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Abstract

Understanding the host impact on its symbiotic microbiota is crucial in redirecting the rumen microbiota and thus improving 
animal health and performance. Rumen fluid transplantation has been proposed as one of the promising methods for reshaping 
the symbiotic microbiota and enhancing host health and performance. The aim of this invited review is to summarize the impact 
of ruminal transfaunation on the health and performance of sheep especially fattening lambs. Rumen transfaunation using the 
ruminal fluid from a healthy donor animal to improve the rumen microbiota and treat a sick recipient animal was performed 
long before. The microbial populations and associated advantages of the rumen transfaunation have been explored in many 
studies before. Rumen fluid transplantation has been performed to confer benefits for animals by altering gastrointestinal 
tract microbiota. Ruminant scientists agree that restoring ruminal bacterial equilibrium of animals suffering from ruminal 
disorders like simple indigestion, acidosis, plant intoxication, and following surgical correction of a left-displaced abomasum, 
would aid rumen function recovery. In humans, the support of a healthy microbial community in the digestive tract is also 
recommended previously. In humans, digestive disorders have been treated with fecal microbiota transplantation. This review 
presents the impact of ruminal transfaunation on the gastrointestinal microbial ecology, production performance, antioxidant 
status and immune response of sheep especially fattening lambs.
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Abbreviations: VFAs: Volatile Fatty Acids; GIT: 
Gastrointestinal Track; NDF: Neutral Detergent Fiber; 
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Introduction

Ruminants are mammals (Class – Mammalia) in the 
Order Arteriodactyla (toed mammals and hooved) Suborder 
Ruminantia. The word ruminant, came from the Latin word 
ruminare, means to chew over gain hence the nomenclature 

of cud chewing [1]. The ruminant can be considered to be a 
superorganism because it has a symbiotic relationship of life 
between the cells of the animal›s body and the rumen microbes. 
The host animal has been affected by factors influencing the 
viability of microorganisms in the reticulo-rumen as well as 
anywhere along the gastro-intestinal tract [1]. Ruminants 
have a four-chambered stomach, consisting of the reticulum, 
rumen, omasum and abomasum. Ruminants typically eat 
quickly with minimal chewing. After being swallowed, feed 
enters the reticulum, which is continuous with the rumen. 
The rumen is the largest of the four stomach chambers 
and serves as a large mixing vat that is the site of microbial 
fermentation and nutrient absorption. Combined, the rumen 
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and reticulum of an adult dairy cow can hold around 50 
gallons of partially digested feed. The omasum, with its many 
leaves or laminae, regulates flow of digesta to the abomasum. 
The abomasum is the gastric, glandular compartment similar 
to the stomach of nonruminants (simple stomach animals) 
with secretion of acid (HCl) and pepsinogen and a pyloric 
sphincter that controls flow of digesta from the abomasum to 
the duodenum [1].

Rumination involves the partially digested feed (cud) is 
regurgitated by bringing the cud up to the esophagus, and 
then re-chewed in the mouth. Chewing during rumination 
is slower and more consistent than during eating. The cud 
is eventually re-swallowed and the process continues with 
another bolus regurgitated for cud chewing (crushing and 
grinding of particles by the molars). The rumination process 
stimulates saliva production to help buffer the rumen pH 
and decrease feed particle size, allowing it to pass from the 
reticulum into the omasum. As partially digested feed passes 
through the omasum, water is absorbed, reducing the volume 
of material that arrives in the abomasum. The abomasum, 
often referred to as the true stomach, produces acid and 
digestive enzymes similar to the stomach of non-ruminant 
animals, further breaking down the feed before it passes 
into the lower gastrointestinal tract for further digestion, 
absorption and ultimately elimination. Cud chewing 
increases surface area of the feed particles, in particular 
fibrous material, to enhance microbial digestion [1].

Gastrointestinal microbiota has an important role in 
the health and feed utilization of animals [2]. The symbiotic 
microbiota in the rumen facilitates the digestion by 
decomposing the ingesta and degrading the plant materials 
into different volatile fatty acids (VFAs), ammonia, etc., to 
supply the host with nutrient and energy [3]. Therefore, the 
improvement of rumen microbial ecology can possibly affect 
the digestion capability resulting in enhanced lamb feed 
efficiency and then production performance. Various methods 
have been performed into previous studies to redirect rumen 
microbiota. For instance, changing rumen pH [4], minimizing 
the rumen protozoa [5], changing animal diets [6], dietary 
supplementation of feed additives like probiotics, prebiotics 
and synbiotics [7] have been investigated in different studies. 
On the contrary, no one of the previously mentioned methods 
has shown harmonic positive effects, indicating that the 
previously mentioned methods to improve animal health 
and production performance by reshaping the symbiotic 
microbiota have not been achieved yet.

