but 
are not sensitive enough for the analysis of patients with 
low parasitic loads. SatDNA sequence analysis cannot 
discriminate between T. cruzi populations at the level of a 
single DTU but it enabled us to characterize a higher number 
of cases in chronically infected patients. The most frequent 
DTU was TcV, the most common in Bolivia and predominant 
in peripheral blood.
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Abstract

The ability to detect changes in nutrient levels and respond appropriately to such changes is essential for the proper 

functioning of living organisms. Adaptation to the high degree of variability in nutrient intake requires precise control of 

metabolic pathways. Mammals have developed different mechanisms to detect the abundance of nutrients such as sugars, 

lipids and amino acids and provide an integrated response. These mechanisms include the control of gene expression from 

transcription to translation. Frequently, alterations in these pathways underlie the onset of several metabolic pathologies such 

as obesity, insulin resistance, type 2 diabetes, cardiovascular diseases or cancer. In this context, the complete understanding 

of these mechanisms may improve our knowledge of metabolic diseases and may offer new therapeutic approaches based 

on nutritional interventions and individual genetic makeup. The aim of this chapter will be to provide examples about the 

molecular mechanisms that connect nutrients’ levels, gene expression and metabolic homeostasis.

Keywords:  Nutrients; Metabolic homeostasis; Obesity

Abbreviations: GCN2: General Control 2; eIF2: Eukaryotic 
Initiation Factor 2; WAT: White Adipose Tissue; UCP1: 
Uncoupling Protein 1; BAT: Brown Adipose Tissue; AARE: 
Amino Acid Response Element; FGF: Fibroblast Growth 
Factor; PPAR: Peroxisome-Proliferator-Activated Receptor; 
FASN: Fatty Acid Synthase,; WT: Wild Type; HSL: Hormone-
Sensitive Lipase; HFD: High-Fat Diet; LPD: Low-Protein Diets; 
PREDIMED: Prevención Con Dieta Mediterránea; ChREBPb: 
Carbohydrate-Responsive Element Binding Protein; scWAT: 
Subcutaneous White Adipose Tissue.

Introduction

The discovery of the galactose operon in bacteria 
represented a key finding for the study of regulation of 
metabolism. That pioneering work showed how, by modifying 
the level of expression of genes that code for specific 
enzymes, in response to the presence of certain nutrients 
in the environment, bacteria can adapt their metabolism 
to meet their nutritional needs, and connected, for the first 
time, changes in enzyme activity with transcriptional control 
of gene expression [1]. It is now commonly accepted that also 
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in complex organisms transcriptional regulation contributes 
to metabolic homeostasis.

The alteration of the mechanisms controlling gene 
expression (from transcription to translation), may lead to 
the development of metabolic diseases. Thus, understanding 
the effect of nutrients on gene expression may improve 
our knowledge of metabolic diseases and may offer new 
therapeutic approaches based on nutritional interventions 
and individual genetic makeup. For instance, the risk of 
having a metabolic syndrome caused by a disruption of 
energy homeostasis is associated with overweight and 
obesity. This association stresses the link between lipid and 
glucose metabolism. 

The purpose of this chapter is to summarize some of 
our recent results showing how transcriptional control 
participates in homeostatic energy balance; particularly, 
how the content of protein and amino acids in the diet 
and possibly, other bioactive compounds, modulate 
transcriptional activity to achieve metabolic homeostasis.

Activating Transcription Factor 
4-Dependent Induction Of FGF21 During 
Amino Acid Deprivation

Mammals have a wide range of mechanisms to detect 
and respond to episodes of malnutrition. Often starvation 
correlates with a lack of amino acids. The starvation of amino 
acids initiates a cascade signal transduction that begins with 
the activation of GCN2 (general control 2) nonrepressible 
kinase, phosphorylation of eIF2 (eukaryotic initiation factor 
2) and increased synthesis of ATF4 (activation transcription 
factor 4) [2]. The link between amino acid intake and lipid 
metabolism causes the availability of amino acids in the diet 
to alter metabolic pathways beyond protein homeostasis. 
The activation of GCN2 in response to a leucine deprivation 
in mice results in a decreased fatty acid synthase activity 
and lipogenic gene expression in liver, and increased 
mobilization of lipid stores [3]. In addition, increased 
expression of β-oxidation genes and decreased expression 
of lipogenic genes and activity of fatty acid synthase in 
WAT (white adipose tissue), and increased expression of 
UCP1(uncoupling protein 1) in BAT (brown adipose tissue), 
has been observed [4,5]. GCN2 activated by its binding to 
any uncharged tRNA molecule, triggers the amino acid-
response signal transduction pathway [6,7]. Although global 
protein synthesis is reduced, the translation of a group 
of mRNA species is increased as a part of this response. 
Among these is ATF4 [8,9] a transcription factor that binds 
to CARE, (C/EBP (CCAAT/enhancer-binding protein)/ATF-
response element); also named AARE (amino acid response 

element) and modulates a wide spectrum of genes involved 
in the adaptation to dietary stress [10]. Food deprivation 
reduces free intracellular amino acid, and increases eIF2α 
phosphorylation and ATF4 mRNA levels in skeletal muscle 
[11]. FGF (fibroblast growth factor) 21 is a member of the 
FGF family, predominantly produced by the liver, but also 
by other tissues such as WAT, BAT, skeletal muscle and 
pancreatic β- cells [12-15]. FGF21 expression in liver is under 
tight control by PPAR (peroxisome-proliferator-activated 
receptor) α [16-19], it is induced in the liver during fasting 
and its expression induces a metabolic state that mimics 
long-term fasting. Thus, FGF21 is critical for the induction 
of hepatic fat oxidation, ketogenesis and gluconeogenesis, 
which are metabolic processes critical for the adaptive 
metabolic response to starvation [20].

We have shown that the hormone FGF21 is induced 
by amino acid deprivation both in mice liver and cultured 
HepG2 cells. We have identified the human FGF21 gene as a 
target gene for ATF4 and we have localized two evolutionary 
conserved ATF4-binding sequence in the 5’ regulatory region 
of the human FGF21 gene. These sequences are responsible 
for the ATF4- dependent transcriptional activation of this 
gene (Figure 1) [21]. The ATF4-dependent increase in FGF21 
expression has been confirmed in mice with autophagy 
deficiency in skeletal muscle and in liver [22]. Interestingly, 
these mice are protected from diet-induced obesity (DIO) and 
insulin resistance. These results add FGF21 gene induction 
to the transcriptional program initiated by increased levels 
of ATF4 and offer a new mechanism for the induction of the 
FGF21 gene expression under nutrient deprivation

Figure 1: The starvation of amino acids initiates a cascade 
signal transduction that begins with the activation of GCN2, 
phosphorylation of eIF2 and increased synthesis of ATF4.
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FGF21 Mediates the Lipid Metabolism 
Response to Amino Acid Starvation

In addition to GCN2-dependent inhibition of fatty acid 
synthase (FASN) activity, expression of lipogenic genes in 
liver, and increased mobilization of lipid stores in response 
to leucine deprivation in mice described above, the following 
have been observed: increased expression of β-oxidation 
genes, decreased expression of lipogenic genes and activation 
of FASN in WAT, and increased expression of Ucp1 in BAT 
[4,5].

The coincidence between the metabolic response to 
essential amino acid deprivation and to FGF21, and the 
induction of FGF21 under amino acid deprivation [21] led 
us to consider that FGF21 could be an important mediator 
between amino acid deprivation and lipid metabolism in 
liver, WAT, and BAT.

Figure 2: Working model of the FGF21 regulatory pathway 
under leucine deprivation.

To investigate this hypothesis, we examined the response 
of FGF21-deficient mice to deprivation of the essential 
amino acid leucine. As expected, we found a huge increase 
in FGF21 expression in the liver of wild-type (WT) animals, 
along with a repression of lipogenic genes after 7 days 
of leucine deprivation. In this condition, FGF21-deficient 
mice developed liver steatosis caused by unrepressed 
expression of lipogenic genes. In WAT, the expression of 
lipogenic genes was also repressed and the phosphorylation 
of hormone-sensitive lipase (HSL) was increased under 
leucine deprivation. The absence of leucine also induced an 
increase in the expression of Ucp1 and type 2 deiodinase 
(Dio2) in BAT. We found that all these effects in WAT and BAT 
were also impaired in FGF21-deficient mice. These results 

show the involvement of FGF21 in the regulation of lipid 
metabolism during amino acid starvation, thus reinforcing 
its important role as an endocrine factor in coordinating 
energy homeostasis under a variety of nutritional conditions 
[23] (Figure 2).

A Low-Protein Diet Induces Body Weight 
Loss and Browning of Subcutaneous 
White Adipose Tissue through Enhanced 
Expression of Hepatic Fibroblast Growth 
Factor 21 (FGF21).

Methionine-deprived mice show a phenotype comparable 
to that of leucine-deprivation, including resistance to a high-
fat diet (HFD), improved glucose homeostasis, increased 
fatty acid activation and oxidation in liver, enhanced lipolysis 
in WAT, and increased UCP1 expression in BAT. The induction 
of hepatic FGF21 expression under these conditions was 
found to be accompanied by an increase in FGF21 protein 
levels in serum [24,25]. In order to facilitate the translation 
of these findings to humans, we focussed our work on low-
protein diets (LPD) instead of amino acid-deficient diets. 
Protein restriction brings about weight loss and an increase 
in both food intake and energy expenditure [26]. Moreover, a 
LPD induces thermogenic markers in BAT of obese rats [27]. 
Serum concentrations of FGF21 in both rodents and humans 
increase upon exposure to an LPD, regardless of total calorie 
intake. This observation thus, reveals that FGF21 is likely to 
be involved in the metabolic response to protein-restricted 
diets [28].

