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Abstract 

Freshwater in lake and pond are often found to be polluted by heavy metals such as As, Zn, or Pb which are toxic in 

nature and non-biodegradable. Heavy metals are readily consumed by both aquatic flora and fauna present in the 

freshwater environment. It also polluted the air, water, and soil. Thus, they have adverse impact on the entire ecosystem. 

These heavy metals also enter the human systems through food consumed. This review discusses the methods and their 

mechanism used to reduce the amount of such heavy metals The methods which are in practice are Electrochemical 

Treatment (Electrocoagulation, Electro-Floatation, and Electro-Deposition), Physicochemical Process (Chemical 

Precipitation, Ion-Exchange, and Adsorption), Membrane Filtration (Nanofiltration, Reverse Osmosis, Microfiltration, 

Ultrafiltration, and Electro-Dialysis),and Photo-Catalysis and Nanotechnology Treatment.  
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Introduction 

Fresh clean water is a necessity for all living 
organisms and often there is scarcity due to draughts, 
industrialization, and growing population. The treated 
wastewater can be used to fill this scarcity by treating 
them through certain processes in order to eliminate the 
toxic heavy metals as well as other pollutants to make it 
safe for domestic or industrial reuse. Some of the common 
toxic heavy metals present in waste water are Co, Cu, Ni, 
As, Cr, Pb, Zn and Hg [1-3]. In higher concentration, heavy 
metals are fatal when consumed by humans through 
foods and drinks. In fact, water is the apex origin of all 
diseases caused by pathogens [4-6]. There are many 
treatments available to purify the wastewater from its 
toxic elements but the most preferred are the ones which 

are Economical, Environment friendly, and feature no 
alternative pollutants. The two main types of methods for 
treatment include biological methods and 
physical/chemical methods; however, biological methods 
are not as applicable as chemical method for eliminating 
heavy metals. This article will discuss the physical and 
chemical treatment methods for eliminating heavy metals 
from wastewater as well as analyze their procedures, 
applications, advantages, and disadvantages.  
 

Current Methods for Treating Wastewater 

The different options for eliminating heavy metals 
effectively are Electrochemical Treatment 
(electrocoagulation, electroflotation, and electro-
deposition), Physicochemical Process (chemical 
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precipitation, ion-exchange, and adsorption), Membrane 
Filtration (nanofiltration, reverse osmosis, microfiltration 
and ultrafiltration, and electro-dialysis), Photo-Catalysis 
and Nanotechnology Treatment. The methods, their 
limitations, and scope for their improvement are 
discussed below.  
 

Electrochemical Treatment  

Electrochemical treatments are the least studied 
methods as they are the most expensive ones. However, 
electrochemical treatment offers better efficiency and 
required less space than all other treatments [7-10]. The 
electrochemical treatments to be known are 
Electrocoagulation (EC), Electroflotation (EF), and 
Electro-Deposition (ED).  
 
Electro-Floatation (EF): Recently Electroflotation (EF) 
method has gained attraction in wastewater treatment to 
remove heavy metal pollutants as the other methods were 
not as efficient with dilute solutions [11-13]. EF was used 
for the first time in 1904 to remove mineral ores. It 
gained widespread usage due to its adaptability, low 
expense, and ease of operation. EF is currently used in the 
industries such as food processing for wastewater 
treatment [14]. EF dissociates pollutants by floating them 
to the top of the liquid and all this occur in 3 phases. First, 
the pollutants were drawn to a cell that has 2 electrodes 
and a power supply. The reaction for this phase is: 

 
The heavy metals stick to O2 and H2 molecules and are 

destabilized to form flocs. The second step is the 
separation by settling or flotation of generated foam and 
settled flocs. The third step is removing collected 
pollutants by filtration method. Pollutant removal 
efficiency depends upon the size of the bubbles created 
during electrolysis. The energy consumed depends on the 
cell design, electrode materials, and operating conditions. 
It is common practice in wastewater treatment to 
combine EC and EF in order to decrease the limitations 
mentioned above. Combining the two method leads to 
higher efficiency than using them isolated [15]. 
 
