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Abstract

Because of the negative effects on aquatic organisms, pharmaceutical compounds in the aquatic ecosystem are becoming 
a growing global concern. Pharmaceutical compounds from various drug classes and metabolites have been detected in 
various aquatic environments and are due to the improper disposal and sewage treatment. There is information available 
about the acute toxicity of some pharmaceutical compounds. However, chronic toxicity and its potential consequences in 
aquatic organisms are poorly understood. This review focuses on the environmental concentrations of major pharmaceutical 
classes, their mode of action in aquatic organisms, and their Eco toxicological effects based on current knowledge about 
pharmaceuticals in the environment. It is concluded that more targeted Eco toxicological studies are required in the future for 
better and more comprehensive risk assessments of pharmaceutical compounds.   
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Introduction

Pharmaceuticals are therapeutic drugs used in human 
and veterinary medicine to cure and prevent disease. 
The active pharmaceutical ingredients (APIs) in these 
medications are metabolites that are present in detectable 
concentrations and are released into the environment [1-4]. 
The presence of pharmaceutically active compounds in the 
aquatic environment became a concern only after the 1960s; 

prior to that, they were invisible pollutants. According to 
national reports, tonnes of medicines are prescribed and 
consumed globally [5,6]. Pharmaceutical discharge into 
the environment is excessively increasing due to rising 
consumption and demand [7,8]. A large amount of these 
pharmaceutical compounds, as well as their active and inactive 
metabolites, are released into the aquatic environment via 
a variety of means, including manufacturing waste, human 
or animal excretion, hospital effluents, domestic waste, 
and agricultural waste [9-19]. Municipal wastewater is the 
primary pathway through which these compounds enter the 
aquatic environment. Because active compounds released 
into sewage treatment plants (STPs) are not completely 
degraded, they become persistent and emerge as a group of 
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pollutants [20]. Drug residues have been found in the aquatic 
environment, according to monitoring studies [1,21-23].

Ternes and colleagues discovered up to one hundred 
pharmaceutical compounds from various drug classes, 
as well as their metabolites, in treated sewage, rivers, 
seawater, groundwater, and drinking water [1,24]. “Because 
pharmaceuticals are specifically designed to target 
specific metabolic and molecular pathways in humans and 
animals, one of the major concerns about their presence 
in the environment stems from the high likelihood of them 
being biologically active in wildlife, with the potential for 
unintended effects on non-target species” [25]. Unintended 
side effects include the feminization of male fish due to the 
oestrogen derivative ethinylestradiol in combination with 
other hormones and the death of millions of vultures in Asia 
due to diclofenac toxicity from bioaccumulation in the prey 
[26,27]. The fate of pharmaceuticals that enter the aquatic 
environment is unknown. They may be dispersed in the 
environment via aqueous transport and food chain dispersal. 
Adsorption to suspended solids and biodegradation are two 
important elimination processes in wastewater treatment. 
However, as evidenced by several monitoring studies, 
pharmaceutical levels in digested sludge and sediments 
are relatively low [28]. The removal of these compounds 
during treatment varies depending on the construction 
and technology, hydraulic retention time, season, and STP 
performance [29]. This review focuses on the effect of 
environmentally relevant pharmaceuticals, as reflected 
by consumption volumes, toxicity, and persistence in the 
environment, on the aquatic organisms.

Effect of Pharmaceuticals on Aquatic 
Organisms

Pharmaceuticals are specifically designed to target 
specific metabolic and molecular pathways in humans, 
which can result in some side effects of their actions [30]. 
When such compounds are released into the environment, it 
is more likely that they will affect similar pathways in other 
organisms, resulting in unexpected results [31]. Because 
pharmaceuticals are constantly introduced into the aquatic 
environment, they can cause toxic effects on living organisms 
even at ng L-1 concentrations [32]. Several drugs with 
different modes of action can cause different mechanisms in 
organisms [33].