To study the effects of a LPD on lipid metabolism, we 
examined the metabolic response of wild-type and FGF21 
liver-specific knockout mice to a LPD (up to 5% of energy as 
protein). A decreased in dietary protein content induced a 
huge increase in FGF21 serum levels, significant weight loss, 
and an increase in the expression of UCP1 in the subcutaneous 
WAT of wild-type mice. Remarkably, no effects were observed 
in FGF21-deficient mice, thereby indicating that the absence 
of FGF21 blunts or completely blocks the response to a LPD 
in this mouse model. To corroborate these results in humans, 
we evaluated whether protein intake is associated with 
circulating levels of FGF21. We calculated protein intake 
through nutritional questionnaires and determined the 
serum levels of FGF21 in 78 individuals randomly selected 
from two nodes of the PREDIMED (Prevención con Dieta 
Mediterránea) trial. As with the animal model, an inverse 
correlation between circulating FGF21 levels and protein 
intake was observed [29] (Figure 3).

The data collected from humans raises the possibility 
of investigate the dietary modulation of circulating levels 
of FGF21 as an alternative approach to its pharmacological 
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administration. 

Figure 3: Molecular mechanisms by which a LPD exerts its 
metabolic effects through the induction of hepatic FGF21 
expression and browning of scWAT.

Lyophilized Maqui (Aristotelia Chilensis) 
Berry Induces Browning in the Subcutaneous 
White Adipose Tissue and Ameliorates the 
Insulin Resistance in High Fat Diet-Induced 
Obese Mice.

Stimulation of BAT and the induction of browning 
in WAT as a strategy against obesity and its associated 
metabolic complications have generated growing interest 
in recent years. This interest is based on the ability of both 
BAT and browned-WAT to increase energy expenditure 
mainly through fatty acid consumption [30,31], and their 
pivotal role in the control of energy homeostasis in mammals 
[32,33]. In addition to classical brown adipocytes located in 
BAT, thermogenic adipocytes with similar characteristics 
can be found within WAT. These brite/beige adipocytes are 
metabolically and phenotypically similar to brown adipocytes 
and can actively contribute to increasing whole-body energy 
expenditure. Specifically, brite/beige adipocytes show a 
multilocular phenotype and express genes closely related 
to BAT metabolism (Ucp1 as a marker of its thermogenic 
capacity in addition to genes implied in de novo lipogenesis, 
fatty acid oxidation, lipolysis, etc.).

Recent evidence shows that the activation of BAT and 
the induction of browning in WAT can be induced by cold 
acclimation but also by nutritional inputs under different 
signaling cascades [29,31,34,35]. Regarding nutritional 

inputs, we recently demonstrated that low-protein diets and 
the cooked-tomato sauce called “sofrito” are able to induce 
Ucp1 expression in WAT, thus indicating a browning phenotype 
[35]. Other authors published that high-fat diets, bioactive 
compounds and prebiotics can also induce browning in WAT 
[36-41]. Part of the cold-induced metabolic profile in BAT 
is regulated by the stimulation of carbohydrate-responsive 
element binding protein b (ChREBPb) through the AKT2 
activity [42]. Besides ChREBP, FGF21 has shown beneficial 
effects on glucose/lipid homeostasis and body weight control 
among other mechanisms by increasing energy expenditure 
and inducing browning and UCP1 overexpression in adipose 
tissues [29,43-46], as well as by promoting the insulin-
dependent glucose uptake, mitochondrial biogenesis, and 
adiponectin secretion in adipocytes [47,48]. In this case, it 
has been widely demonstrated that FGF21 activity and/or 
signaling respond to nutritional challenges [49].

Anthocyanidin-rich berries have been proposed for the 
treatment and prevention of several disorders, including 
obesity-related metabolic disorders, but little is known 
about the molecular mechanisms underlying their beneficial 
effects. Maqui (Aristotelia chilensis) is a native Chilean berry 
with a unique anthocyanins profile that includes delphinidin-
3-O-sambubioside-5-O-glucoside and delphinidin-3-O-
sambubioside as the main phenolic compounds [50]. Besides 
its antioxidant activity, different preparations of maqui have 
shown positive effects on fasting glucose and insulin levels 
in humans and murine model of type 2 diabetes and obesity 
[51,52] and delphinidin-3-sambubioside-5-glucoside has 
been described as the responsible for hypoglycemic activity 
in in vivo models.

We investigated the molecular mechanisms underlying 
the impact of maqui on the onset and development of the 
obese phenotype and insulin resistance in high fat diet-
induced obese mice supplemented with a lyophilized 
maqui berry. Maqui-dietary supplemented animals showed 
better insulin response and decreased weight gain but 
also a differential expression of genes involved in de novo 
lipogenesis, fatty acid oxidation, multilocular lipid droplet 
formation and thermogenesis in subcutaneous WAT. These 
changes correlated with an increased expression of Chrebpb, 
the sterol regulatory binding protein 1c (Srebp1c) and 
Cellular repressor of adenovirus early region 1A–stimulated 
genes 1 (Creg1) and an improvement in the FGF21 signaling. 
Our evidence suggests that maqui dietary supplementation 
activates the induction of fuel storage and thermogenesis 
characteristic of a brown-like phenotype in subcutaneous 
WAT and counteracts the unhealthy metabolic impact of 
an HFD. This induction constitutes a putative strategy 
to prevent/treat diet-induced obesity and its associated 
comorbidities [53] (Figure 4).
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Figure 4: Maqui-dietary supplemented animals showed a differential expression of genes involved in de novo lipogenesis, 
fatty acid oxidation, multilocular lipid droplet formation and thermogenesis in subcutaneous white adipose tissue (scWAT).

Conclusion

In this chapter, we have presented some molecular 
mechanisms of diet-induced changes in gene expression, 
which allows the integration of nutrient signaling to 
metabolic homeostasis. Although not discussed in this 
paper, it is well-known that dysregulations on signaling 
transduction pathways may be the trigger of the development 
and progression of metabolic disorders such as obesity and 
type 2 diabetes, thus revealing a complicated network of 
regulatory mechanisms to achieve metabolic homeostasis.

Several examples, not presented here, illustrate the 
connection between alterations in the signaling pathways 
and metabolic diseases and the relevance of this knowledge 
for the development of efficacious therapeutic agents for 
the treatment of these disorders. These examples point 
out the importance of the knowledge/understanding of 
the molecular mechanisms that, through regulating gene 
expression, control metabolism in response to dietary inputs 
to design new therapeutic strategies against metabolic 
diseases based on nutritional interventions.
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Abstract

Neurodegenerative diseases are one of the most prevalent group of pathologies affecting developed populations. It corresponds 
to an umbrella term for a wide variety of pathologies including Alzheimer’s disease (AD) and glaucoma. AD is especially relevant 
since it constitutes the most common form of dementia. On the other hand, glaucoma is defined as an ocular neurodegenerative 
pathology. Both diseases are associated with aging and also in both of them drugs have to overcome two similar and highly 
restrictive barriers: the blood-brain barrier (BBB) and the blood-retinal barrier (BRB). In these barriers, tight junctions 
sealing endothelial cells limit the transport of a high number molecules, including a the majority of neuroprotective drugs. In 
this sense, drug delivery systems and especially polymeric nanoparticles, due to their non-toxicity and biodegradability, could 
be of great use in order to encapsulate drugs that are not able to arrive to their target site due to physiological barriers (BRB 
and BBB). Several strategies in order to develop biodegradable polymeric nanoparticles encapsulating neuroprotective drugs 
able to cross the BBB or BRB have been developed. As explained throughout the chapter, recent investigations engineering the 
nanoparticles by attaching peptides or antibodies in order to increase their bioavailability into the brain have been employed 
during the last years.

Keywords:  Alzheimer’s disease; Glaucoma; Nanoparticles; PLGA; Neuroprotection

Abbreviations: AD: Alzheimer’s Disease; Aβ: Amyloid 
Beta; IOP: Increased Intraocular Pressure; BBB: Blood-Brain 
Barrier; BRB: Blood Retinal Barrier; NPs: Nanoparticles; APP: 
Amyloid Precursor Protein; CNS: Central Nervous System; 
PECAM1: Platelet Endothelial Cell Adhesion Molecule; JAMS: 
Junctional Adhesion Molecules; RMT: Receptor-Mediated 

Transport; CMT: Carrier-Mediated Transport; ISF: Brain 
Interstitial Fluid; ABC: ATP-Binding Cassette, DHA: 
Docosahexaenoic Acid; RPE: Retinal Pigment Epithelium; 
RNFL: Retinal Nerve Fiber Layer; AChE: Acetylcholine 
Esterase. SOD: Superoxide Dismutase
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Introduction 

Neurodegenerative diseases are defined as a group of 
pathologies that constitute the major cause of disability and 
premature death among elder population worldwide [1]. 
Among all, Alzheimer’s disease (AD) is the most common 
form of neurodegenerative pathology [2]. The main 
characteristics symptoms of AD are the memory loss and 
cognitive decline of the patients. This disease causes neuronal 
cell death and is characterized by the early apparition of 
amyloid beta (Aβ) plaques and the neurofibrillary tangles 
of the hyperphosphorylated microtubule-associated protein 
tau [1,2].

Conversely, glaucoma is an ocular neurodegenerative 
disease that affects the inner layers of the eye and is the 
leading cause of irreversible vision loss worldwide [3]. 
Although increased intraocular pressure (IOP) had been 
postulated as the major risk in glaucoma, this disease is 
characterized by progressive retinal ganglion cell (RGC) 
death. It has been recently suggested that IOP-independent 
mechanisms are implicated in glaucomatous degeneration 
[3]. An increasing amount of similarities exists between 
glaucoma and AD. Both pathologies include the selective 
loss of neuronal populations, transsynaptic degeneration in 
which the disease spreads from injured neurons to connected 
neurons, and common mechanisms of cell injury and death 
[3]. Moreover, mechanisms involved in central visual system 
damage in glaucoma include oxidative injury and glutamate 
excitotoxicity similar to AD [3].

In this sense, drug delivery systems could be of great 
use to treat neurodegenerative diseases due to the fact that 
they could be designed in order to facilitate that the drugs 
overcome restrictive barriers such as the blood-brain barrier 
(BBB) in AD and the blood retinal barrier (BRB) in glaucoma, 
in order to arrive to the target cells. Among all, polymeric 
nanoparticles (NPs) had been acknowledged as a suitable 
vehicle to overcome these problems. PLGA have emerged as 
a promising polymer to be used for drug delivery since it is 
biocompatible, biodegradable and non-toxic. These NPs are 
able to encapsulate drugs and deliver them into the target 
site obtaining a prolonged drug release and decreasing side 
effects. In addition, these systems can be functionalized in 
order to increase the transport through specific barriers [4].