A balance of symbiotic bacteria is necessary 
for a healthy intestinal microbiome and related 
physiological homeostasis [8,9]. In the case of ruminants, 
ruminal fluid transplantation has been known to transfer 

ruminal microbes from healthy donor animals to provide 
health benefits to the recipient ones [2]. Rumen fluid 
transplantation has been proposed as one of the promising 
methods for changing the symbiotic microbiota and improving 
host production performance [1]. Whether ruminal fluid 
transplantation can accelerate gastrointestinal transition, 
reshape gastrointestinal microbiota communities. In large 
ruminants, ruminal fluid transplantation has been developed 
to reduce the harmful effects of rumen acidosis [10], treat 
rumen function disorders [1], and improve health of cows 
with surgical correction of displaced abomasum [11]. In 
small ruminants, ruminal fluid transplantation has improved 
immunological and inflammatory reactivity while decreasing 
feed intake, nutrient digestibility, and growth performance 
[12]. However, ruminal fluid transplantation may not be 
appropriate for lambs during weaning, and research with 
calves suggests that fast changes in the gut microbiota during 
weaning may be hazardous [13]. These conflicting findings 
may be partially due to variations of the symbiotic bacteria 
(i.e., bacterial strains and types) as well as dosage.

Therefore, this review aimed at elucidating the impact 
of ruminal transfaunation on health and production 
performance of sheep especially fattening lambs. To prepare 
the review, we conducted a literature search with focus on the 
effect of ruminal transfaunation on health and performance 
of sheep using the following criteria: (1) peer-reviewed 
journal articles in English were included; (2) chapters in an 
edited book were selectively involved; (3) studies on cows 
and fattening calves were selectively included to verify and/
or support the data on sheep. The key words used during 
literature search included ruminal transfaunation, health, 
production performance, sheep.

Ruminal Transfauntion

Ruminal transfauntion is vital for animal health and 
feed consumption and also it has been established in the 
case of ruminants to transfer ruminal microorganisms from 
healthy donor animals to receivers to give health advantages 
[2]. Ruminal transfauntion has been presented as one of the 
potential approaches for changing the symbiotic microbiota 
and improving host performance [1]. Transfauntion of 
gastrointestinal microbiota improved gut barrier damage 
in pigs [14] and successfully treated sheep ruminal acidosis 
[10].

Concept of Rumen Microbiome (Symbiotic 
Microbiota)

The rumen can be showed as an anaerobic and 
methanogenic fermentation chamber that involves 
microorganisms that have the ability to use, and improve the 
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productivity of, cellulolytic feeds (i.e. straw, silage, hay, and 
grass) [15]. The rumen microbiome, i.e., the community of 
microorganisms that found in the rumen, is characterized 
by its extensive diversity (encompassing bacteria, archaea, 
protozoa and fungi), high population density and complexity 
of interactions [16]. The continuous fermentation carried 
out by these microorganisms leads to ingested compounds 
being broken down into their subcomponents. There are 
three intersecting micro-environments found in the rumen 
that contain these microbes; the solid phase making up 70% 
of the microbial mass, the liquid phase making up 25% of the 
microbial mass, and the rumen epithelial cells and protozoa, 
containing 5% of the microbial mass [17]. The ruminal 
microbiota is a diverse and complex ecology that is critical to 
animal health and performance.

Diet, environment, age, and the host’s health state 
are all discovered to have a role in developing the rumen 
microbiota. Diet, in particular, can have a significant impact 
on rumen function by modifying microbial populations 
and fermentation activity [4,18-20]. Roughage influences 
rumen development and the expression of genes involved 
in VFA absorption in rumen epithelial cells. As a result, one 
of the most important aspects, diet, has been adjusted in big 
feeding operations of ruminants to enhance feed efficiency. 
According to a review of the available research [19], nutrition 
has the greatest impact on ruminal microbiota, however 
comparison studies across species are needed. Scientists 
would use modern omics technologies to quickly identify 
the microbial makeup, functions in the gastrointestinal track 
(GIT), host-microbe interactions, and variables influencing 
GIT microbiota.

Another element influencing rumen bacteria is the 
host’s age. The main rumen bacteria, for example, differ 
between newborn, 2-month-old, 6-month-old, and 2-year-
old cows [21]. Climate, temperature, humidity, topography, 
and herd management are all factors that influence the 
rumen microbiota-host relationship. When a host gets ill, its 
gut microorganisms and microbial activities may alter from 

those found in healthy animals [22].