Pharmaceutical eco toxicological effects on aquatic 
organisms are less well understood than environmental 
concentrations. Although some pharmaceuticals have 
standard acute eco toxicity data, such data cannot be used 
to make comprehensive hazard and risk assessments [29]. 
The environmental concentration, mode of action, and eco 
toxicity of major pharmaceuticals from various therapeutic 
classes, including analgesics and anti-inflammatory drugs, 
beta-blockers, blood lipid-lowering agents, and neuro active 
compounds, are summarized below.

Analgesics and Anti-Inflammatory Drugs

Environmental Concentration

Table 1 shows various concentrations of commonly 
found analgesics and anti-inflammatory drugs. 

Compounds Concentration Source and location Reference

Ibuprofen
1µg/L Sewage and surface waters, USA. [1,34]

0.1-20 µg/L Sewage samples and seawater, Norway [35]
674ng/L Stormwater canals [36]

Naproxen
1µg/L Sewage and surface waters, USA [1,34]

145ng/L Stormwater canals [36]
12.5µg/L Canadian STP [37]

Diclofenac 1µg/L Sewage and surface waters, USA [1,34]
Salicylic acid 4.1µg/L wastewaters [3]

Acetaminophen 10µg/L Streams, US. [3]
Codeine 0.01µg/L Streams, US. [3]

Table 1: Concentration of analgesics and anti-inflammatory drugs in aquatic ecosystem.

Modes of Actions

Nonsteroidal anti-inflammatory drugs (NSAIDs) either 
reversibly or irreversibly inhibit the two isoforms of the 

cyclooxygenase enzyme, which catalyses the synthesis of 
various prostaglandins from arachidonic acid [38]. Normal 
NSAIDs inhibit both COX-1 and COX-2 to varying degrees, 
whereas new NSAIDs inhibit only the inducible form of 
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COX-2, which is responsible for inflammatory reactions. The 
differences in the binding site determine the selectivity of 
these drugs [39,40]. An inducible COX-2 homolog has been 
found to be expressed in macrophages in rainbow trout 
(Oncorhynchus mykiss), and the translation product of the 
COX gene was found to have a high homology of 83-84 and 
77 percent to its human counterpart COX-2 and COX-1. The 
COX enzyme is expressed in macrophages in goldfish, which 
is equivalent to mammalian COX-2 [41].

Eco Toxicological Effects

Mode of actions and Eco Toxicology

Pharmaceuticals’ acute toxicity is evaluated using 
well-established laboratory organisms such as algae, 
zooplankton, and other invertebrates and fish. According 
to Kummerer K, et al. [23], algae were more sensitive to 
the listed pharmaceuticals than Daphnia magna. Fish have 
been discovered to be even less sensitive than these. The 
acute toxicity of diclofenac in algae and invertebrates was 
studied [42]. Phytoplankton was discovered to be more 
sensitive than zooplanktons [43]. Due to a lack of data, we 
only have a hazy understanding of pharmaceutical chronic 
toxicity. Ferrari B, et al. [44] reported diclofenac studies in 
invertebrates. Long-term exposure is most likely to cause 
renal and gill damage. Diclofenac affected the kidneys of 
vultures, resulting in acute renal failure [26]. Diclofenac 
does not affect embryonic development in zebra fish 
embryos, according to Hallare AV, et al. [45]; but it causes 
delayed hatching.

Beta-Blockers 

Environmental concentration

Beta-blockers such as propranolol, bisoprolol, and 
metoprolol were found at the highest levels in the surface 
water, at 0.59, 2.9, and 2.2µg/L, respectively [1]. The surface 
water also contained low levels of nadolol and betaxolol 
(0.028µg/L) [1].

Mode of Action

Beta-blockers work by competitively inhibiting beta-
adrenergic receptors. They are used to treat high blood 
pressure. Beta-adrenoreceptors were discovered in fish liver 
and red and white muscle, with a high degree of sequence 
conservation with other vertebrates. These are thought to 
play a similar role in humans. In rainbow trout, higher levels 
of β2-adrenoceptor expression were found in the liver, red 
and white muscles, and lower levels in the gills, heart, kidney, 
and spleen [46].