Alzheimer’s Disease and the Blood-Brain 
Barrier

AD is the most common form of neurodegenerative 
disease, although its etiology remains unknown. Aβ 
accumulation in the brain is an early hallmark of AD 
widely believed to have pathogenic importance although 
additional amyloid precursor protein (APP)-dependent and 

independent cell dysfunction is increasingly suspected to be 
critical to the development of AD [3]. In order to arrive to 
the brain, the drugs have to overcome the BBB. This barrier 
exerts a protection for the neuronal cells and maintains 
the central nervous system (CNS) internal milieu, which is 
required for proper synaptic and neuronal functioning [5].

The BBB consists of an endothelial membrane formed 
by endothelial cells without fenestrations with brain 
microvessels that have sealed cell-to-cell contacts (tight-
junctions) and is sheathed by mural vascular cells and 
perivascular astrocyte end-feet [5,6]. The capillaries form 
the majority of the brain vessel length providing around 12 
m2 of endothelial cell surface area, available for transport 
of solutes from the blood to the brain and vice versa. In 
contrast with the highly permeable systemic capillaries, 
brain capillaries and the tightly sealed endothelium, restricts 
the entry of most blood-derived molecules into the brain 
[5,7]. The endothelial cells and pericytes are surrounded by a 
basement membrane composed of collagen type IV, laminin, 
fibronectin, and heparin sulfate proteoglycan [6]. Tight-
junctions connect endothelial cells and are formed mainly by 
occluding and claudin which interacts with transmembrane 
proteins forming a physical barrier [5,7]. Adherent junctions 
connecting endothelial cells involve cadherins, platelet 
endothelial cell adhesion molecule (PECAM1) and the 
junctional adhesion molecules (JAMs) JAMA, JAMB and JAMC 
[5,7].

Transport trough the Blood-Brain Barrier

Despite the high restrictive transport across the BBB, 
substances can be transported using different mechanisms 
(Figure 1). The more common transport routes are listed 
below: 
Receptor-Mediated Transport (RMT): It enables trans-
endothelial transport of proteins and peptides in both 
directions: from blood to brain (transferrin and insulin) and 
from brain to blood (apolipoproteins) [5]. Moreover, peptide 
bonds prevent larger peptides and proteins from using the 
RMT systems to cross the BBB [7].

Simple Diffusion: for O2 and CO2 and small lipophilic 
molecules. 

Carrier-Mediated Transport (CMT): CMT systems are 
expressed by genes within the solute carrier transporter gene 
family, which comprises >300 transporter genes, encoding 
membrane-bound proteins that facilitate the transport of a 
wide array of substrates across biological membranes [7]. 
The CMT transporters, excitatory amino acid transporter 1 
(EAAT1) and excitatory amino acid transporter 2 (EAAT2), 
clear neurotoxic molecules such glutamate and aspartate [5].
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Ion Pumps: ion concentrations are regulated by different 
ion pumps such as the sodium pump (Na+/K+ATPase) on the 
abluminal membrane which regulates sodium influx into the 
brain interstitial fluid (ISF) in exchange for potassium [5], 
the luminal Na+ /H+ exchanger, the Cl– /HCO3– exchanger, 
the luminal Na+/K+/Cl– cotransporter and the Na+/Ca2+ 
exchanger.

ATP-Binding Cassette (ABC) active efflux transporters limit 
entry of drugs, xenobiotic products and drug conjugates [5]. 
Multiple ATP-binding cassette (ABC) proteins are expressed 
on the luminal, blood-facing endothelial plasma membrane of 
the BBB, which restricts the permeability of a large number 
of toxins, including therapeutic agents. Decreased expression 
and/or functional activity of ABC BBB transporters were 
reported in patients with AD and were shown to lead to 
accumulation of Aβ in the brain in an animal model of this 
disease [7].

Phosphatidylinositol-Binding Claritin Assembly Protein 
(PICALM)-Mediated Transcytosis and LDL Receptor-
Related Protein 1 (LRP1) remove neurotoxic substances 
and toxic Aβ species linked to AD. However, levels of 
receptor for advanced glycosylation end products (RAGE) 
are increased in AD, which promotes increased re-entry of 
circulating Aβ, thereby increasing its brain levels [5].

Major Facilitator Superfamily: Docosahexaenoic acid 
(DHA), an essential omega-3 fatty acid, is transported into 
the brain by the endothelial major facilitator superfamily 
domain-containing protein 2a (MFSD2a). It has been 
reported that mice lacking Mfsd2a show brain DHA deficits 
and develop BBB breakdown, suggesting that MFSD2a has 
the dual function of transporting fatty acids into the brain 
and maintaining BBB integrity [7].
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Figure 1: Key transport properties of the capillary endothelium. Modified from [5,8].

The Blood-Retinal Barrier and Glaucoma

Glaucoma is characterized by a progressive loss of RGCs, 
and is often associated with damage to the anterior segment 
and increased IOP [9]. 

The RGC localized in the retinal tissue are protected by 
BRB. The BRB, like the BBB, controls fluid and molecular 
movement between the ocular vascular beds and the 
retinal tissues and prevents leakage into the retina of 
macromolecules and other potentially harmful agents. This 
barrier plays an important role in the homeostatic regulation 
of the microenvironment in the retina [10]. The BRB is 
divided in inner and outer segments.

The inner BRB (iBRB) is mainly formed by retinal capillary 
endothelial cells sealed by tight junctions. Endothelial cells 
are surrounded by astrocytes, muller cells and pericytes thus 
contributing to the correct functioning of this barrier [10]. 
The retinal capillary endothelial cells are not fenestrated 
and are sealed by the tight junctions or zonula occludens of 
the retinal vascular endothelium [10]. The tight junctions 
confer highly selective barrier properties to the capillaries 
by restricting transport of the majority of molecules [10]. 

Pericytes, separated from the endothelial cells by the basal 
lamina, are contractile cells that regulate vascular tone, 
support the capillary wall, secrete extracellular material 
including fibronectin and possess phagocytic function. 
The portion of the basement membrane of the capillaries 
interposed between the endothelial cells and pericytes is 
thin, thus permitting communication between these two cell 
types [10]. Müller cells play a critical role in the formation 
and maintenance of the BRB, in the uptake of nutrients and 
in the disposal of metabolites under normal conditions. 
They are involved in the control and homeostasis of ions, 
signaling molecules and in the control of extracellular pH 
[10]. Astrocytes originate from the optic nerve and migrate 
to the nerve fiber layer during development. They are closely 
associated with the retinal vessels and help to maintain 
their integrity. Astrocytes are known to increase the barrier 
properties of the retinal vascular endothelium by enhancing 
the expression of the tight junctions, protein ZO-1 and 
modifying endothelial morphology [10].

The outer BRB (oBRB) is formed by retinal pigment 
epithelial cells sealed by tight junctions [10]. The retinal 
pigment epithelium (RPE) resting upon the underlying 
Bruch’s membrane separates the neural retina from the 
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fenestrated choriocapillaris and plays an important role in 
transporting nutrients from the blood to the outer retina [10]. 
Moreover, similar to the tight junctions of the iBRB and BBB; 
occludin-1, claudins, and ZO-1 have been identified as the 
tight junctions between RPE cells. In addition, the polarized 
distribution of RPE membrane proteins contributes to the 
function of the oBRB [10].

Transport Trough the Blood-Brain Barrier

Despite the high restrictive transport through the BRB, 
substances can be transported using different mechanisms. 
The more common transport routes are listed below.
Passive Permeability: It has been observed that in the 
retinal vessel endothelium the increase in permeability is 
achieved by increasing lipophilicity or active transport [11]. 
It has been proposed that transendothelial transport by a 
system of caveolae [10].
Carrier Mediated Transporter: It facilitate the transport of 
a wide array of substrates across biological membranes [7].
Efflux Transporters: Efflux protein activity, both in RPE and 
in retinal vessels, restricts movements of certain drugs to 
retina. It constitutes an important protective system for the 
retina, but it also complicates drug delivery to posterior eye 
segment [11].
P-glycoprotein: expressed on the apical and basolateral 
RPE cell membranes has many mechanisms that contribute 
to trans-RPE molecular movement including the removal of 
unwanted molecules from the subretinal space [11].

Similarities between Glaucoma and AD

Aggregates of the hyperphosphorylated microtubule-
associated protein tau in neurofibrillary tangles and neuropil 
threads, together with deposits of Aβ, are characteristic of 
AD [2].

The retina is embryologically derived from the cranial 
part of the neural tube, similar to the brain, and therefore, 
it shares many similarities. In addition, retinal thickness is 
decreased in AD. This fact confirms that neurodegenerative 
diseases may be reflected by retinal changes [2]. 

Glaucoma is an important potential confounder as it is a 
neurodegenerative disease of the retina resulting in retinal 
nerve fiber layer (RNFL) loss.

In addition, the prevalence of glaucoma is increased in 
AD patients; 25.9 %, compared to 1%–5.2% in the normal 
population. The reverse correlation is less distinct as some 
population studies of glaucoma patients show a higher risk 
of AD, whereas others reported no association. Possibly, 
risk factor for glaucoma, or AD and glaucoma share a 
pathophysiological process with retinal neurodegeneration 
as final common pathway. Two recent studies of Eraslan, 
et al. and Cesareo, et al. showed similar patterns of RNFL 
thinning, visual field loss, and optic nerve head morphology 
in AD and normal tension glaucoma [12,13]. Consequently, 
it seems very challenging to discriminate retinal changes 
due to AD from retinal changes due to glaucoma. Therefore, 
stressing the need to account for glaucoma as a contributor 
to retinal thickness decreases [2].

Biodegradable Nanoparticles

Advancement in the field of nanotechnology and its 
applications to the field of medicines and pharmaceuticals 
has revolutionized the 20th century [1]. The word “nano” 
means very small or miniature size. Nanotechnology deals 
with materials in ton the nanometer size of 1 to 100 nm; 
however, it is also inherent that these materials should 
display different properties such as electrical conductance 
chemical reactivity, magnetism, optical effects and physical 
strength, from bulk materials as a result of their small size. 
Thus, it can be used for a broad range of applications and the 
creation of various types of nano materials and nano devices.