Physiological and Anatomical Properties of the 
Rumen

The rumen is a complex ecosystem in which nutrients 
absorbed by microbes like bacteria, protozoa, and fungus 
and then digested anaerobically. The major end products 
of fermentation are VFAs and microbial biomass, which 
are utilized by the host ruminant. The environment in the 
rumen promotes microorganisms in providing the enzymes 
needed to digest the nutrients [23]. The functional health 
of the reticle-rumen is a necessary condition for productive 
behaviour, which includes cattle health and animal welfare 
[24].

Ruminants have the ability to transform low-quality 
fibrous resources into human-useful goods like meat and 
milk. Ruminal microorganisms’ capacity to manufacture 
the enzymes required for fermentation processes enables 
ruminants to acquire the energy contained in forages more 
effectively [23], in contrast the ruminal fermentation process 
is inefficient since it generates various byproducts such 
as methane gas (Kingston-Smith et al., 2012) and excess 
ammonia [25].

Ruminants’ anatomical adaption allows them to utilize 
cellulose as an energy source without requiring external 
supplies of vitamin B complex or critical amino acids since 
ruminal bacteria may manufacture such products [25,26]. 
The ruminant host receives nutrients from the bacteria 
to produce energy [27]. The ruminant digestive system 
is made up of four parts: the reticulum, the rumen, the 
omasum, and the abomasum. The rumen is primarily where 
the fermentation activities take place [28]. Microorganisms 
create the enzymes found in the rumen, which are needed 
to digest and ferment the food consumed by ruminants; 
consequently, the rumen is seen as a fermentation vat [29].

Types of Ruminal Bacteria (Table 1)

Type of bacteria Microorganism Impact Reference
Cellulose-
degrading 
bacteria

Butyrivibrio fibrisolvens, Ruminococci 
albus, and Fibrobacter succinogenes

Essential for animal nutrition because they break 
down cellulose, this makes up the majority of these 

plants’ cell walls.
[30-32]

Lipolytic bacteria Anaerovibrio lipolytica Hydrolyze the lipids in the rumen, and breaking the 
ester bonds and releasing fatty acids. [33]

Lactate-degrading 
bacteria

Selenomonas lactilytica and 
Megasphaera elsdenii

Metabolize lactic acid and limit its buildup, which 
helps to keep the pH in the right range. -

Pectin-degrading 
bacteria Lachnospira multiparus Create and release pectinolytic enzymes into the 

ruminal environment. [34]

https://medwinpublishers.com/OAJVSR
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Amylolytic 
bacteria

Bacteriodes ruminicola, 
Ruminobacter amylophilus , 
Selenomonas ruminantium, 

Succinomonas amylolítica and 
Streptococci bovis

Produce other VFAs such as formate, acetate, 
propionate, and succinate, and ferments glucose 
to provide acetate, formate, and ethanol as a final 

product.

[35-37]

Lactic acid-
utilizing bacteria Megasphaera elsdenii

Is the main species responsible for lactic acid 
metabolization; thus, it has an important role in the 
prevention of acidosis during the adaptation period 
when ruminants are fed diets high in concentrate.

[38]

Table 1: The most common ruminal bacteria. 

The ruminal ecosystem is made up of a diverse group 
of microorganisms that live in a symbiotic interaction in an 
anaerobic environment [39]. Ruminal bacteria, protozoa, and 
fungus make up the microbiota and bacterial populations are 
particularly sensitive to the rumen’s physicochemical features 
[36]. Bacteria, which make up the bulk of microorganisms 
that survive in anaerobic environments, are found in the 
rumen [40].

Function and Importance of the Rumen

Because the host is unable to manufacture cellulolytic 
enzymes, the microbiota is primarily responsible 
for complicated polysaccharide breakdown. Many 
microorganisms interact to digest complex substrates such 
as cellulose, starch, and proteins, resulting in energy, protein, 
and vitamins accessible to the host [41]. The most prevalent 
microorganisms in the rumen are bacteria [42] and also 
the rumen microbiota is mostly composed of bacteria [43]. 
Manipulation of microbiota has been explored in order to 
increase energy harvesting, minimize methane emissions, 
and prevent and cure rumen disorders [44,45].

There are several methods for manipulating the ruminal 
microbiota, including probiotics, prebiotics, antibiotics, 
and microbiota transfaunation, which involves transferring 
rumen fluid from one animal (donor) to another. The ruminal 
microbiota is relatively stable in adult animals, owing to 
two factors: redundancy, which is the ability of numerous 
microbial species to perform the same job, and resilience, 
which is the ability to rebound from a disruption [46].