Eco Toxicological Effects

Except for propranolol, the acute toxicity of beta-
blockers has received little attention. When compared to 
other beta-blockers, this compound has the highest acute 
toxicity. Metoprolol and verapamil increased heart rate in D. 
magna at low concentrations while decreasing heart rate at 
high concentrations [47]. Propranolol demonstrated chronic 
toxicity in fish in the cardiovascular system and reproduction, 
owing to the presence of 2 -receptors in the heart, liver, and 
most likely reproductive tissue [48]. Significant changes in 
plasma steroid levels were observed in the fish O. latipes 
after 14 days of exposure. The amount of eggs released by 
the fish was reduced [49]. It was discovered that changes in 
sex steroids cause decreased oxytocin excretion, resulting in 
a decrease in the number of eggs released.

Blood Lipid-Lowering Agents

Environmental Concentrations

Clofibric acid is a lipid regulator found in many 
pharmaceutical monitoring studies. These are present in high 
concentrations in groundwater and in low concentrations 
in wastewater and surface waters [50]. Up to µg/L levels 
of gemfibrozil, clofibric acid, and fenofibric acid have been 
detected in sewage and surface waters. Bezafibrate was found 
in wastewater and surface water at maximum concentrations 
ranging from 4.6 to 3.1 µg/L [1].

Mode of Action

Fibrates are more commonly found in the aquatic 
environment than statins, the two types of antilipidemic 
drugs. Their purpose is to lower the concentration of 
cholesterol and triglycerides in blood plasma. Debernard 
S, et al. [51] provides evidence for statin effects on juvenile 
hormone synthesis in insects, demonstrating that fluvastatin 
completely inhibited its biosynthesis in vitro. Fibriate binding 
to peroxisome proliferator-activated receptors (PPARs) 
activates nuclear receptors in various cellular pathways, 
increasing the expression of several lipid regulatory 
proteins. PPAR genes have been discovered in a variety of 
fish, including plaice, Atlantic salmon, and zebrafish [52-54]. 
In humans, PPARs found in fish have an amino acid sequence 
identity of 43-48 percent.

Eco toxicological Effects

Acute toxicity of lipid-lowering agents is not reported 
much. LC50   range values of clofibrate showed a range of 7.7-
39.7mg/L, which can harm aquatic organisms. Nunes B, et al. 
[55] reported that the fish Gambusia holbrooki [LC50 (96 h) 
=7.7mg/L] is the most sensitive organism to acute clofibrate 
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concentrations studied so far.

This compound’s chronic toxicity data is also scarce. 
The NOEC for clofibric acid was observed in C. dubia [NOEC 
(7 days)=640g/L], the rotifer B. calyciflorus [NOEC(2 
days)=246g/L], and early life stages of zebra fish [NOEC (10 
days)=70mg/L] [44]. The presence of gemfibrozil in goldfish 
blood plasma after 14 days of exposure was found to be 113 
times higher than in water [56].

Neuroactive Compounds (Antileptics and 
Antidepressants)

 Environmental Concentration

Table 2 shows the different concentrations of neuro 
active compounds found in different regions.

Compounds Concentration 
µg/L Source Reference

Carba
mazepine

2.3µg/L STP effluent, 
Canada [37]

>1µg/L German 
Surface waters [1,50]

20.9µg/L STP effluents, 
U.S. [57]

0.04µg/L STPs, Germany [1]

Diazepam 0.012µg/L STP effluents, 
Canada [37]

Fluoxetine 0.012µg/L U.S. streams [3,58]
Primidone 0.6 µg/L Sewage [50]

Table 2: Concentration of Neuro active compounds 
Enrollment in local colleges, 2005.