Electrocoagulation (EC): EC is a straightforward method 
that is generally considered unreliable; however, due to 
improved technology, many pollutants are now 
eliminated with this method [16-19]. EC works by 
supplying low electric current to the wastewater and 
thereby the electrical charge keeps the heavy metals 
together are negative charged and the metals are 
coagulated from the aqueous phase to come together in 
the mass (called the sludge or floc). The floc developed by 
EC is more stable, larger, and can be easily taken out by 

normal physical filtration system [20-22]. EC is usually 
conducted with Al or Fe electrodes. The main reaction for 
Al electrodes is:  

 
3

33 ( )Al OH Al OH   

The Al(OH)3 formed becomes a substance that can trap 
the heavy metal ions and separated them from the rest. 
Experimental results indicated as an optimum removal 
efficiency of 98.2% was achieved by using the Al anode at 
current density of 0.2 Adm-2. Previous studies had 
demonstrated the removal efficiency of 97.2% with 
current density of 0.5 Adm-2 and pH value 7 using 2 mg/l 
of Mg [23,24]. In an earlier study, 30 iron and stainless-
steel rods of 50 mm length and 5 mm diameter were 
utilized. Results from this experiment indicated that at the 
current densities of 6 and 8 mAcm-3 the Pb amount is 
reduced by 96.7% and 95.2% respectively. These results 
demonstrate that how removal efficiency is directly 
proportional to the current density used as a result of 
increase in the rate of formation of hydroxide and steel 
flocs [25]. EC is also an ecofriendly method for removing 
waste since it utilizes electrons instead of adding 
additional chemicals. However, EC cannot remove 
particles that are infinitely soluble. 
 
Electro deposition (ED): Electro-deposition (ED) is a 
convenient and economical method for removing the 
heavy metals present in wastewater. This method is 
better because no other reagents are needed, and no 
sludge is formed during the whole process. ED works by 
changing dissolved metal ions from liquid state to solid 
state by depositing on ionic conductor in order to protect 
them from decay. ED reduces and oxidizes the heavy 
metal ions in a single step in a cell that includes one 
anode, one cathode, one electrolyte cell, and a current 
source [15,26-31]. The metal reduced, and electroplated 
on the cathode. The ultimate size of electrodeposite 
depends upon the nucleation of deposits, and their 
growth. Anodes must be insoluble in water in order to 
avoid disrupting the process. Competing reactions do 
occur during the process; which includes hydrogen 
turning into a gaseous state. 
 

The productivity of the ED method depends upon the 
heavy metal’s concentration in the initial waste product 
solution, temperature, pH level, and the presence of any 
complex and chelating agents [26,27]. This method is of 
great advantage due to its ability to be used with non-
aqueous solutions or those containing chelating agents. 
ED can be used with aqueous solution as well and it often 
contains chelating agents such as EDTA, NTA, and citrate 
[32-34]. Chelating agents are very helpful since they bind 
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with heavy metal cations to decrease the formation of 
insoluble salts thereby improving removal efficiency very 
effectively.  
 

Physicochemical Processes  

Ion-Exchange: The ion-exchange method was established 
on a reversible interchange of ions between solid and 
liquid state. The process starts with ion-exchange reaction 
followed by the physical absorption of heavy metal ions, 
which produces the complex by the counter-ion and the 
functional group. Finally, hydration occurs at the surface 
of the solution or pores of the adsorbent. The ion 
exchange method is affected by numerous variables 
including: pH, anion concentration, temperature, initial 
concentration of adsorbent and sorbate, and the contact 
time [35-38]. This technique utilizes a resin which 
removes the ions from the electrolytic solution to release 
other ions with similar electrical charges. During the 
metal ions capture, the following interaction occurs: 
 

3

3nRSO H Mn nRSO Mn nH          

 
n is a constant connected to the oxidation state of metal 
ions. Ion-exchange method is more preferred to methods 
such as chemical precipitation as it offers many 
advantages like limited cost, high metal recovery levels, 
high selectivity, and increased efficiency. The resins that 
are favored for the use in ion-exchange processes are 
synthetic polymers such as styrene-divinyl-benzene or 
other gel options such as macropore. Gel option offers the 
benefit on cost efficiency and stability [35,39-41].  
 
Adsorption: Adsorption is a common technique to 
remove heavy metals from wastewater that has had 
significant result in reducing the amount of heavy metals. 
Adsorption is a transfer between the liquid phase and 
solid phase (adsorbent). Adsorption comprises of three 
stages 42-45]. First, the pollutant is penetrated from the 
bulk solution onto the adsorbent surface. Then, the 
pollutant is adsorbed on the adsorbent surface. Lastly, the 
penetration in the adsorbent structure. Adsorbent 
provides a high surface area and high adsorption ability. 
Adsorbents can easily be found in agricultural waste, 
industrial by-products, or other materials found in nature. 
Commonly used adsorbents include activated carbon, 
carbon nanotubes, and [44].  
   