Impact of Ruminal Juice Transfauntion

Rumen microbiota transfaunation has long been 
employed by veterinarians and is commonly advised to 
restore ruminal equilibrium [47,48]. Transfaunation has 
been demonstrated to aid cows suffering from abomasum 
displacement [11,49], abomasum impaction, gangrenous 
mastitis [50] and dysbiosis (abnormalities in the normal 
microbiota composition) induced by antibiotic therapy 
[51]. However, Tankersley, et al. [52] reported that, the 

technique did not improve blood metabolites, reproductive 
performance, or the incidence of illnesses following calving. 
Interspecies rumen microbiota transfaunation (from bovine 
to small ruminants) has been demonstrated to promote a 
faster recovery of protozoa populations as well as physical 
qualities such as color, flavor, and consistency in sheep and 
goats with experimentally produced acute ruminal lactic 
acidosis [53,54].

Impact of Ruminal Fluid Transfaunation on 
Nutrient Metabolism

As a result, ruminal microbiota is tightly correlated to host 
feed digestion and metabolism. Numerous studies have found 
that one or more types of ruminal microbiotas influence feed 
efficiency, nitrogen digestibility, and methane emission in 
ruminants [55-57]. In comparison to the reticulum, omasum, 
and abomasum, the adult rumen plays the most important 
role in the breakdown of ingested organic materials due to 
the presence of diverse bacteria. Rumen microorganisms can 
convert dietary carbohydrates to VFA, which can account for 
up to 80% of ruminant energy requirements [58]. Some rumen 
microorganisms also produce their own proteins for growth 
(referred to as microbial crude protein, MCP) by consuming 
energy and nitrogen from the meal. The MCP are digested 
and absorbed by the host in the small intestine, contributing 
to the host’s nutrition and wellbeing [27,59]. Furthermore, 
certain microorganisms may create vitamins such as B and K. 
Numerous enzymes necessary for the production of vitamin 
B12 are present in rumen microorganisms but not in the 
human GIT microbiome [60].

Methanogens in the rumen, on the other hand, 
generate methane through a series of redox processes, and 
methane is a potent greenhouse gas [61]. As a result, rumen 
microorganisms have a high potential for contribution to 
animal husbandry, and some of them can be used in animal 
production [45]. The bacteria that live in the rumen impact 
the host metabolism by degrading dietary components, 
despite the fact that these microbes are not regarded to be 
host specific tissues. This microbiota assists in the digestion 
of the meal by secreting enzymes. The rumen microbiota has 

https://medwinpublishers.com/OAJVSR
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been shown to have an important effect on feed efficiency, 
milk output, and dairy cow components [56]. The role 
of microbial enzyme activity, for example, can enhance 
monosaccharide content [62]. Nitrogen and fiber digestion 
contribute significantly to feed efficiency, and it is also 
associated with rumen microorganisms that generate MCP 
and VFA for the host [59]. According to one study, Fibrobacter 
succinogenes, Butyrivibrio fibrisolvens, and Ruminococcus sp. 
are the most important ruminal bacterial species in terms of 
nitrogen use by the host [63]. Toll-like receptors (TLRs) in the 
epithelium, for example, may detect lipopolysaccharide and 
lipoprotein breakdown products from bacteria [64]. When 
TLR4, TLR5, and TLR9 are activated by lipopolysaccharide, 
the host secretes bacterial flagellin and other bioactive 
molecules (such as cholecystokinin), which alter dietary 
nitrogen digestion and absorption.

A recent study discovered that some bacteria impeded 
the digestion of neutral detergent fiber (NDF) in goats 
[65]. Several bacterial phyla, including Proteobacteria, and 
Tenericutes, as well as a few bacterial species, including 
Anaeroplasma, Campylobacter, and Clostridium, are also 
associated with apparent crude fiber digestibility in pigs [66]. 
Cellulolytic microorganisms are among the most common 
bacteria in the rumen, they influence host fiber digestibility 
by secreting cellulose and controlling VFA production and 
profile. Furthermore, VFA can both give energy and regulate 
the host’s intestinal barrier function. In its current form, 
transfaunation refers to the transfer of microorganisms such 
as bacteria, protozoa, fungus, and archaea from the rumen of 
a donor to the rumen of a recipient [67].