As shown in the schematic diagram (Figure 2), 
pharmaceutical nanotechnology is divided in two basic 
types: nanomaterials and nanodevices. These nanomaterials 
can be sub classified into nanocrystalline and nanostructured 
materials. Nanostructured materials can be polymeric or 
non-polymeric. Polymeric nanostructured systems comprise 
nanoparticles, dendrimers, micelles and drug conjugates, 
among others [14].

Figure 2: Pharmaceutical nanotechnology scheme. Adapted from [14].
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Among the different types of NPs, PLGA nanoparticles have 
shown to be one of the most widely used drug delivery 
systems.

Polymeric Nanoparticles for AD and 
Glaucoma: Neuroprotection-based Strategies

Due to the high restrictive properties of BBB and BRB, 
the majority of large molecules do not cross these barriers. 
Moreover, more than 98% of all small, hydrophilic molecules 
cannot cross these barriers [15]. Therefore, designing 
strategies that aid drug passage become of crucial relevance. 
Among these, nanotechnology-based strategies have gained 
tremendous importance in order to overcome the barriers 
improving drugs bioavailability. These include various types 
of NPs for controlled drug delivery and release pertinent to 
various CNS conditions [16].

Among all the strategies, polymeric NPs are one of the 
most investigated, and they are aimed to decrease toxicity 
and increase safety and effectiveness of drugs [3]. Compared 
with other colloidal carriers, polymeric NPs increase 
drug stability in biological fluids. Also, their polymeric 
nature allows the attainment of desired properties such as 
controlled and sustained drug release. 

Moreover, increasing reports of similarities in glaucoma 
and other neurodegenerative conditions have led to 
speculation that therapies for brain neurodegenerative 
disorders may also have potential as glaucoma therapies. 
There are several drugs that have been used for AD and for 
glaucoma as neuroprotection strategies encapsulated in 
polymeric drug delivery systems.

Curcumin

Curcumin is a yellow polyphenol found in turmeric, 
a widely used culinary ingredient (specially in India) that 
possesses anti-inflammatory properties and may show 
efficacy as a potential therapeutic agent in several neuro-
inflammatory diseases [17]. However, this compound 
shows poor aqueous solubility and sub-optimal systemic 
absorption from the gastrointestinal tract being this the 
possible explanation for its failure in clinical trials for AD. 
To increase curcumin’s bioavailability, a polymeric NPs 
encapsulating curcumin (NanoCurc®) were formulated. 
NanoCurc® are PLGA based NPs targeted with tet-1 peptide 
[18]. This 12-amino acid peptide has an affinity to neuronal 
cells and possess retrograde transportation properties [19-
21]. NanoCurc™ treatment has shown to protect neuronally 
differentiated human SK-N-SH cells from ROS mediated 
insults. Moreover, in an in vivo mice model, NanoCurcTM 
PLGA NPs show to increase curcumin bioavailability in brain 
tissues [17]. Other authors have also produced dry curcumin 

NPs with a mean particle size <80 nm. These NPs were made 
of polyethylene-glycol-polylactic acid co-block polymer 
(PLGA-PEG), polyvinylpyrrolidone (PVP) as a surfactant 
and before lyophilization, β-cyclodextrin was added as a 
cryoprotectant. These freeze-dried NPs showed an increase 
in therapeutic efficacy in a triple transgenic mouse model 
(Tg2576) of AD. In addition, curcumin freeze dried NPs, 
produced significantly higher curcumin concentration 
in plasma and increased in brain curcumin amount [17]. 
Other successful strategies have also been employed to 
increase curcumin solubility and bioavailability such as the 
encapsulation in Poly(n-butylcyanoacrylate) (PnBCA) NPs 
decorated with ApoE3 ligands. They were used to exploit 
LDL-r-mediated transcytosis across the BBB increasing 
curcumin efficacy against beta amyloid induced cytotoxicity 
in SH-SY5Y neuroblastoma cells [22]. Moreover, Davis et al. 
have also demonstrated curcumin benefits in drug delivery 
nanosystems for glaucoma [23]. The authors show beneficial 
effects of curcumin in an in vivo rat glaucoma model 
observing an increase of the RGC survival [23]. Also, Cheng 
and colleagues prepared thermosensitive chitosan-gelatin-
based hydrogel containing curcumin-loaded nanoparticles 
and latanoprost as a dual-drug delivery system for glaucoma 
treatment and they observed that curcumin could be a 
potential treatment for glaucoma [24].

Memantine

The main mechanism of action of memantine is believed 
to be the blockade of current flow through channels of 
N-methyl-d-aspartate (NMDA) receptors, a glutamate 
receptor subfamily broadly involved in brain function. 
Excessive activation of the NMDA receptor signaling cascade 
leads to excitotoxicity, wherein intracellular calcium 
overloads RGCs and other neurons, causing cell death through 
apoptosis [14]. Memantine is already marketed for its use 
on moderate to severe AD but it has not shown to cure the 
disease. In order to solve this issue, PLGA NPs are a possible 
solution to increase drugs therapeutic efficacy. Memantine 
PEG–PLGA NPs were prepared using the double emulsion-
solvent evaporation method and showed a mean particle size 
below 200 nm and a monomodal size distribution. Memantine 
PEG–PLGA NPs show a slow release profile against the 
free drug solution, allowing to reduce drug administration 
frequency in vivo. Moreover, the authors demonstrated that 
nanoparticles were able to cross BBB both in vitro and in vivo 
and an enhanced benefit of decreasing memory impairment 
in comparison to the free drug solution. Histological studies 
confirmed that MEM–PEG–PLGA NPs reduced Aβ plaques 
and the associated inflammation characteristic of AD [25].

In addition, Memantine has also been assessed for 
glaucoma. Oral administration of memantine to non-
human primates with experimentally induced glaucoma 
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conferred protection of RGCs. A phase III clinical trial has 
been completed to investigate the efficacy memantine 
in glaucoma neuroprotection after oral administration. 
However, memantine failed to reach the primary efficacy 
end point of reducing visual field loss in patients at a high 
risk of developing glaucoma [14]. In this sense, our group 
have successfully loaded developed a topical formulation 
of memantine-loaded PLGA-PEG NPs and investigated its 
efficacy of this formulation using a well-established glaucoma 
model. MEM-NPs were additionally found to be well tolerated 
in vitro (human retinoblastoma cells) and in vivo (Draize 
test). MEM-NP eye drops were found to significantly (p < 
0.0001) reduce RGC loss. These results suggest that topical 
MEM-NP is neuroprotective in an experimental glaucoma 
model [14].

Acetylcholine Esterase Inhibitors

The clinical efficacy of Acetylcholine esterase (AChE) 
inhibitors for AD remains limited mainly due to poor brain 
translocation, which requires frequent injections, and its 
adverse cholinergic effects on peripheral organs.

Wilson et al. prepared PnBCA NPs encapsulating 
Rivastigmine and coated with Polysorbate 80 shown to 
be more effective in vivo for AD [26]. The same group also 
described a similar approach to increase the brain uptake of 
tacrine, another AChE inhibitor, using PnBCA nanocarriers. 
In this case, the use of NPs increased the tacrine brain 
concentration by a factor of 4 when compared with the free 
drug [16]. The strategy of using Polysorbate 80 for coating 
NPs has also been used by other authors in order to increase 
NPs transport trough the BBB demonstrating effective 
results [27]. 

AChE inhibitors have also shown to exert neuroprotection 
in glaucomatous processes. Almasieh and colleagues 
demonstrated that galantamine administered systemically 
to a rat model of glaucoma preserved microvasculature 
density and improved retinal blood flow in glaucomatous 
retinas [28]. Other authors assessed also Rivastigmine 
effects demonstrating that it lowers the IOP in rabbits [29]. 
To date, no records have been found of the use of polymeric 
NPs in order to deliver these compounds more effectively to 
the retinal tissue.

Anti-Inflammatory Drugs

Neuronal inflammation has been reported in AD [30]. 
This inflammation contributes to astrocytes and microglial 
activation increasing neuronal cell death. Therefore, a 
possible strategy to palliate AD could be the use of anti-
inflammatory drugs such as NSAIDs. Moreover, using a 
mice model of human pigmentary glaucoma, some authors 

demonstrated the expression of the IL-18 protein and gene 
in the iris/ ciliary body and increased level of IL-18 protein in 
the aqueous humor of DBA/2J mice. This increase precedes 
the onset of clinical evidence of pigmentary glaucoma, 
implying a pathogenic role of inflammation/immunity in this 
disease [31].

In this sense, our group have developed Dexibuprofen 
loaded PLGA-PEG NPs prepared by solvent diffusion method 
designed to increase Dexibuprofen brain delivery reducing 
systemic side effects such as gastric toxicity. The NPs show 
to increase Dexibuprofen brain permeation coefficient. 
Behavioral tests performed in APPswe/PS1dE9 mice (familial 
AD mice model) showed that nanospheres reduce memory 
impairment more efficiently than the free drug. Developed 
nanospheres decrease brain inflammation leading to Aβ 
plaques reduction. According to these results, chronical oral 
Dexibuprofen PLGA-PEG NPs could constitute a suitable 
strategy for the prevention of neurodegeneration [32].

Cyclooxygenase (COX) is the rate-limiting enzyme for 
prostanoid synthesis. It is generally thought to be present 
in a constitutive form, COX-1, which participates in normal 
cellular functions, and an inducible form, COX-2 catalyzes 
the initial step of prostanoid synthesis by converting 
arachidonic acid (AA) into prostaglandin H2. Prostaglandin 
H2 functions as a substrate commonly used for many specific 
prostaglandin synthases. Induction of COX-2 has been shown 
to promote inflammatory responses by producing cytotoxic 
prostaglandins and ROS. Moreover, neuronal cytokines in the 
brain are known to induce COX-2. Several studies have also 
shown induction of COX-2 in RGC in response to elevated IOP 
[33]. In line with this, RGC can be blocked by COX-2 inhibition 
such as Dexibuprofen. Overall, COX-2 may cause neuronal 
damage through the induction of inflammatory responses 
[33]. In this sense, our group has designed Dexibuprofen 
drug delivery systems to be administered as eye-drops for 
ocular inflammation treatment [34]. These systems are 
being currently assessed in an in vivo glaucoma model (data 
not published).