 Activated Carbon  
When potassium carbonate (K2CO3) is used, the activated 
carbon (AC) is produced from agricultural by-products. 
Their surface area ranges from 1266-3256 m2g-1. AC is 
commonly used for adsorption methods to take out the 

toxic metal from wastewater [43,46,47]. Previous 
research indicates that activated carbon prepared at 900 
ºC is highly efficient at eliminating Ni from a liquid 
solution with an adsorbent concentration of 0.25g. pH 
values may also affect adsorption method and adsorption 
is best when the pH level is between 2 and 5 [43,48,49].  
 
 Carbon Nanotubes 
Carbon nanotubes (CNTs) are known for having 
properties which make absorbent extremely effective in 
taking out heavy metals from wastewater [50-52]. 
However, CNTs are immobilized by calcium alginate to 
limit the risks created when CNTs are discharged into 
water. Previous studies show that a pH of 5 is optimal for 
using CNTs to eliminate heavy metals.  
 
 Wood Sawdust 
Wood sawdust is a waste product that is produced after 
mechanical wood processing in plant and can be utilized 
as a cheap adsorbent for heavy metals removal. Sawdust 
can be used due to its lignocellulosic composition. 
Sawdust is made up of cellulose and lignin which both 
display the ability to bind metal cations. Recently, this 
interest has arisen to search for more environment 
friendly techniques to eliminate heavy metals from 
wastewater and sawdust is one such good option [53,54]. 
In addition, modified cotton, waste wool, tree barks, and 
nuts waste are all good alternatives for heavy metals 
adsorption. Previous studies have shown that sawdust is 
more effective in removing Cu, Zn, and Cd through 
adsorption method [55-57].  
 
Chemical Precipitation: Chemical precipitation is a 
straightforward and an easy treatment method for 
removing heavy metals from wastewater [58-60]. 
Chemical precipitation requires a significant amount of 
chemicals in order to decrease heavy metal ions to an 
adequate limit for safe disposal. However, it may fail to 
reach that point and chemicals added may themselves 
pose a pollution threat. In this process, chemical agents 
react with metal ions and transform them into insoluble 
particles. The solid phase is then separated from the 
solution by sedimentation or filtration. pH is significant to 
this process with basic condition (pH=11) favored to 
improve the removal of heavy metals. After creating the 
ideal pH levels, the soluble metal ions are transformed to 
the dissolved solid by reacting with a precipitant agent 
[61].  
 
 Sulfide Precipitation  
Sulfide precipitation is similar to hydroxide precipitation, 
since both soluble and insoluble can be used to 
precipitate metal ions. Sulfide is utilized to precipitate the 
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heavy metal ions as metal sulfides and the resultant 
sludge formed can be taken out of the solution by gravity 
settling or filtration [38,62,63]. Sulfide precipitation 
requires pre& post treatment, and proper control of 
reagent additions because of the toxicity of the sulfide 
ions and H2S. The precipitation methods are performed by 
adjusting the composition and other parameters so that 
the ionic elements of the metals can be removed by 
differentiated from a soluble phase to a solid phase [64-
66]. Heavy metal ions generally precipitate in the form of 
hydroxide:  

2

22 ( )M OH M OH   

M2+ and OH- are the metal ions and the precipitant 
respectively. The ones most often utilized are lime (CaO) 
and Ca(OH)2, both are commonly available. CaO requires a 
significant dosage as well as offers low metal removal 
efficiency due to inadequate settling and dissolution of 
precipitates. Past research indicates that sulfide 
precipitation was successful in eliminating Cu, Zn, Cr, and 
Pb from wastewater [65,67,68].  
 
 Hydroxide Precipitation  
Hydroxide precipitation integrates coagulant such as iron 
salts, alum, and polymers that may improve the heavy 
metal separation from wastewater. Soluble metals can be 
precipitated as hydroxide by using filtration or 
sedimentation process. Alkaline agents can be used to 
increase the pH of the wastewater. Alkaline agents reduce 
the solubility of metal ions and precipitate out from the 
solvent [37,38,41 69]. The reaction for hydroxide 
precipitation is; 

2 ( ) ( )nM OH nR M R OH   
 

 

