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Abstract

Persulfate (PS, S2O8-2) has a standard oxidation potential making it use for treatment of a wide range of pollutants. It is also 
used within Advanced oxidation processes (AOPs),where Sulfate radicals (SR) can be effectively generated through PS activation 
by physical methods (such as heating, UV) and chemical methods (including transition metal ions, alkaline conditions), as well 
as coupling activation methods. Overall, SR-AOPs not limited applied to the treatment of refractory organics in wastewater but 
also are efficient in dealing with novel/emerging pollutants.      
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Introduction

The large increase in the population and the 
accompanying great development in the oil, chemical and 
food industries, This led to the generation of large quantities 
of wastewater containing large types of pollutants with 
complex structures that are difficult to decompose [1-4].

Because the industrial wastewater composition varies 
depending on where it is formed, there is no specific 
method or technique for its treatment [5]. Generally 
accepted treatments for leachates mainly includes: (a) 
chemical and physical methods such as chemical oxidation, 
adsorption, chemical precipitation, coagulation/flocculation, 
sedimentation/flotation, and air stripping [6] (b) aerobic 
and anaerobic processes [7-9]. Various methods, including 
physical, chemical and biological ones for treating this type 
of wastewater have been used [10]. Due to its resistance to 
degradability; most of these methods did not give the desired 
results [11].

The advanced oxidation processes (AOPs) are the most 
commonly used techniques for removal of contaminants 

from effluents [11-13]. Hydroxyl radical-based advanced 
oxidation processes (HR-AOPs) attenuate lots of organic 
substances through conversion into CO2 and H2O [14-16]. 
Persulfate (S2O8

2-) is the strongest member of the peroxygen 
family, which has a standard oxidation potential (Eo) of 2.01 
V [17-20] Therefore, in recent years, it has been increasingly 
used for the chemical oxidation of organic contaminants 
[12,21] and it has been able to remove the organics and 
ammonia from landfill leachates. Sulfate radical based 
advanced oxidation processes (SR-AOPs) are occurred when 
persulfate ion is activated [14,22], and the sulfate radical (Eo 
= 2.4 V) is generated [23]. Transition metals, ozone, heat, or 
ultraviolet light irradiation are generally used for persulfate 
activation.

Typically persulfate anions can be activated to generate 
the intermediate sulfate free radical (SO4

•−) oxidant using 
transition metals, heat or ultraviolet light irradiation, pH and 
ozone [9].

In this manuscript, the most important methods 
of activating persulfate will be highlighted and also the 
possibility of using it in the treatment of wastewater.
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The Mechanism of Activation of Persulfate 
and the Generation of Sulfate Radical

Properties of Persulfate

Peroxydisulfate or persulfate anion (S2O8
2-) is a strong 

oxidant (E0 = 2.01 V), which can be found in the form of 
three salts: ammonia, potassium and sodium [24,25]. The 
application of sodium persulfate (Na2S2O8) is mostly favored 
since this salt has aqueous solubility as high as 730 g per kg 
of H2O at 25 oC. The use of ammonia persulfate can lead to the 
secondary contamination caused by residual concentrations 
of ammonia, whereas the use of potassium persulfate may 
be ineffective especially for in situ applications due to its low 
solubility [9].

Persulfate Activation Mechanisms

Persulfate is stable at room temperature and its direct 
oxidation reactions are slow showing a negligible efficacy for 
water treatment. Thus, it needs activation, which thereupon 
results in generation of sulfate radicals (SO4

•-) selectively 
degrading organic pollutants. Without activation, persulfate 
may react with some organic compounds, although the 
process efficacy is lower than the one of the activated 
persulfate. This may be explained by the higher oxidation 
potential of SO4

•- (E0 = 2.60 V) [26].

However, the overall extent of SO4
•- generation depends 

on the type of activation used Figure 1. The following 
paragraphs give an overview of different persulfate activation 
mechanisms with emphasis on the main advantages and 
disadvantages.

Figure 1: Different activation methods of persulfate to 
generate sulfate radicals.