Medicinal Functions of Ruminal Transfaunation

Rumen transfaunation was later utilized as a therapy 
to improve calf health. Rumen transfaunation enhanced 
calf health and survival in a field research with a herd 
experiencing bloody diarrhea and the loss of preweaned 
calves [68]. Transfaunation is the technique of transferring 
rumen fluid containing microorganisms and nutrients from 
healthy animals into animals with poor rumen digestion. 
This procedure is thought to enhance rumen function and 
has been used as a biotic therapy for ketosis, anorexia, and 
numerous causes of dyspepsia such as rumen acidosis. 
As indicated in the review by Depeters and George [1], 
this procedure is recommended in various text books and 
practical guides on bovine medicine.

Simple Indigestion

Sudden changes in food contents can cause anorexia in 
ruminants [69], which is reflected in rumen pH alterations 
[70]. Anorexia (decrease in appetite) with ruminal 
hypo motility to atony (stasis) is a clinical indication of 

uncomplicated dyspepsia in dairy calves [70,71]. Sudden 
changes in dietary components can cause anorexia in 
ruminants [69], which is reflected in variations in rumen 
pH (Merck and Co, 2010). Ruminal fluid transfaunation 
from a healthy donor animal to an animal suffering from 
mild indigestion is a widely suggested technique for dairy 
cattle and other ruminants [72]. Rumen transfaunation was 
found to be advantageous for sheep employed in biomedical 
research that had minor indigestion [72].

In their biomedical research, sheep were administered 
pelleted diets, which contributed to the development of 
subclinical rumen acidity. Ruminal fluid transfaunation 
successfully treated uncomplicated indigestion in sheep 
[72], furthermore improves cow health after calving, milk 
output, and animal health in a well-managed herd [52]. 
Transfaunation or refaunation is a popular medical treatment 
in animal medicine to cure ruminant indigestion [73].

Displaced Abomasum 

Ruminal fluid transfaunation was employed as an 
adjuvant therapy after surgery, and cows were transfaunated 
following surgical correction of a left-displaced abomasum, 
treatments were administered immediately following 
surgery and again on the first postoperative day [11]. 
Ruminal fluid transfaunated cows showed greater dry 
matter intake and milk output compared to control cows on 
day 2 following surgery and for the next three days. Serum 
concentrations of B-hydroxybutyrate on days 3 and 5 post-
surgery were considerably lower in transfaunated cows 
than control cows. Administration of rumen fluid to cows 
convalescing following surgical correction of left displaced 
abomasum showed favorable benefits [11].

Plant Intoxicants 

Mimosine (amino-B-(N-[3-hydroxy-4-pyridone]) 
propionic acid) is a poisonous amino acid found in plants of 
the genera Leucaena and Mimosa [74,75]. Mimosine inhibits 
protein synthesis and, when taken long-term by animals, 
results in decreased hair growth and loss with suspected 
antimitotic action. Mimosine was metabolized in the rumen 
to 3-hydroxy-4-pyridone [75]. The rumen microbiota in 
cattle and goats was capable of degrading mimosine but not 
its hazardous metabolite, 3, 4-dihydroxy pyridine. Leucaena, 
on the other hand, was not hazardous to ruminants because 
rumen microorganisms could breakdown both mimosine 
and 3, 4-dihydroxy pyridine [76]. Recently, rumen fluid from 
goats containing rumen bacteria capable of digesting sodium 
monofluoroacetate, a poisonous chemical found in Amorimia 
spp., ruminal transfaunation was utilized in order to prevent 
animal poisoning [77].

https://medwinpublishers.com/OAJVSR
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Tannins are polyphenolic chemicals found in plants 
and also they are antibacterial to some microbes and have 
been demonstrated to lower methane generation in sheep 
and goats [78]. Tannin intake can also be detrimental to 
animal health [79]. Tannins bind proteins, and research is 
being conducted to harness this binding feature to minimize 
protein breakdown in the rumen in order to improve nitrogen 
consumption by ruminants [80] and to prevent bloat in cattle 
grazing alfalfa [78].

Acidosis

It is generally recognized that ruminants’ rumens serve 
as critical sites for digestion and metabolism, and that the 
ruminal bacteria play a crucial role in these processes [81]. 
Ruminant health is significantly impacted by changes in 
the structure and function of the ruminal microbiota [82]. 
Ruminal acidosis can be caused by intake of fine particle 
size (diameter smaller than 0.07 in.) or highly concentrated 
feeds containing quickly fermented carbohydrates [83]. 
Such diets necessitate less chewing, resulting in reduced 
saliva production, which reduces buffering capacity [84]. 
Consumption of quickly digested carbohydrates increases 
rumen VFA production, as a result, lactic acid production. As 
a result, ruminal pH drops and the ruminal fauna shifts from 
primarily gram-negative to gram-positive organisms [85].