Gonadal Steroids

Mital, et al. encapsulated gonadal steroids into PLGA NPs 
and they increased the bioavailability of the drug after oral 
administration up to 10 times compared with the free drug 
[35]. In this way, other authors encapsulate mifepristone in 
order to increase the bioavailability after oral administration 
[16].

The relationship between the endocrine secretion of the 
gonads and intraocular pressures is an established topic of 
speculation in the ophthalmic literature. To date, there are 
controversial reports about this issue. Obal and colleagues 
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claim an improvement in IOP values when using progesterone 
[36]. However, no recent publications claim gonadal steroids 
as a neuroprotection strategy for glaucoma.

α-, β-, and γ-secretase: Inhibitors Aβ

Aβ peptides originate from proteolysis of the APP by the 
sequential enzymatic actions of β-site APP-cleaving enzyme 
1 (BACE-1, a β-secretase) and γ-secretase. Instead, the non-
amyloidogenic pathway involves successive APP cleavages 
by α- secretase and γ-secretase, leading to the formation of 
non-amyloidogenic fragments [16].

Our research group is currently working on the 
encapsulation of epigallotechin-3-gallate, (EGCG) into 
polymeric NPs obtaining favorable results [37,38]. Other 
authors have demonstrating EGCG antioxidant and properties 
as well as its ability to promote non-amyloidogenic processing 
of APP by upregulating α-secretase preventing brain Aβ 
plaque formation. In addition, Smith and colleagues have 
also demonstrated EGCG entrapment into non-polymeric 
drug delivery systems targeted with tet-1 peptide effective 
for AD [29]. 

Cabaleiro-Lago, et al. reported the use of 40-nm-
diameter poly (N-isopropylacrylamide)-co-poly(N-tert-
butylacrylamide) (PNI- PAAM-co-PtBAM) NPs to hinder Aβ 
fibril formation in AD. The authors demonstrated that these 
NPs were able to interfere with the aggregation process by 
delaying the nucleation step, whereas no influence on the 
elongation step was noticed. More importantly, it was found 
that the oligomerization of the peptide could be reversed 
sufficiently where mature fibrils start forming. These co-
polymeric NPs introduced a “lag phase” in between the 
nucleation and the elongation steps of the fibrillation. 
This “lag phase” was shown to be strongly dependent on 
the physicochemical characteristics of the NP surface and 
concentration [39].

PLGA NPs can also be functionalized with antibodies 
in order to increase the transport trough the BBB such 
as the study developed by Loureiro, et al. [40] where 
they encapsulate peptide iAβ5 into PLGA NPs surface 
functionalized with anti-transferrin receptor monoclonal 
antibody (OX26) and anti-Aβ (DE2B4) [40].

In addition, Yamamoto and colleagues have 
demonstrated in vitro that β-secretase could be a potential 
target for therapy of neurodegenerative retinal diseases [41]. 

Guo, et al. demonstrated that Aβ colocalizes with RGC 
in experimental glaucoma and induces significant RGC 
apoptosis in vivo in a dose- and time-dependent manner. 
In addition, they demonstrate that targeting different 

components of the Aβ formation and aggregation pathway 
can effectively reduce glaucomatous RGC apoptosis in vivo 
[42]. This opens a new window for possible treatments 
combining nanotechnological approaches in order to obtain 
a sustained drug delivery. 

Antioxidant Species

Glutathione (GSH), a water-soluble endogenous 
antioxidant composed of glutamic acid, glycine, and cysteine 
is one of the most important intracellular antioxidants. In 
this sense, Reddy et al investigated the encapsulation of 
a metalloprotein, superoxide dismutase (SOD) into PLGA 
NPs increasing its circulating half-life, cell membrane 
permeability, and brain uptake. SOD is a free-radical 
scavenger that plays a key role in the major endogenous 
cellular defense mechanism against superoxide radicals. 
The authors described the efficacy of these nanomaterials to 
deliver SOD to human neuronal cells in vitro and to protect 
them from H2O2-induced oxidative stress [43].

Conclusions

Polymeric NPs could constitute a suitable strategy 
to treat AD and glaucoma. Several strategies using these 
colloidal systems for controlled drug release in order 
to overcome the BBB and the BRB while encapsulating 
neuroprotective drugs and deliver them into the target tissue. 
In this sense, there is a wide variety of drugs using different 
several preparation methods. These drug delivery systems 
open a window for future neuroprotective treatments being 
able to be transported through the BBB and BRB and at the 
same time avoiding possible drug adverse and toxic effects. 
It is expected that this type of drug delivery strategies will 
have a strong impact in terms of creating an innovative 
pharmacological product feasible to translate into human 
patients for the treatment of neurodegenerative diseases.
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Abstract

The fruit of Olea europaea L. is particularly rich in pentacyclic triterpenes, being maslinic and oleanolic acid the most prevalent 

compounds with minor amounts of erythrodiol. These secondary plant metabolites have been described to exert beneficial 

effects on health, such as hepatoprotective, anti-diabetic, antiviral, cardioprotective and antitumor, among other activities. 

The present review summarizes our results on the content of pentacyclic triterpenes in table olives analyzed by LC-MS, and 

their bioavailability after the oral administration of this food to Sprague-Dawley rats.

Keywords:  Maslinic acid; Oleanolic acid; Erythrodiol; Olea europaea L.; LC-MS; Bioavailability

Abbreviations: MVA: Mevalonic Acid; HPCL: High-
Performance Liquid Chromatography; LC-MS: Liquid 
Chromatography Coupled To Mass Spectrometry; ESI: 
Electrospray Ionization; APCI: Atmospheric Pressure 
Chemical Ionization; MRM: Multiple Reaction Monitoring; 
TIC: Total Ion Chromatogram; MA: Maslinic Acid, OA: 
Oleanolic Acid; UA: Ursolic Acid.

Introduction

Triterpenes are one of the major classes of natural 
products that contain six isoprene units with the basic 
molecular formula of C30H48. According to the structures 
of their backbones, triterpenes are classified into acyclic, 
monocyclic, bicyclic, tricyclic, tetracyclic, and pentacyclic 
triterpenes [1]. Many of them occur in their free form, as well 
as glycosides (saponins) or other combinations [1]. with more 
than 20000 different compounds identified in nature to date 
[2]. The majority of these natural products are biosynthesized 
and accumulated in plants as secondary metabolites that 
contribute to their protection [3]. From ancient times, plants 
containing these secondary metabolites have been used in 
traditional medicine to treat different human diseases [4]. 

In the last decades, numerous studies have been carried 
out in order to elucidate the beneficial effects on health and 
their potential pharmacological use. Recently, numerous 
biological activities, such as antitumor, anti-inflammatory, 
anti-diabetic, antiviral and hepatoprotective, among others 
were attributed to these compounds [5-11]. 

Triterpenes 

Triterpenes are formed in higher plants predomintantly, 
through the mevalonate pathway, named after its key 
intermediate, mevalonic acid (MVA) (Figure 1). The cellular 
endogenous substrate, acetyl-CoA, is transformed to 
3-hydroxy-3-methylglutaryl-CoA (HMG-CoA). Then, HMG-
CoA reductase, one of the most highly regulated enzymes in 
nature, catalyzes the synthesis of MVA, which is the precursor 
of the pathway [12,13]. The involvement of two kinases 
leads to the generation of isopentenyl diphosphate (IPP) 
that undergoes isomerization to dimethylallyl diphosphate 
(DMAPP) by the enzyme isopentenyl diphosphate isomerase. 
IPP and DMAPP are two key isoprene units given to their role 
as universal 5-carbon building blocks in the synthesis of 
terpenes [13]. 
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For many years, IPP and DMAPP were thought to be 
exclusively formed via the MVA pathway. However, in the 
1990s a species-specific second route was described and 
termed the 2-C-methyl-D-erythtritol-4-phosphate (MEP) 
pathway because MEP was formed from pyruvic acid and 
glyceraldehyde-3-phosphate as initial substrates [14]. 

Recent research demonstrated that the MVA pathway is 
solely involved in the synthesis of IPP and DMAPP in the 
cytosol of animals, fungi, archaea as well as a few bacteria, 
whereas the MEP route is exclusive of most other bacteria 
and parasitic apicomplexa [14]. 

 

Figure 1: Biosynthesis of triterpenes through the mevalonate pathway in the cytosol of higher plants. Single arrows represent 
one step conversion, dashed arrows represent multiple steps.

In plants, both pathways have been described, but in 
independent compartments. The enzymes for the MVA 
pathway are located in the cytosol, whereas the ones for the 
MEP pathway are found in the plastids [13]. This pathway 
has been reported to synthesize the building blocks, mainly 
for the generation of monoterpenes (C10), diterpenes (C20), 
sesterpenes (C25), carotenoids (C40) and long-chain phytol 
[4]. Conversely, the cytosolic MVA pathway have been 
described to be responsible for the production of IPP and 
DMAPP mainly used in the formation of sesquiterpenes (C15), 
triterpenes (C30) and polyterpenes (>45) [4]. Although 
each route supplies IPP and DMAPP for the synthesis of the 
different terpenes, a metabolic crosstalk takes place between 

them [14].

The synthesis of triterpenes in plants takes place by 
a condensation reaction of 2 units of IPP and 1 unit of 
DMAPP to produce farnesyl diphosphate (C15) in a two-step 
process including the formation of the intermediate geranyl 
diphosphate Then, two units of farnesyl diphosphate merge 
to form squalene (C30) which serves as the precursor of 
acyclic triterpenes in plants [4]. 

Squalene undergoes an epoxidation reaction that enables 
the synthesis of 2,3-oxidosqualene (C30) which is the branch 
point between the pathway for the biosynthesis of primary 
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and secondary metabolites. The activity of oxidosqualene 
cyclases, also known as triterpenes synthases, catalyzes the 
ring forming reactions producing the diverse triterpenoids 
scaffolds, namely monocyclic, bicyclic, tricyclic, tetracyclic, 
and pentacyclic triterpenes [4]. Otherwise, the cyclization of 
2,3-oxidosqualene to cycloartenol via cycloartenol synthase 
serves to the formation of membrane phytosterols and 
steroid hormones [4].