Transition metal-activated persulfate: Typically persulfate 

anions can be activated to generate the intermediate sulfate 
free radical (SO4

•-) oxidant using transition metals (Equation 
(1)), where Ag+, Co2+, Ce3+, Ni2+, Fe2+, Fe3+, Mn2+, V3+ and Ru3+ 
are the most efficient transition metal ions for the first 
reaction [9,27,28].

− + − + ++ → −+ +2 2 ( 1)
2 8 4 4

n nS O M SO SO M                (1)

Heterogeneous metal-bearing species-activated 
persulfate: Heterogeneous activation of persulfate is an 
alternative to homogeneous transition metals to avoid the 
formation of metal hydroxide sludge. It must be noted that 
the quantity of the latter strongly depends how well are the 
treatment conditions optimized or controlled.

Recently, zero-valent iron (ZVI, Fe (0)) has been used 
as a promising catalyst and as an alternate source of Fe (II) 
[21,29]. In addition, it has the advantages including low cost 
and being non-toxic to the environment [30]. In addition 
to being a catalyst, it has a distinct role in transforming Fe 
(III) into Fe(II) [31]. nZVI has been reported to be effective 
in activating persulfate for the degradation of alkyl phenol 
polyethoxylate [32], bentazon (BTZ) [33], amicarbazone 
(AMZ) [34], acetaminophen [35], dye reactive blue 19 (RB19) 
[36], and aniline [37]. nZVI also achieved promising results 
when it was used as an activator of PS for the degradation of 
organic compounds [38], such as sulfamethazine (SMT) [39], 
trichloroethene (TCE) [40], and 2,4-dichlorophenol (DCP) 
[41].

Because of the higher surface area, nZVI showed more 
efficient results than ZVI in micrometer scales [42,43]. nZVI 
without any support is less stable and tends to be agglomerated 
and oxidized [44,45]. To overcome this disadvantage and to 
enhance their effectiveness in the removal of contaminants, 
composites of nZVI with some substances, such as resin [46], 
kaolinite [47], biochar [30] chitosan/silica [48], carbon [49], 
and graphene [50] have been used.

Fe (II) is considered as a homogeneous catalyst for 
activation of persulfate ions, which produce a stronger 
oxidant, i.e., sulfate radical (SO4

•−) according to Equation 
2, ZVINFs is converted to Fe (II) according to several 
mechanisms: (1) corrosion in acidic medium through 
reaction with H+ (Equation 3); (2) exchanging electrons 
with S2O8

2- (Equation 4); (3) corrosion through reaction with 
oxygen and water (Equation 5 and Equation6); (4) reaction 
of generated Fe (III) in solution with Fe° (Equation 7) [29,35].

2 2 •  2 3
2 8 4 4     S O Fe SO SO Fe− + − − ++ → + +                (2)

2

2   2H  FeoFe H
+++ → +                            (3)

2 2 2
2 8 42oFe S O Fe SO− + −+ → +                  (4)
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2
2 22 2 2 4oFe O H O Fe OH+ −+ + → +               (5)

2
2 22 2 2oFe H O Fe OH H+ −+ → + +                (6)

3 22 3oFe Fe Fe+ ++ →                                (7) 

Carbon-activated persulfate: To overcome this metal 
leaching problem, recent studies have emerged using 
carbonaceous materials as an alternative strategy for 
persulfate activation. The advantages of carbonaceous 
materials over metal based catalysts can be briefly 
categorized into the following categories: (1) non-toxicity due 
to their metal-free nature, completely preventing leaching of 
toxic metal ions. (2) Good chemical and thermal stability to 
withstand harsh reaction conditions – they can operate over 
a wide range of pH without the structure collapsing. (3) A 
high surface area with suitable pore volumes that facilitates 
the adsorption of pollutants into the catalyst’s active sites. 
(4) Malleable surface charge which provides control over the 
selection of a specific water pollutant. However, the catalytic 
activity of pristine carbonaceous materials is usually poor 
compared to that of the well-established metal-based 
catalysts, a consequence of the ambiguous active centers, 
inherent structural complexity and nonstoichiometric 
structure of the bulk carbonaceous material due to its 
graphitic degree, porosity, oxygen functionality and the 
presence of impurities. Therefore, various modulation 
strategies have been introduced to further control the 
surface characteristics of carbonaceous materials, such 
as size, morphology, and porous and electronic structure, 
which in turn manipulate their performance as persulfate 
activators [51].