This illness is characterized clinically by ruminal atony, 
in appetence, and lethargy [86]. Transfaunation is the 
process of introducing healthy protozoa, VFA, and gram-
negative bacteria from a clinically normal ruminant into 
the rumen of an in appetent sheep in order to repopulate 
the ruminal fauna and correct the pH. Transfaunation is 
commonly used to treat ruminal atony and anorexia in 
ruminant animals [11,86]. Acute or clinical acidosis occurs 
when the ruminal pH goes below 5.0. Clinical symptoms 
may include decreased salivation, lethargy, decreased 
gastrointestinal motility, anorexia, and diarrhea [87]. Acute 
rumen acidosis represents an economically significant loss 
to the beef and milk production business. Ruminants have a 
complex stomach system, with the stomach being separated 
into four compartments, the biggest of which is the rumen. 
Clinical rumen acidosis is still the principal cause of illness 
and death in current ruminant production systems [71]. 
Reticulum-rumen function, which includes cattle health 
and animal welfare, is a necessary condition for productive 
behaviour [24].

Clinical ruminal acidosis occurs when the rumen’s fluid 
pH falls below 5.2 as a result of an excessive buildup of 
organic acids [88,89]. The classic situation leading to clinical 
rumen acidosis is excessive feeding of quickly fermentable 
carbohydrates, sometimes known as “grain overload”. Excess 
grain consumption is not required for the development of 

the syndrome because any rapidly fermentable carbohydrate 
(apples and other fruits, bakery waste products, incompletely 
fermented brewery products, and standing green corn) 
can provide the necessary substrate for clinical disease 
development [71]. When the rate of generation of VFA and 
lactate exceeds the rate of absorption, the pH of the rumen 
begins to fall. Volatile fatty acids and lactate accumulate in the 
rumen fluid and are absorbed into the systemic circulation 
[90].

Previous research showed that ruminal acidosis, a 
typical ruminal digestive problem in dairy or beef cattle 
given large levels of readily fermentable carbohydrates can 
disrupt ruminal microbial homeostasis and rumen epithelial 
function and, finally, result in noticeable decreases in animal 
performance, which results in significant financial losses 
and adversely impacts the sustainability of the ruminant 
sector [88]. Ruminant scientists agree that restoring ruminal 
bacterial equilibrium with rumen acidosis would aid 
rumen function recovery [91,92]. Ruminal transfaunation 
is a practical approach in production in which ruminal fluid 
containing healthy microbial flora and buffer systems is 
transferred from a healthy donor to receptors suffering from 
rumen disease [1]; it is also regarded a routine and successful 
treatment to rumen acidosis in bovine production systems.

A study looked at the benefits of ruminal transfaunation 
for sheep with ruminal acidosis and discovered that the 
sheep who received ruminal transfaunation recovered to 
normal health [72]. However, there is a scarcity of data on 
the dynamic changes in rumen fermentation and bacterial 
populations that occur after ruminal transfaunation in sheep 
with rumen acidosis, as well as its favorable effects on rumen 
epithelial shape and function [1].

Effect of Ruminal Transfauntion on 
Fattening Lambs

Ruminal transfaunation improved the mean blood 
levels of IgA and IL-6 in weaned lambs compared to control 
animals, however, it has lowered growth performance, 
nutritional digestibility, and feed intake [12]. Contrasting to 
previous research, transfection of gastrointestinal microbiota 
prevented rumen acidosis in sheep and reduced gut barrier 
damage in young piglets [14,65]. Research with calves 
suggests that ruminal transfauntion may not be suitable for 
lambs during weaning and that fast changes in the gut flora 
during weaning may be hazardous [13].

Effect of Ruminal Transfauntion on 
Gastrointestinal Microbiota of Fattening Lambs

In order to provide the host with nutrients and energy, 
the symbiotic bacteria in the rumen breaks down the food 
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that is consumed and breaks down plant components into 
various VFAs and ammonia. This process improves digestion. 
Therefore, increased sheep feed efficiency and therefore 
production may result from improved rumen microbial 
digestive capabilities. Various methods have been used in 
the past to reroute the rumen microbiota, such as altering 
animal diets [6], lowering rumen pH [4], and reducing rumen 
protozoa numbers [5]. Microbial transplantation has been 
considered as one of the potential approaches for remodelling 
the symbiotic microbiota in small animals [93-96]. The 
recipient cows’ fermentation characteristics recovered to 
their former state immediately after transplanting [97], 
and their bacterial profiles returned to their original state, 
demonstrating that the host has a major influence on rumen 
microbiota re-establishment. In cows with dysbiosis brought 
on by antibiotics, tranfaunations improved richness and 
diversity, and the donors’ microbiota was able to invade the 
rumen [51]. In the same time, patients with dysbiosis brought 
on by antibiotic usage and Clostridium difficile infection can 
also greatly benefit from faecal microbiota transplantation in 
humans [98].