Pentacyclic Triterpenes

Pentacyclic triterpenes comprise different members, 
among which the oleanane, ursane and lupane groups are 
the most relevant due to their numerous biological activities, 
such as antitumor, anti-inflammatory, anti-diabetic, antiviral 
and hepatoprotective, among others [5-11]. Of them, the 
oleanane skeleton is the most abundant in higher plants, 
being oleanolic acid one of the most widely distributed 
triterpene in nature, and together with maslinic acid and in 
lesser amounts [1]. These compounds arises from ß-amyrin, 
leading to the formation, in first place, to the precursor 
erythrodiol, that is subsequently transformed to oleanolic 
and maslinic acids. 

Erythrodiol or 3ß-olean-12-en-3,28-diol (Figure 2) has 
been found in very few species aside from Olea europaea L. 
where it has been detected in the fruit and oil in low amounts 
[3]. Despite the scarce information about this compound, 
erythrodiol has been reported to exert antitumor [15-17], 
anti-inflammatory [18] and cardioprotective activities 
[19,20]. 

Figure 2: Chemical structure of erythrodiol (ERY).

Oleanolic acid or 3ß-hydroxy-olean-12-en-28-oic acid 
Figure 3. is formed after the oxidation of alcohol in the C28 
position of erythrodiol. This compound has been isolated 
from more than 1600 species, including edible foods and 
medicinal plants [1,5]. Worth mentioning is the fact that 
this pentacyclic triterpene is prevalent in the Oleaceae 
family, especially in Olea europaea L., the plant species from 
which this compound has been named [21]. Oleanolic acid 
possesses prominent pharmacological activities, being the 
hepatoprotective, anti-inflammatory, antioxidant, anti-
diabetic, and antitumor activities the most outstanding ones 
[22]. 

Figure 3: Chemical structure of oleanolic acid (OA).
 

Maslinic acid or 2α,3ß-hydroxy-olean-12-en-28-oic acid 
Figure 4. is synthesized from oleanolic acid differing only 
in an additional hydroxyl group at the 2-carbon position. 
Maslinic acid was isolated in 1927 from the leaves of 
Crataegus oxycantha L. and was named “crategolic acid” [23]. 
This compound has been detected in 30 species worldwide 
and it is one of the main pentacyclic triterpenes found in 
Olea europaea L. [24,25]. This compound has received less 
attention compared to the numerous studies devoted to its 
precursor oleanolic acid, despite exerting promising health-
protecting properties, such as antitumor, anti-diabetic, 
antioxidant, cardioprotective, neuroprotective, antiparasitic 
and growth-stimulating [7]. 

Figure 4: Chemical structure of maslinic acid (MA).

Natural Sources of Pentacyclic Triterpenes

Pentacyclic triterpenes from the oleanane type, namely 
maslinic and oleanolic acids, are ubiquitously distributed in 
higher plants Table 1. 

Maslinic and oleanolic acids are located mainly in the 
intracuticular wax compartment of the cells [3]. The wax 
layer is one of the two main components of the cuticle 
that covers the surfaces of aerial parts, namely, leaves, 
flowers, fruits and non-woody stems, of all terrestrial 
plants forming the first protective barrier against abiotic 
and biotic environmental stresses [3]. Therefore, these 
compounds would be incorporated in the diet, principally 
with the ingestion of foods with edible peel [3] and have 
been described in numerous vegetables, legumes, species 
and fruits (Table 1). Maslinic and oleanolic acids have been 



Citation: Yolanda Cajal, et al. Trends in Pharmaceutical and Food Sciences I. Pharm Res 2020, 000eB-001.

68 Open Access Journal of Pharmaceutical Research

found in eggplants and spinaches [26], in legumes such as 
chickpeas and lentils [27] or in species such as basil [26] and 
rosemary [33]. These compounds are also present in fruits, 
such as grapes [3,30] or apples [28], the latter being one 

of the fruits most consumed worldwide and its antitumor 
effects have been correlated with its peel which contains 
both, oleanolic and maslinic acids [35].

Food Maslinic acid Oleanolic acid References
Vegetables (mg/kg dry weight)

Eggplant 840 ± 70 530 ± 40 [26]
Spinach 1260 ± 110 1670 ± 130 [26]
Carrot n.d. 250 ± 40 [26]
Celery n.d. 170 ± 20 [26]

Cooked legumes (mg/kg fresh weight)
Chickpeas 61.9 3.56 [27]

Lentils 26.3-38.5 4.2-5.3 [27]
Pinto beans n.d. 25.9 [27]

Fruits (mg/kg dry weight)
Apple (fruit peel) 0.96 ± 0.03 3.18 ± 0.10 [28]

Apple pomace 10 139 [29]
Grapes (seeds) 10 ± 2 42 ± 3 [30]

Grapes (mg/kg fresh weight) n.d. 30 – 160 [31]
Kiwi 17.3 ± 0.3 3.1 ± 0.1 [32]

Pomegranate 10.7 ± 0.4 n.d. [32]
Lemon 3.4 ± 0.07 n.d. [32]

Bilberry n.d. 5.8-9.7 [3]
Aromatic herbs (mg/kg dry weight)

Basil 350 ± 40 960 ± 70 [26]
Fennel n.d. 540 ± 80 [26]

Rosemary n.d. 31.6 ± 4.0 [33]
Brown mustard 330 ± 80 n.d. [34]

Table 1: Content of maslinic and oleanolic acids in edible plants.

Consequently, in view of their wide distribution in edible 
plants (Table 1) the consumption of a diet rich in vegetables 
and fruits, such as the dietary pattern followed along the 
Mediterranean basin that has been associated with a lower 
incidence of cancer along with other chronic diseases [36] 
could provide a constant supply of these phytochemicals, 
besides other nutraceuticals with health protecting activities.

Plants used in traditional medicine to treat diverse 
ailments contain also these pentacyclic triterpenic acids. 
Lagerstroemia speciose or banaba has been widely employed 
as tea and herbal remedy since ancient times for the treatment 
of diabetes [37]. The leaves are specially rich in maslinic acid 
with concentrations of 4.96 ± 0.13 mg/g followed by oleanolic 
acid with 0.82 ± 0.03 mg/g [30]. Maslinic and oleanolic 

acids isolated from this specie acted as α-glucosidase 
inhibitors with IC50 of 5.52 ± 0.19 and 6.29 ± 0.37 μg/mL, 
respectively. Syzygium aromaticum or clove, also used for 
its hypoglycemic activities, contains both compounds that 
were demonstrated to down-regulate the increase of SGLT1 
and GLUT2 expressions in the small intestine of STZ-induced 
diabetic rats, and also inhibited small intestine α-amylase, 
sucrase and α-glucosidase activity [38]. Crataegus monogyna 
L., commonly known as hawthorn, contain 0.93 ± 0.01 
mg/g and 2.34 ± 0.11 mg/g of maslinic and oleanolic acids, 
respectively [30]. This plant exerts hypotensive, antioxidant, 
anti-inflammatory, and vasodilating effects, and has been 
traditionally used to strengthen cardiovascular function.

Ortosiphon stamineus L. possesses several 
pharmacological activities such as diuretic, hepatoprotective, 
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anti-diabetic, antihyperlipidemic, and has been described to 
contain 0.84 ± 0.06 mg/g and 2.77 ± 0.19 mg/g of maslinic 
and oleanolic acids, respectively [30]. Moreover, these 
pentacyclic triterpenes have been reported in Eriobotrya 
japonica, employed as antitussive and anti-inflammatory 
for chronic bronquitis [39], in Geum japonicum utilized as 
diuretic [40], and Agastache rugose applied in the treatment 
of intestinal disorders [41].

Synthesis of Pentacyclic Triterpenes in Olea 
europaea L.

Olea europaea L. is a prevalent species in human 
nourishment that has been cultivated for more than 5000 
years in the countries bordering the Mediterranean Sea. The 
olive tree has been highly appreciated since ancient times [42]. 
This plant is characterized for being resistant and productive 
thus providing a versatile and valuable crop. For centuries, 
table olives and olive oil have been a pivotal component of 
the diet consumed along the Mediterranean shore [42,43]. 
Consequently, Olea europaea L. has traditionally provided 
important economic and dietetic benefits for the people of 

the region. Moreover, olive oil and leaves have been widely 
used in traditional medicine, standing out the use of the olive 
leaves as hypoglycemic, antihypertensive, antimicrobial, and 
antiatherosclerotic among others [43]. The by-products of 
Olea europaea L. have long been known to contain a wide 
range of bioactive compounds, including high amounts of 
pentacyclic triterpenes that were first identified in olive 
pomace [44], and later in the fruit [45]. The synthesis of this 
group of compouds has been comprehensively studied in 
Olea europaea L. by Stiti, et al. [46] which has postulated a 
biosynthetic pathway from 2,3-oxidosqualene. 

In the olive tree, the production of pentacyclic 
triterpenes requires the generation of different 
carbocationic intermediates. Therefore, the cyclization of 
2,3-oxidosqualene leads to the formation of the tetracyclic 
dammarenyl cation that is further transformed to the 
pentacyclics baccherenyl and lupenyl intermediates prior to 
the formation of the oleanyl and ursanyl cations (Figure 5) 
[46]. The final products are due to the stabilization of specific 
carbocationic intermediates which are further metabolized 
into more-oxygenated compounds mainly through reactions 
catalyzed by cytochrome (CYP) 450 enzymes [47]. 

Figure 5: Synthesis of pentacyclic triterpenes in Olea europaea L.
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In Olea europaea L., the main pentacyclic triterpenes 
arises from the stabilization of the oleanyl cation to ß-amyrin 
(olean-12-en-3ß-ol). This compound is sequentially oxidized 
at the C28 position by a cytochrome (CYP) P450 enzyme to 
yield in first place the alcohol erythrodiol and in second 
place oleanolic acid [4]. Finally, a different CYP P450 
catalyzes the addition of a hydroxyl group forming maslinic 
acid [47]. The pentacyclic triterpenes from the oleanane 

group are produced in higher amounts than those of the 
ursane or the lupane classes [46]. Stiti, et al. [46] analyzed 
the pentacyclic triterpenes in the olive, and evaluated their 
content throughout fruit ontogeny (Table 2). Although these 
authors identified 19 pentacyclic triterpenes arising from 
different carbon skeletons, they demonstrated that oleanane 
triterpenoids were largerly predominant, representing the 
99.2% of the different triterpenoids in olives [46]. 