Alkali-activated persulfate: The hydroxide anions activates 
persulfate to initiate sulfate radical formation, according to 
Equation 8 & 9 [52].

2 2
2 8 2 2 4

OHS O H O HO SO H
−− − − ++ → + +           (8)

2 2
2 8 4

• •
2 4 2S O HO SO SO H O− − − − −++ → + + +        (9)

Oxidant-activated persulfate: In O3/persulfate process, 
when adding PS to solution, it reacts with OH•, according 
to Equation (10), which formed from decomposing ozone 
under alkane condition, according to Equations 11 & 12 [53]. 
This led to an improvement in the efficiency of removal.

3
2 2O OH HO O− −+ → +                        (10)

3
2 2

•
2O HO OH O O− −+ → + +                 (11)

2
2 8 4

•
4 2

• 1/ 2S O OH HSO SO O− −− + → + +     (12)

Hydrogen Peroxide can activate persulfate for soil remediation 
[54]. The knowledge about the interaction between two 
oxidants is still scarce, but it is proposed that H2O2 is 
decomposed into HO•, which are then activating persulfate to 
generate SO4

•- (Equation 13). Another suggestion is that the 
exothermic reactions of H2O2 propagate SO4

•- formation by 
heat. In turn, SO4

•- can increase the formation of HO•, which 
results in a multiradical system (Equations 14-15) [54].

•2
2 8 4 4 2

 1/ 2HO S O SO HSO O−− −+ → + +         (13)

•  2
4 2 4SO H O SO OH H− +− + → + +

             (14)

 
4 4

• 2SO OH SO OH−− −+ → +                    (15)

Thermally-activated persulfate: Thermal activation is one 
of the simplest and an effective method for PS activation to 
generate reactive species. Since the bond energy of peroxide 
(O–O) in PS is 140–213.3 kJ mol−1, a thermal activation at 
a temperature of>30°C is sufficient to break the O-O bond 
for the generation of sulfate anion radicals (SO4

•-) (Equation 
16). These SO4

•- radicals can be further converted to 
hydroxyl radicals (•OH), which are also an effective species 
(Equation 14). The generation of SO4

•- and •OH radicals can 
be represented as given below [55].

2 0 0
2 8 4

•2 [30 90 ]S O heat SO C T C− −+ → < <     (16)

4 2 4
•SO H O SO OH H− ++ → + +               (17)

Radiation-activated persulfate: This activation type is 
similar to heat-activated persulfate, when UV radiation 
(Equation 18), gamma-radiation (Equation 19) or pulse 
radiolysis (Equation 19) induces the cleavage of peroxide 
bond generating a pair of sulfate radicals [54].

•  2
2 8 42S O hv SO− −+ →                           (18)

2 2
2 8 4 4

•  
aqS O e SO SO−− − −+ → +                 (19)

The activation of persulfate by UV-light may involve 
second mechanism according to the reaction given in 
Equation 19: an electron can be produced from water 
exposure to UV, and persulfate is then activated by electron 
transfer Equations 20 & 21.

2H O hv H HO+ → +                         (20)

2 2
2 8 4 4

•S O H SO SO H−− − ++ → + +

           (21)

Electrochemically-activated persulfate: Persulfate 
activation by transition metal electrode-involving system 
in aqueous environment consists of simple chain reactions. 
First, the process is initiated with the production of transition 
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metal by anodic corrosion, which activates persulfate and can 
be regenerated on a cathode [56]. This metod may help to 
overcome the problem of transition metal accumulation on 
the in the activated persulfate system, where the electrolysis 
of water takes place on the cathode consisting of OH- [56].

Conclusion

In this manuscript, the mechanism of using persulfate for 
treatment of pollutants was highlighted. Also, the possibility 
of activating it was shown, where the sulfate radicals it 
is generated. It also explains the mechanism activated by 
activators such as (transition metal ions, heterogeneous 
metal, carbon, alkali, oxidant, thermally, radiation and 
electrochemically).
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