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Abstract 

We report the result that the reorientation of hydrocarbons chain in gasoline fuel is induced by an applied static magnetic 

field. Indeed, 1 h 30 min exposure of samples of gasoline fuel to a 150 mT static magnetic field provided the result that 

CH2 bending vibration around 1465 cm-1, CH3 symmetrical band at 1378 cm-1 and C–C stretching at 1610 cm-1 decreased 

significantly, whereas CH2 twisting band around 1230 cm-1 increased significantly after exposure. These findings 

demonstrated that a reorientation of hydrocarbons chains occurs under an applied magnetic field. This relevant result 

can be used to increase the energy efficiency of motor vehicles. 
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Introduction 

     In this review paper the response of gasoline fuel under 
exposure to a static magnetic field (SMF) studied by 
Fourier Transform Infrared (FTIR) spectroscopy analysis 
was reported in order to demonstrate that changes of 
vibration bands can induce an increase of the combustion 
of air-fuel mixture. Gasoline fuel is obtained from 
petroleum crude oil and is composed by a mixture of 

hydrocarbons, mostly alkanes, i.e. on the form Cn H2n+2. 
The primary constituent of fuel gasoline is n-butane 
(C4H10), n-pentane (C5H12), n-hexane (C6H14), n-heptane 
(C7H16) and above all n-octane (C8H18). The properties of 
gasoline are dependent on the species contained in the 
blend [1,2]. 
 
     We know that hydrocarbons in motors gasoline fuel 
burn mixing with air by means of the combustion 
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represented by the reaction with oxygen, whose the most 
representative is the chemical reaction with octane, which 
produces heat and pressure within the cylinder during the 
four-stroke combustion cycle [3,4]. A relevant problem in 
motor vehicles is how maximize the energy efficiency of 
this combustion cycle. To this aim, the engineers should 
choose the correct air/fuel ratio. 
 
     The power output of motor vehicles strictly depends on 
the amount of fuel that can be combusted in the cylinders. 
Nevertheless, only about 20% of the total energy obtained 
by the combustion process can be used, because the 
remaining 80% is lost to friction and wasted as heat. 
Scientists, government agencies and vehicle 
manufacturers have largely searched methods to increase 
the efficiency of motor vehicles. Indeed, the potential to 
improve fuel efficiency by gasoline’s combustion in 
engines is enormous [5,6]. Such research has been 
encouraged by government agencies also to reduce the 
emissions limiting the output and reactivity of pollutants, 
in particular the emission of CO2 [7]. 
 
     Recent studies showed that natural magnets located in 
a point around the tube where gasoline flows towards 
carburetor can increase gasoline’s combustion efficiency 
and the output energy due to the enhancing of reaction 
with the oxygen during the combustion process [8-11]. 
This result was not confirmed by experiments 
coordinated by the Environmental Protection Agency 
(EPA) in USA, whose result showed that no significant 
difference are detected between the use of magnetic field 
devices inserted in the fuel plant of motor vehicles and 
the traditional fuel plant in analogue vehicles [12]. 
 
     Nevertheless, we think that applying a SMF to the 
entire gasoline tank in motor vehicles would produce 
different effects from the traditional case as the whole 
amount of fuel gasoline would be subject to the SMF, 
contrary to previous studies in which only a small area of 
the tube where gasoline flows was subjected to a 
magnetic field. In order to demonstrate this assumption, 
the response of gasoline vibrations to SMF was studied by 
means of FTIR spectroscopy. This technique has been 
successfully used in previous studies to highlight the 
characteristics of petroleum compounds [13-15]. 
 

Materials and Methods 

Gasoline Samples and Experimental Set-Up 

     Different gasoline samples were collected from various 
commercial processing plants and subjected to the 
following assay. The octane number of gasoline was 95. 
Each sample consisted of 15 ml of gasoline placed in small 

glass containers. Either exposed and control samples 
were located in the same room at the temperature at 
20°C. 
 
     Exposed samples were placed between two Helmholtz 
coils, at the center of the coils distance, that were driven 
by a DC generator producing a uniform magnetic field 
intensity at 150 mT, following the theory of Helmholtz 
coils, as accurately described in [16,17]. 
 

Infrared Spectroscopy 

     FTIR spectroscopy was applied to gasoline samples by 
using a spectrometer Vertex 80v of Bruker Optics. 
Gasoline samples of 200 μl were placed between a pair of 
CaF2 windows and for each spectrum 64 interferograms 
were collected with a spectral resolution of 4 cm-1. 
Interactive baseline correction, smoothing correction, 
vector area normalization were used for exposed and 
control samples as accurately described in [18-20]  
 
     Finally, statistical analysis was applied to 18 different 
samples of gasoline fuel using Student’s t-test for 
comparisons between exposed and unexposed samples, 
with p-values less than 0.05 considered significant. 
 

Results and Discussion 

     Representative transmittance spectra of exposed and 
unexposed samples after 15 min exposure in the region 
3000-1200 cm-1 were reported in Figure 1, in which 
exposed and unexposed samples spectra are represented 
by red and blue color, respectively. 
 

 
Figure 1: Representative mid-infrared spectra from 3000 
to 1200 cm-1 of gasoline fuel after 15 min exposure to a 
SMF at 150 mT. 
 
     The asymmetric stretching vibrations of methyl asCH3 
and methylene as CH2 groups can be observed at 2963 cm-

1 and 2922 cm-1, respectively; also, the symmetric 
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stretching of methyl sCH3 and methylene sCH2 are 
represented by the vibrations at 2885 and 2840 cm-1, 
respectively [21,22]. No appreciable changes in these 
vibrations were observed under exposure to SMF at 150 
mT up to 1 h 30 min. This result was confirmed applying 
Fourier Self-deconvolution (FSD) analysis [23]. 
 