Membrane Filtration Process 

Membrane Filtration process was developed during 
the 1970s and 1980s in order to increase efficiency with 
no pollution and less energy consumption than the other 
prevailing methods of that time period. Membrane 
filtration process is highly utilized for removing heavy 
metals from wastewater due to its simplicity of the 
method [70-72]. The procedure starts with a separation 
occurring through a semipermeable membrane. There are 
many different membranes used and they vary in terms of 
type of nature, fabrication, and structure. In practice, 
three different types of membranes are used for 
separation processes. Thsee membranes can be called as 
liquid, pressure driven, and hybrid membranes. A 
membrane is defined as a layer with a porous or 
nonporous structure that is used to produce contact 
between two homogenous phases in order to separate 
pollutants of different sizes. Membrane performance can 

be affected by materials used, its pore size, and 
composition. Materials should be selected more 
judiciously as it helps to produce membranes with more 
chemical resistance and less structural imperfections. The 
different materials, typically used to produce membranes 
are metallic, ceramic, composite, nano based, reactive or 
catalytic, and biologically modified materials [73-76]. 
Composite materials like polymers, Polymers are often 
selected for membrane production due to their porous 
structures and affordability. Polymers can be used with 
many filtration processes including microfiltration and 
reverse osmosis. Polymer membrane materials are 
cellulose acetate, polyvinylidene fluoride, 
polyacrylonitrile, polypropylene, polyethersulfone, and 
polysulfone. Ceramic materials are often optimal and 
better than polymer materials due to their narrow pore 
size and high mechanic, thermal, and chemical stability 
[70,77-79]. Ceramic membranes are formed out of 
alumina, zirconia, silica, titania, oxide mixtures, and 
sintered metals. The different methods of membrane 
filtration are nanofiltration, reverse osmosis, 
microfiltration and ultrafiltration, and electro-dialysis.  
 
Nano filtration: Nanofiltration (NF) is a recent 
technology and was developed to make separation of 
large molecules using small spores possible. NF is 
environment friendly and energy efficient and is often 
used to remove pollutants found in groundwater, surface 
water, and wastewater. This process is referred to as a 
liquid phase filtration since it separates a large range of 
organic and inorganic particles from their [80-82]. The 
separation is dependent upon the molecular weight cut 
off. NF requires a three-step procedure: pretreatment, 
treatment, and post treatment. Firstly, the water needs to 
be treated before going into the system in order to reduce 
more pollution. This step includes pre filtration, 
coagulation, adsorption, ion exchange, and chemical 
conditioning. Secondly, the actual membrane separation 
process occurs and finally the post treatment is carried 
out. NF is successful in eliminating heavy metals found in 
water especially in cleaning water contaminated by 
strong pollutants such as Pb and Cd [75,83-85].   
 
Microfiltration and Ultrafiltration: Microfiltration (MF) 
and Ultrafiltration (UF) are one topic as mentioned due to 
their many similarities. Both MF and UF are pressure 
driven with a shared area of usage and are based on 
molecular sieving with porous membranes. Both have 
remarkably similar separation procedure. However the 
key difference between MF and UF, is that the solutes 
eliminated by MF are bigger than those eliminated by UF 
[86-88]. Both MF and UF have wide applications such as 
water purification, removing particles, and clarifying 
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different solutions. The toughest part of a MF and UF 
method is selecting the appropriate membrane unless this 
may lead to have an impact on the efficiency of heavy 
metals removal. Membranes vary accordingly to their 
porosity, structure, and material [80,89,90]. UF and MF 
both use membrane that must be porous; however, 
membranes can be symmetric or asymmetric. Symmetric 
membranes are characterized by structures which do not 
change over the membrane cross section. MF membranes 
are usually symmetric while UF membranes are typically 
asymmetric. Hydrophilic membranes, hydrophobic 
membranes and crystalline polymers are commonly used 
as MF and UF membranes [91,92]. The two filtration 
methods are dead-end and cross-flow methods. Dead end 
is used when feed flow perpendicular to the membrane 
surface while cross-flow method is used when the flow is 
parallel. Cross-flow requires more complex utilities; 
however, it does result in higher flux rates and membrane 
lifetimes. 
 
Electro dialysis: Electrodialysis (ED) research and 
developement starts during the 1950s. ED is a helpful 
method for removing pollutants and is now used by many 
industries. ED works by an ion selective exchange 
membrane (IEMs). IEMs do not transport cations and 
anions at the same time; however, the ion transportation 
occurs only due to electrical potential or the 
concentration gradient [93-95]. If the ED electrodes 
polarity is reversed, then the method is referred to as 
electrodialysis reversal (EDR) which may be preferred 
over ED. EDR has a larger water recovery rate than ED but 
requires more plumbing and electrical controls.  
 