Pentacyclic triterpenes mg/Kg % Reference
Oleanane group

ß-Amyrin 4 0.16 [46]
Erythrodiol 13 0.52 [46]

Oleanolic acid 946 38.08 [46]
Maslinic acid 1502 60.46 [46]

Ursane group
α-Amyrin n.d. -- [46]

Uvaol 0.4 0.02 [46]
Ursolic acid 4 0.16 [46]

Lupane group
epi-Betulin 0.8 0.03 [46]

epi-Betulinic acid 14 0.56 [46]

Table 2: Pentacyclic triterpenes in olives of the Chemlali variety harvested 30 weeks after flowering and analyzed by gas 
chromatography - mass spectrometry.

Distribution of Pentacyclic Triterpenes in 
Olea europaea L.

Pentacyclic triterpenes are synthesed in Olea europaea 
L. as secondary metabolites required for the plant survival in 

its environment [3]. These compounds have been described 
in the epicuticular waxes of olive fruits [45] and leaves 
[48] and their protective role has been associated with the 
development of a physical barrier that prevents of water loss 
and acts as first defense against pathogens [3].  

Food Maslinic acid Oleanolic acid References
Table olives (mg/kg fresh weight)

Manzanilla, plain black 287.1 ± 66.6 178.8 ± 43.7 [49]
Manzanilla, plain green 384.1 ± 50.0 202.6 ± 57.3 [49]
Hojiblanca, plain green 904.7 ± 259.6 565.2 ± 107.1 [49]

Gordal, plain green 414.2 ± 89.3 294.3 ± 4.5 [49]
Kalamata, plain natural black 1318.4 ± 401.0 841.4 ± 162.9 [49]

Conservolea 1349 ± 123 536 ± 82 [50]
Olive oil (mg/kg)

Olive oil, extra virgin 19-98 17-85 [51]
Olive oil, virgin 145-251 167-356 [51]

Pomace oil 575-698 405-703 [52]

Table 3: Content of maslinic and oleanolic acids in Olea europaea L.
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In the fruits of Olea europaea L. the formation of the 
oleanane type of pentacyclic triterpenes is predominant 
with respect to the ursane group. Up to now, the studies in 
the literature had only measured pentacyclic triterpenic 
acids in table olives, being maslinic acid found in higher 
concentrations than oleanolic acid. However, the content 
depends on different factors, such as the variety, cultivar, 
climate, degree of ripening on the time of harvesting but also 
on the method of elaboration of olives and post-fermentation 
conditions. 

Virgin olive oil is obtained in a process involving 
pressing, which may disrupt the surface waxes on the fruit. 
Therefore, part of maslinic acid contained in the olive may be 
transferred to the oil. However, the amount of maslinic and 
oleanolic acids in the oil is much lower than in the fruit and 

depends on the oil quality (Table 3). 

Lately, olive leaves have raised much attention due to the 
high presence of different families of bioactive compounds 
that could be used as raw material for the obtainment of high 
added value compounds of use as functional foods, drugs 
or cosmetics. Therefore, recent research have reported that 
the leaves contain pentacyclic triterpenes arising from both 
ß-amyrin and α-amyrin [24,48,53], being especially rich in 
oleanolic acid that accounts for a 54-76% of all the triterpenes 
depending on the cultivar [24,48,53]. The concentrations 
in Arbequina, Hojiblanca and Picual have been reported to 
range from 29.2 mg/kg in Arbequina [24] to 39.8 mg/kg in 
the Picual variety [53]. Maslinic acid is the second compound 
in terms of concentration, followed by ursolic acid and the 
dialcohols, erythrodiol and uvaol (Table 4). 

Pentacyclic triterpenes g/kg dry weight References
Oleanane group

Erythrodiol 1.86-4.39 [24,48,53]
Oleanolic acid 13.0-39.8 [24,48,53]
Maslinic acid 1.91-7.30 [24,48,53]

Ursane group
Uvaol 1.81-5.15 [24,48,53]

Ursolic acid 1.99-4.90 [24,48,53]

Table 4: Pentacyclic triterpenes in olive leaves from different cultivars. 

Analysis of Pentacyclic Triterpenes

Pentacyclic triterpenes from the oleanane group have 
been reported to possess important beneficial effects on 
health [5-11] and their content in table olives cannot be 
disregarded. This food is regularly consumed not only in 
the countries where the cultivation of Olea europaea L. has 
been performed from ancient times, but also worldwide, 
due to the increasing interest in healthy eating to improve 
health and quality of life. However, one of the drawbacks in 
recommending the intake of a precise number of olives is the 
lack of knowledge on their content of pentacyclic triterpenes. 

Pentacyclic triterpenes have been traditionally analyzed 
by gas chromatography although their high molecular 
weight along with low volatility require a derivatization step 
prior to its determination in table olives [24], olive oil [51] 
and commercial botanicals and food supplements [30]. To 
avoid the preliminary derivatization of analytes and a lower 
laboriousness of sample preparation and analysis, more 
recently, high-performance liquid chromatography (HPLC) 
was introduced in the determination of these compounds 
from olives [49,54]. However, HPLC coupled to UV or 
diode-array detectors holds the disadvantage of low UV 

absorption provided by their saturated skeleton, which leads 
to high limits of quantification. Sensitivity was improved by 
derivatization as performed for the analysis of pentacyclic 
triterpenic acids in fruits [26] or the analysis of food samples 
[55]. In addition, HPLC leads to long chromatographic 
runs, broadening chromatographic peaks and, as a result 
it generates an additional loss of sensitivity. The use of 
gradient elution does not completely resolve the problem, 
given that on the one hand, it could reduce retention times, 
but on the other, a loss of resolution for structurally close 
isomers is observed. Therefore, the methods used to analyze 
pentacyclic triterpenes hold several weaknesses that difficult 
the accurate analysis of pentacyclic triterpenes in olives, 
none of them allow the simultaneous analysis of the acids 
(maslinic and oleanolic acids) with the alcohol (erythrodiol), 
as well as the concurrent determination of the pentacyclic 
triterpenes from both, the ß-amyrin and α-amyrin classes. 

Determination of Pentacyclic Triterpenes 
in Table Olives by LC-MS

The determination of pentacyciclic triterpenes in table 
olives was a challenging task, not only for being contained in 
a complex matrix, but also, for the possible presence in the 
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samples of two pairs of positional isomers, namely, oleanolic 
acid and ursolic acid as well as erythrodiol and uvaol. 

Although in Olea europaea L. the predominant pathway 
in the formation of pentacyclic triterpenes is via ß-amyrin 
formation, the fact that derivatives from α-amyrin could be 
present cannot be underestimated. Hence, the most important 
problem in existing approaches to the determination of 
pentacyclic triterpenes is the separation of analytes. To 
overcome these shortcomings, liquid chromatography 
coupled to mass spectrometry detection (LC–MS) has 
become a powerful hyphenated technique that enables the 
separation, unambiguous detection and characterization 
of bioactive compounds in complex samples. Therefore, 
we developed a selective and sensitive LC–MS method for 
the simultaneous determination of maslinic, oleanolic and 
ursolic acids, as well as erythrodiol and uvaol, the main 
triterpenic compounds present in Olea europaea L. [25]. 

The separation of the isomers was attempted instead 
of using a traditional octadecyl silica column, by the use of 
the stationary phase designed for the analysis of polycyclic 
aromatic hydrocarbons with polymeric C18 bonding. This 
Zorbax Eclipse PAH (Agilent Technologies) column was used 
due to its well-known resolution power towards geometric 
isomers. The combination of these novelty stationary phase 
along with the use of an isocratic mobile phase consisting 
of methanol 83% and water 17% allowed the adequate 
separation of oleanolic acid from ursolic acid, and erythrodiol 
from uvaol. Moreover, the simplicity of the mobile phase, that 
did not use any modifier avoided the formation of adducts 
when coupled to mass spectrometry. 

Figure 6: Representative total ion chromatogram (TIC) 
obtained by LC-APCI-MS of maslinic acid (MA), oleanolic 
acid (OA), ursolic acid (UA), erythrodiol (ERY) and uvaol 
(UVA) dissolved in methanol 80% at 2.5 µM and betulinic 
acid (IS) at 2 µM.

Once the chromatographic separation was established, 
we optimized the conditions for the detection of these 
compounds by MS. Several authors had proposed 
electrospray ionization (ESI) for the analysis of pentacyclic 
triterpenes [48,56,57], however although triterpenic acids 
were ionized in negative mode, this ionization source proved 

to be completely inadequate for the alcohols, erythrodiol 
and uvaol, that failed to be detected neither in positive or 
in negative polarity. Hence, atmospheric pressure chemical 
ionization (APCI) that has been described to provide a 
more effective ionization of low polarity compounds was 
evaluated. APCI in negative mode was selected for the 
analysis of triterpenic acids, since it gave a sensitivity two 
order of magnitude higher than negative ESI or positive APCI 
(Figure 6). On the other hand, erythrodiol and uvaol were 
only detected with the APCI source set in positive mode 
Figure. 6. 

Fragmentation of pentacyclic triterpenes was evaluated 
in the LC–QqQ-MS to perform multiple reactions monitoring 
(MRM) analysis. The obtained MS/MS transitions were as 
follows: maslinic acid 471.3 → 393.3 and 471.3 → 377.3; 
oleanolic and ursolic acids 455.3 → 407.3, as well as 
erythrodiol and uvaol, 425.3 → 191.3. These transitions 
are consistent with the ones indicated by Paragón [54] 
in table olives and Sánchez-Avila, et al. [48] in olive 
leaves. Nevertheless, pentacyclic triterpenes were poorly 
fragmented even at high values of collision energy, resulting 
in peaks of low intensity. Then, the limits of quantification 
(LOQ) in MRM mode ranged from 125 to 650 nM for the 
five analytes and were two orders of magnitude higher than 
those achieved in single ion monitoring mode (SIM). The low 
sensitivity observed in MRM detection was in agreement 
with the valued obtained for Sánchez-Ávila, et al. [48] that 
gave values ranging from 190 to 650 nM. Although MRM 
mode allows a reliable identification of analytes, the fact that 
the isomers hold the same molecular weight, along with the 
same MS/MS transitions does not improve the selectivity 
already accomplished in the chromatographic separation. 
Therefore, pentacyclic triterpenes were detected using 
SIM mode in order to achieve the highest sensitivity in the 
analysis [25]. 