Compared to control animals receiving water, 
transfaunation given to lambs throughout their early lives 
improved the bacterial diversity [99]. After weaning, the 
gastrointestinal environment changes, creating opportunities 
for particular bacteria species to grow. This progressively 
alters the microbiota, and utilizing ruminal transfaunation to 
transfer a mature microbiome to the rumen just accelerates 
up this process [65,100,101].

There were no apparent changes in the pH of rumen 
fluid between control and transfaunated cows at any point 
of time, although the two groups’ pHs were more suited 
to rumen digestion during the course of the experiment 
than those of the non-transfaunated group [102]. The 
fermentation of the ingested food by the ruminant is entirely 
dependent on the microbial community [103,104]. Most of 
the energy and protein required by the host are supplied by 
the fermentation process, mostly in the form of short chain 
fatty acids (SCFAs) and microbial proteins [46]. Microbial 
colonization may be influenced by a number of parameters, 
including nutrition and the environment [105]. When the 
microbiota is less stable and more basic, these adjustments 
can be more noticeable in subsequent colonization cycles 
[106]. A diversified and established microbial community in 
the rumen is more durable and resistant to disturbances as 
compared to less developed ecosystems.

When the disturbance is removed, the microbiota’s 
composition and function tend to recover to pre-treatment 
levels [107,108]. However, in juvenile ruminants, the impact 
of modifications may last for some time after the modification 
is completed. Saro, et al. [106] showed that a long-term early 

life treatment may influence the composition of the rumen 
microbial community and that this effect can last for weeks 
after the intervention. Abecia, et al. [109] demonstrated 
that the treatment effect lasted after the alteration was 
removed in the early life of baby goats. Currently, numerous 
methods for influencing rumen fermentation through early 
life microbiota have been investigated, including diet types 
[110], weaning technique [111], rumen fluid inoculation 
[112], and different additives [106,113].

Effect of Ruminal Transfauntion on Production 
Performance of Fattening Lambs

Effect of Ruminal Transfauntion on Body Weight and 
Body Weight Gain: Microbial transplantation has been 
considered as one of the potential approaches for modifying 
host performance and remodelling the symbiotic microbiota 
in small animals [93-96]. Rumen fluid transplantation in 
fattening lambs decreased average daily gain in live weight 
and apparent digestibility of ether extract in 3 month old 
fattening lambs, and it decreased apparent digestibility 
of NDF and ADF in one year old lambs [12]. Yin, et al. [12] 
reported that the initial and final live weights were similar in 
the 3 month and one year fattening lambs exposed to ruminal 
fluid transfaunation in comparison with controls.

Effect of ruminal transfauntion on feed intake and feed 
conversion ratio: The feed intakes of transfaunated cows 
were higher than those of the non transfaunated ones; 
appetite differences may have contributed to the variability 
of rumen protozoa, pH values. Cows that received rumen fluid 
had significantly greater feed intakes, significantly greater 
daily milk yields, and significantly lower rumen fluid acidity. 
Because non-transfaunated animals subjected to indigestion 
after consuming concentrate may have rumen fluid pH 
that is low for several weeks [102]. However, rumen fluid 
transplantation in fattening lambs decreased average feed 
intake in 3 month old fattening lambs compared to control 
lambs [12]. On the other hand, cows that received rumen 
fluid had much higher feed intakes, higher daily milk outputs, 
and significantly lower rumen fluid acidity; furthermore, 
transfaunated cows also had significantly higher feed intakes 
than non-transfaunated cows [11]. 

Furthermore, rumen transfaunation enhanced the dry 
matter intake of treated bulls above deionized water-treated 
bulls [114]. Ruminant scientists agree that recovering the 
microbiota in the rumens of stressed and travelled cattle 
quickly results in enhanced animal health and performance 
following transportation [92]. After transportation, the bulls 
given 10 kg of rumen fluid consumed more feed than the 
control group [114]. Also, according to Galbat and Keshta 
[102], cows in the transfaunated group consumed much 
more feed on a daily and cumulative basis and produced 
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significantly more milk than cows in the non-transfaunated 
group. In cattle, the feed intake improved as a result of the 
rumen fluid treatment. When compared to the control 
group, animals that received 1 liter of rumen fluid consumed 
considerably more feed on days 1 and 4 after ruminal 
transfusion [115]. Compared to the transfaunated cows, cows 
in the non-transfaunated group showed a lower protozoal 
counts and activity as well as reduced milk output [102].