 Mode of Action

Antiepileptic drugs work on the central nervous system 
to reduce overall neuronal activity. This is accomplished 
by either blocking voltage-dependent sodium channels of 
excitatory neurons or increasing the inhibitory effects of 
the GABA neurotransmitter by binding on a specific site of 
the receptor [59-62], providing evidence of the occurrence 
of fluoxetine is a commonly used antidepressant which acts 
in the inhibition of serotonin reuptake. This hormone has 
hormonal and neuronal mechanisms that are important in 
functions like food intake and sexual behavior. Fluoxetine, 
sertraline, and SSRI metabolites have been found in 
fish from the United States, indicating the possibility of 
bioaccumulation [63].

 Eco Toxicological Effect

The most severe acute toxicity for fluoxetine has been 
reported, with EC50 (48 h, alga) =0.024mg/L to LC50(48 
h)=2mg/L [23]. Fluoxetine has a greater impact on phyto 
planktons than on other aquatic organisms. Diazepam and 
carbamazepine have acute toxicity levels below 100mg/L, 
indicating that they may be harmful to aquatic organisms. 
The majority of chronic toxicity data for antiepileptic 
carbamazepine and selective serotonin reuptake inhibitors 
were reported. Sub lethal effects were observed in Daphnia 
at 92µg/L, and the lethal concentration in zebra fish was 
determined to be 43µg/L [58]. At 10µg/L, diazepam inhibited 
polyp regeneration in cnidarian hydra. The majority of 
chronic studies focus on SSRIs. SSRIs such as fluoxetine, 
fluvoxamine, paroxetine, citalopram, and sertraline reduced 
the number of neonates or brood per female after 7-8 days of 
exposure [64].

Discussion

Acute and chronic toxicity of pharmaceuticals has 
been studied. Acute toxicity is primarily studied in a few 
species, including algae, zooplanktons, and fish. Only a 
few pharmaceuticals have been evaluated in the species 
using these tests. No one could predict the harmful effects 
of pharmaceuticals based on the data obtained from these 
tests, as in the case of vulture population decline due to 
diclofenac exposure. These tests are insufficient to determine 
the dangers and risks of specific pharmaceuticals. Current 
tests have only covered a small set of laboratory organisms, 
which is insufficient for understanding the adverse effects 
of pharmaceuticals. As a result, more tests with different 
species are required. Chronic toxicity tests are more useful 
for assessing the risk of pharmaceutical compounds in 
organisms.

Pharmaceuticals are compounds that are biologically 
active. Because the target receptors and biomolecules are 
identical, these compounds may have similar negative 
effects in lower vertebrates and invertebrates as they do in 
humans. Furthermore, due to biological differences, some 
pharmaceuticals may produce unexpected chronic effects in 
lower organisms. More emphasis on pharmaceutical in vitro 
studies is required for screening and understanding their 
mode of action in non-target organisms.

Pharmaceuticals are primarily studied as single 
compounds in eco toxicological studies rather than in 
mixtures with other pollutants. However, these compounds 
are present in the environment, along with other pollutants, 
which have an overall effect on the organisms. As a result, 
toxicity results from the sum of each compound’s individual 
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concentration. As a result, the compounds detected as no-
observed-effect-concentration (NOEC) can also affect the 
organism, albeit in a minor and subtle way. These minor 
effects can amplify over time as they bio accumulate and are 
passed on to higher trophic levels in the food chain. This was 
the case with the Indian vulture population decline caused 
by diclofenac bioaccumulation toxicity.

Conclusion 

Improving STP processes is critical to reducing the 
amount of pharmaceutical residues in wastewater and 
surface water. To improve STP techniques, it is necessary 
to understand the fate of pharmaceuticals during sewage 
treatment. Improved STP technology will undoubtedly aid 
in reducing their release into the environment, reducing 
pollution and its consequences. According to available data, 
pharmaceutical residues in the aquatic system are unlikely 
to cause acute toxicity. In addition, data on chronic toxicity 
of pharmaceuticals is limited. An approach centered on the 
target molecule, tissues, and organs would be more beneficial 
than acute toxicity testing in understanding potential effects. 
Tests focusing on the impact on the organism’s survival, 
growth, and reproduction would provide more relevant 
insights than traditional eco toxicity testing. In conclusion, 
more research into chronic toxicity testing is an important 
step forward.
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