Once the LC-MS conditions were established, the 
developed method was validated using calibration standards 
following the EMA Guidelines on Bioanalytical Method 
Validation [58]. Excellent sensitivity was achieved with 
limits of detection for the triterpenic acids lower than 1 
nM, whereas for erythrodiol and uvaol were 4.5 and 7.5 nM, 
respectively. The method was linear for the five analytes 
in the range of concentrations from 0.005 to 15 µM with 
correlation coefficients exceeding 0.99. The precision and 
accuracy were ≤ 9.90% and ≤ 9.57%, respectively [25].

The validated method was applied to the determination 
of pentacyclic triterpenes in table olives, since the fruit of 
Olea europaea L. constitutes an example of food rich in those 
bioactive molecules. However, prior to the analysis, the 
extraction process was optimized in terms of type of solvent, 
by spiking olive samples with MA and OA and evaluated their 
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recovery. The best recovery was achieved when a mixture of 
ethanol:methanol (50:50%) was employed 

Figure 7: Representative total ion chromatogram (TIC) 
obtained by LC-APCI-MS of the pentacyclic triterpenes 
detected in table olives from the Marfil variety. MA, maslinic 
acid; OA, oleanolic acid; UA, ursolic acid; ERY, erythrodiol; 
UVA, uvaol; IS, internal standard. Erythrodiol was detected 
in non-diluted samples and is depicted in an insert.

Overall, the extraction process established for the 
analysis of pentacyclic triterpenes in table olives was quite 
straightforward, holding minimal sample pre-treatment. In 
first place, olives were pitted, and the destoned fruit was 
grinded in order to break down the tissue and yield a fine and 
consistent suspension. This homogenization facilitated the 

second step, which consisted on three cycles of extraction, 
with the first one with 12 mL of ethanol:methanol and the 
repetitions only involving 6 mL of solvent. Finally, the pooled 
supernatants were diluted and directly analyzed by LC-MS 
[25]. 

The developed method was applied to the analysis 
of Marfil table olives which are a scarcely studied variety 
distinguished by an ivory hue from which it takes its names 
and native to the Montsià region (Tarragona, Spain). These 
olives were processed following the Greek-style, which 
consist in a natural fermentation in brine. The developed 
method enabled the identification and quantification 
analytes derived only from the ß-amyrin, namely, maslinic 
and oleanolic acids, as the main pentacyclic triterpenes and 
erythrodiol in minor amounds (Figure 7). Ursolic acid and 
uvaol were not found Marfil table olives.

The content of maslinic and oleanolic acids found in 
the Marfil variety, processed as natural green olives (Table 
5), is consistent with those described by Peragón [54] and 
Romero, et al. [49] also for fruits that followed a natural 
fermentation process, such as Kalamata and Hojiblanca. 
These results agree with other authors which reported the 
presence of the derivatives from α-amyrin in olive leaves but 
not in the fruit [24,54].

Pentacyclic Triterpenes mg/kg %
Oleanane group

Maslinic acid 1740 ± 60 55.4
Oleanolic acid 1380 ± 100 44

Erythrodiol 18.0 ± 1 0.6
Ursane group

Ursolic acid n.d.1 0
Uvaol n.d. 0

Table 5: Pentacyclic triterpenes in Marfil table olives.
1 n.d. Not detected

Determination of Pentacyclic Triterpenes 
in Plasma by LC-MS

Based on our results, the scarcely known Marfil variety 
of table olives emerges as an important source of bioactive 
compounds [25]. However, there was a lack of knowledge 
on the absorption, metabolism and distribution either in 
humans or in animals of pentacyclic triterpenes after the 
consumption of table olives. To carry out these bioavailability 
studies, the first step consists in the development of an 
analytical method able to detect maslinic acid, oleanolic acid 
and erythrodiol that could reach the blood after the oral 

intake of olives. For the LC-MS determination of pentacyclic 
triterpenes, the conditions previously developed for the 
analysis of table olives were used since they provided enough 
sensitivity for the accurate detection of the compounds 
in plasma [25]. However, a different extraction process 
should be applied, given that plasma and table olives are 
quite different matrixes. Consequently, the extraction of 
pentacyclic triterpenes from plasma was attempted using 
a previously developed method for the analysis of maslinic 
acid [59]. The method consisted on two consecutive 
extractions with ethyl acetate followed by evaporation to 
dryness and reconstitution with methanol 80% prior to LC-
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MS analysis. Previous to the implementation of the method, 
it was validated in order to evaluate if the conditions were 
adequate for the extraction of oleanolic and ursolic acids 
as well as erythrodiol and uvaol. Consequently, blank rat 
plasma samples were spiked using three concentration 
levels in order to validate the analytical performance 
following the EMA Guidelines [58]. Linearity was confirmed 
with calibration curves that gave correlation coefficients 
above 0.99. Regarding accuracy and precision, evaluated as 
intra-day and inter-day reproducibility, the method showed 
adequate RSD (%) values (0.22–9.93%) lower than others 
[60-62]. In addition, no significant matrix effect for analytes 
and IS were observed as values were around 91–117%, being 
within the 80-120% range that indicates that the ionization 
competition between the analyte and endogenous co-
elutions was negligible and the LC–MS method was robust. 
Recoveries were around 100% for all the evaluated analytes. 
Moreover, the LOQ was adequate since it ranged from 1 nM 
for maslinic acid to 10 nM for uvaol, thus providing similar 
[60-63] or higher sensitivity [56,64] in comparison with the 
published methods. Therefore, the proposed methodology 
represents an important achievement and opens the 
possibility to bioavailability studies after consumption of 
different foods, or administration of plants widely used in 
traditional medicine, with the aim of studying in depth the 
beneficial effects of these compounds in human beings [65].

The analytical performance of the method was verified 
by administering a finely grinded suspension of Marfil olives 
to Sprague-Dawly rats. The dose to be administered to the 
experimental animals was established bearing in mind 
that it should be kept within a nutritional range, and olives 
should be finely grinded so that they could be administered 
intragastrically with a cannula. For this reason, approximately 
12 g of destoned fruit was grinded with 40 mL of water, 
and the experimental animals were administered with this 
finely minced suspension at the volume of administration 
of 10 mL/kg. The dose that the rats received corresponded 
to 3 g of destoned olives/kg body weight. This dose was 
translated to the equivalent to be ingested by a person with 
the body surface area normalization method described by 
Reagan-Shaw, et al. [66]. The equivalent dose for a human 
corresponded to 0.48 g/kg, which means that a person of 
70 kg of body weight would consume 28 olives of the Marfil 
variety to accomplish the dose administered to rats. Although 
this dose does not correspond to the amount of olives eaten 
in a meal or as appetizer, it is not so different from the one 
usually consumed and would be compatible with the dose 
to be administered in future pharmacokinetic studies using 
olives.

Plasma samples obtained 120 min after the oral 
administration of olives from the Marfil variety indicated 
the presence of maslinic acid at 23.1 ± 5.3 nM and oleanolic 

acid at 4.32 ± 0.20 without traces of erythrodiol. The fact that 
the latter could not be found in plasma, can be attributed to 
its low content in the fruits of Olea europaea L. that was two 
orders of magnitude lower than maslinic acid and oleanolic 
acid. The relatively low concentration obtained for maslinic 
acid (~ 25 nM) after the administration of the suspension 
of olives that contained an approximate dose of 4.57 mg 
maslinic acid/kg of rat body weight, could be explained 
by the described oral bioavailability of approximately 5% 
obtained in rats [67]. On the other hand, oleanolic acid was 
administered in the form of a suspension at a dose of 3 g of 
destoned olive/kg which contained 3.60 mg of oleanolic acid/
kg of body weight was detected at concentrations around 
5 nM. Previous studies in the literature that administered 
oleanolic acid to rats, either as a single compound or in part 
of an extract, indicates the poor oral bioavailability of this 
pentacyclic triterpene [63,68,69] that has been described to 
be 0.7% for oral doses of 25 and 50 mg/kg [68]. Therefore, 
the lowest bioavailability described for oleanolic acid could 
explain our results, in which this pentacyclic triterpene was 
barely detected in comparison to maslinic acid. Hence, the 
oral administration of olives to rats and its determination 
in plasma verified that the established methodology is 
appropriate for bioavailability studies.

Conclusion

Pentacyclic triterpenes from the oleanane group, mainly 
maslinic and oleanolic acids, have received much attention in 
the recent years due to their numerous biological activities, 
such as antitumor, anti-inflammatory, anti-diabetic, antiviral 
and hepatoprotective, among others. These compounds are 
widely distributed in nature, in both medicinal species and 
edible plants, especially in vegetables, legumes and fruits 
regularly consumed following a Mediterranean dietary 
pattern. Among the foods rich in pentacyclic triterpenes 
from the oleanane group stands out the fruit of Olea 
europaea L. The present chapter presents the optimization 
and validation of two analytical strategies that allows the 
determination of these bioactive compounds in table olives 
and in plasma samples after the administration of this food. 
Remarkably, both extraction processes allowed a fast sample 
treatment prior to LC–MS analysis that allows a sensitive 
and reliable detection of pentacyclic triterpenes from the 
oleanane and ursane family as indicated in the validation 
of the method. The results obtained in table olives confirms 
this food as a prominent source of maslinic and oleanolic 
acids. Moreover, the administration of this food to rats and 
its subsequent plasmatic analysis allows the confirmation 
of the bioaccessibility of these compounds from table olives. 
Furthermore, the application of the analytical methods could 
be extended to other foods or plants used in traditional 
medicine, thus broadening the knowledge of these bioactive 
triterpenoids. 
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