Reverse Osmosis: Reverse Osmosis (RO) was initially 
researched in the 1920s; however, it did not become 
widely used until around the 1950s. RO is used by a 
variety of industries including food, biotechnology, 
pharmaceuticals, and water processing. RO is a pressure 
driven membrane technique. RO operates under hydraulic 
operating pressure and utilizes a semipermeable 
membrane with no distinct pores in order for the 
particles to flow through. Therefore, the transition must 
occur by diffusion [96-100]. For RO to occur first the 
water from a concentrated solution of heavy metal ions 
absorbs onto the surface of the membrane. Next, the 
particles diffuse through the membrane due to a 
concentration gradient. After the separation is complete 
there is a concentrated heavy metal solution one side and 
a treated solution on the other side. 
 

Nanotechnology 

Nanotechnology is commonly used for treating 
wastewater because to its large surface area and high 

adsorption efficiency. However, the use of 
nanotechnology also increases the chance of nano-
pollutants being released into the environment. 
Nanotechnology has been the main focus of many 
researchers due to its pervasive use in chemistry, biology, 
medicine, and marketing products [101]. There are two 
methods used for removing heavy metals from 
wastewater by nanotechnology which are in- situ and ex-
situ. In-situ is used if the wastewater is being treated in a 
place of contamination. Ex-situ is used for the treatment 
done after transferring wastewater to a preferred area. 
In-situ treatments are favored over ex-situ due to higher 
removal rates and economic benefit 102-104]. The three 
different types of nanoparticles used are adsorptive, 
reactive, and hybrid magnetic particles. Nano magnetic 
oxides (NMOs) are adsorptive and used often due to their 
high surface area, stability, and mesoporous shape. Nano 
zero-valent iron (nZVI) is a nanoparticle used to clean the 
wastewater and remove heavy metals through reactive 
technologies [104,105]. In-situ use of nZVI starts with 
injecting it into the wastewater solution thereby 
increasing the pH and thus reducing the redox potential. 
The final type of nanoparticles is hybrid magnetic 
nanoparticles (MNP’s) which include two or more 
nanometer components upon which one of them is 
magnetic. MNP’s are used because of their low toxicity, 
cost efficiency, ease, and high removal rates. Many 
materials can be applied to coat the MNP’s including 
polymers. Past research has shown that different kinds of 
MNP’s can be used to remove heavy metal in an efficient 
and economical manner [106,107].  
 

Photo catalysis Process 

Photocatalysis is a type of advanced oxidation process 
that used as recent advance technology for air and water 
purification. This technique uses non-toxic 
semiconductors and light with an appropriate wavelength 
as opposed to a chemical compound. This technique 
favored over chemical processes due to the absence of 
toxic materials, simplicity, affordability, increased 
stability, and increased efficiency [108,109]. 
Photocatalytic systems consist of five steps to separate 
the pollutants. First, the pollutants are transferred to the 
surface. Next, the pollutants are absorbed by the 
semiconductors. Thirdly, the photocatalytic reactions 
occur. Fourthly, the products are decomposed. Finally, the 
decomposed products are taken out of the area [110]. The 
third step is the vital step for the succession of reaction. 
This method required light to act as an activator which 
made thermal activation unnecessary. The first step also 
includes a photon excitation in the semiconductors. When 
a visible light with energy equal or more than the energy 
of the semiconductor excitation is used, the valence 
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electrons get elevated to the conduction band [109]. This 
creates an electron hole pair so the light absorption 
process can take place. While this is occurring, the 
pollutants are reduced and oxidized by the transferring of 
photo holes and photoelectrons.  

 
After the transformation is completed, heavy metals 

are recovered by mechanical and thermal procedures. 
Common semiconductors used in photocatalysis are 
oxides such as TiO2, ZnO2, CeO2, WO2, and sulfides such as 
CdS, ZnS, WS2 [111-113]. Limitation to this method 
includes recombination of electron or hole, unwanted by-
products formed, and errors in visible light absorption.  
 

Conclusions 

Heavy metals are detrimental to both environment as 
well as human beings. These metals are often found in 
wastewater and must be removed. This paper discusses 
the most common methods which are currently used to 
clean wastewater. The methods discussed are 
Electrochemical, Physicochemical, Membrane Filtration, 
Photocatalytic, and Nanotechnology. Each treatment has 
its own advantages, limitations and removal efficiencies 
under different specific circumstances. However, despite 
unique optimal conditions for each treatment, these are 
all found to be an effective way of removing heavy metals, 
pollutants from wastewater. 
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