Effect of Ruminal Transfauntion on Antioxidant 
Activity of Fattening Lambs

Free radicals, including reactive oxygen and nitrogen 
species (ROS and RNS), are chemically reactive substances that 
may destroy macromolecules including lipids, carbohydrates, 
proteins, and nucleic acids by oxidative damage [116]. 
Antioxidants help prevent cell deterioration by lowering free 
radicals [117]. In healthy animals, there is a balance between 
free oxygen radicals and the protective antioxidant system. 
Oxidative stress is the term used to describe the shift in the 
antioxidant system’s favoring of oxidants over free radicals. 
In many diseases, oxidative stress contributes to cellular and 
molecular tissue damage [116]. Malondialdehyde (MDA), the 
final product of lipid peroxidation, enzymatic antioxidants 
such as superoxide dismutase, glutathione peroxidase, 
and catalase, non-enzymatic antioxidants such as reduced 
glutathione, vitamins C and E, total antioxidant capacity 
(TAC), and total oxidant status (TOS) are all commonly used 
markers in determining oxidative stress in sheep [118].

The determination of oxidative stress has recently 
become significant in clinical practice as a complementing 
component [119]. Shearing has been shown to cause a 
considerable rise in blood MDA values, indicating the 
presence of oxidative stress in sheep [120]. The antioxidant 
indicators’ blood levels were unaffected by ruminal 
transfaunation, however, among the intestinal permeability 
indicators, the mean serum level of D-lactate dehydrogenase 
was greater in both ruminal transfaunation groups than in 
the control group [12].

Effect of Ruminal Tansfauntion on Immune 
Response of Fattening Lambs

When it comes to immunoglobulins in the weaned 
lambs, the ruminal transfaunation group’s mean blood levels 
of IgA and IL-6 were greater than those of the control groups 
in comparison [12]. Researchers found that the activation 
or inhibition of Toll-like receptor (TLR) by microbial signals 
in humans might influence the modulation of immune 
responses [121]. As a result, it was hypothesized that rumen 
microorganisms are critical for the development and control 
of the neonatal immune system, and that rumen microbes 
play an important role in sustaining long-term health and 

production. Malmuthuge, et al. [122] discovered that the 
gut microbiota and mucosal immune activities of lambs 
fed MR (milk replacer) or MR+S (milk replacer + starter) 
changed throughout the weaning transition. For ruminants, 
the earliest microbial sources and profiles may be essential 
in determining the microbe-immune system interaction and 
its implications for adult health in the early postnatal period. 
For weaned lambs, ruminal transfaunation has improved 
immunological and inflammatory reactivity [12].

Effect of Ruminal Transfauntion on Mortality of 
Fattening Lambs

Stresses such as decreased food digestibility, leaky gut 
epithelia, or immunological dysfunction can all cause an 
increase in morbidity and mortality during the weaning phase 
[123]. Post-weaning care of lambs is a prevalent problem, as 
evidenced by a 4.6 percent post weaning death rate for sheep 
[124]. As the animals adjust to solid diet during weaning, the 
gut microbiota progressively changes. This reconfiguration 
of the microbiota may increase the stress associated with 
weaning [125]. According to several studies like Blanton, et 
al. [126], Charbonneau, et al. [127], and Ahern and Maloy, 
[128], it involved a variety of interactions between bacteria 
that affect feed digestion, gastrointestinal integrity, and 
immunological reactivity [129]. Ruminal transfaunation may 
not be appropriate for lambs during weaning, and research 
with calves suggests that fast changes in the gut microbiota 
during weaning may be hazardous [125-136].

Conclusion

Finally, it is important to mention that intervention 
strategies to improve the production performance and 
health of fattening lambs have been the focus of many 
published studies, which apply different approaches, 
including nutritional manipulation (i.e., pelleting of the total 
mixed ratio and diet formulation according to the metabolic 
condition of the lambs), as well as dietary supplementation 
of feed additives in the diet (e.g., prebiotics, synbiotics, 
probiotics, vitamins, minerals, etc.), improving of genetic 
traits of sheep by different methods such as selection, 
presenting fresh sires, inbreeding, crossbreeding and 
formation of new breed. Nevertheless, effectiveness of 
most of the interventions has been variable or inconsistent. 
More recently, innovative approaches have been explored, 
including reshaping the ruminal microbiome by ruminal 
transfaunation. However, no one of the previously mentioned 
methods has shown harmonic positive effects, indicating that 
the previously mentioned methods to improve animal health 
and production performance by reshaping the symbiotic 
microbiota have not been achieved yet and still need further 
research and study.
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