     Furthermore, the band around 1465 cm-1 observed in 
the spectra, assigned at CH2 scissoring vibration did not 
change significantly after 15 min exposure (Figure 2A), 
but decreased significantly (p < 0.05) after 1 h 30 min of 
exposure (Figure 2B), showing that exposure to SMF can 
change CH2 bending vibration in gasoline fuel [24-26]. 
 

 
Figure 2A: Representative FTIR spectra from 1650 to 
1300 cm-1 of gasoline fuel after 15 min of exposure to a 
static magnetic field at the intensity of 150 mT. The 
spectra of exposed samples are represented in red color.  

 

 
Figure 2B: Representative FTIR spectra from 1650 to 
1300 cm-1 of gasoline fuel after 1 h 30 min of exposure to 
a static magnetic field at the intensity of 150 mT. CH2 
bending vibrations at 1610, 1465 and 1378 cm-1 (pointed 
out by arrows) decreased in intensity after exposure. The 
spectra of exposed samples are represented in red color.  
     
     In addition, the peak at 1378 cm-1 can be attributed to 
CH3 symmetrical deformation band and the bands 
observed at 1655, 1610 and 1522 cm–1 can be attributed 

to C–C stretching vibrations [29]. The C–C aromatic ring 
stretch is represented by the vibration at 1495 cm-1. Also, 
the strong vibrations at 1610 and 1378 cm-1 decreased in 
intensity significantly (p < 0.05) after exposure up to 1 h 
30 min (Figure 2B). 
 
     The classical theory of diamagnetism is able to explain 
the change in intensity of the main vibration bands of 
gasoline fuel, observed after exposure to SMF. Indeed, 
aliphatic hydrocarbons that compose gasoline fuel are 
diamagnetic substances with diamagnetic susceptibility 
whose intensity increases with increasing of the number n 
of carbon atoms in the chain CnH2n+2 [30]. Diamagnetism 
consists of a magnetic field created in diamagnetic 
materials which opposes to the external applied magnetic 
field. Thus, a SMF applied to gasoline fuel should induce a 
magnetic field in the fuel which opposes to the applied 
field. 
 
     As a result, the application of a SMF on gasoline 
samples should induce the alignment of gasoline chains 
with their axes parallel to the field, opposing to it. This 
phenomenon was already observed in macromolecules 
like polymers, that align along the direction of an applied 
SMF which can induce the reorientation of the 
polyethylene chains towards the direction of the field [31-
33]. In this scenario, the decrease in intensity of bending 
vibrations observed after exposure to SMF can be 
explained as follows.  
 
     The CH2 chains of octane molecule are at equilibrium 
with a nonzero dipole moment. Under the exposure to 
SMF, these chains begin their motion aligning with the 
applied field and opposing to it, causing that the angle 
bends become larger than in the absence of a magnetic 
field (Figure 3A & Figure 3B). As a result, the dipole 
moment is reduced so that corresponding bending 
vibrations of CH2 and CH3 decrease in intensity because 
the reorientation of hydrocarbons chains.  
 

 
Figure 3A: Scheme of the octane chemical structure in 
gasoline fuel before exposure to a SMF.  
Figure 3B: Scheme of the octane chemical structure in 
gasoline fuel representing its rearrangement in plane 
after exposure to a SMF. 
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     Also, the increase in intensity of the vibration at 1230 
cm-1 which was observed by Calabrò and Magazù, can find 
its explanation. In fact, this band can be attributed to out 
of plane twisting of CH2 group. The deviation of direction 
of C–H linkages from CH2 plane should induce an increase 
of dipole moment which opposes to the external field. 
 
     The enlargement of the angles in plane and out of plane 
between the C–H linkages of CH2 group should induce an 
increasing of combustion process. Indeed, the application 
of a SMF should induce opposite spinning electrons to 
have parallel spins, generating a magnetic field opposing 
to the external field [34]. As a result, parallel spinning 
electrons could react with oxygen atoms more rapidly 
than molecules with paired electrons spinning opposite 
directions, so that the combustion process increases with 
increasing of the applied SMF. Also previous study are in 
agreement with our result. Indeed, it was observed that 
hydrocarbons viscosity decreases with increasing of the 
applied SMF, so that better atomization of the fuel should 
verify [35]. In view of these findings, it can be 
hypothesized to plan a gasoline tank embedded in the 
magnetic field produced by a permanent electromagnet, 
driven by the same electric plant which is in the motor 
vehicle, so that the magnetic field originated by the 
magnet can increase during the motion of the vehicle [36-
39]. 
 

Conclusions 

     Hydrocarbons in gasoline fuel under exposure to a SMF 
at the intensity of 150 mT were studied using FTIR 
spectroscopy. First, no appreciable change of symmetric 
and asymmetric stretching of CH3 and CH2 vibration 
bands was observed after exposure to SMF. In contrast, 
bending vibration bands decreased significantly after 1 h 
30 min of exposure such as vibration band at 1465 cm-1 
assigned at CH2 scissoring vibration. This result can be 
explained by the theory of diamagnetism, assuming that 
hydrocarbons chains reoriented towards the direction of 
the applied SMF, opposing to it. Also the methyl 
symmetrical deformation band at 1378 cm-1 and C–C 
stretching vibrations at 1610 cm-1 decreased in intensity 
after exposure to SMF, confirming this scenario. These 
findings showed that an enlargement of the angles in 
plane and out of plane between the C–H linkages of CH2 
group occurred after exposure to SMF, favoring the 
combustion with oxygen. As a result, the energy efficiency 
of motor vehicles could increase hypothesizing to plan a 
gasoline tank embedded in the magnetic field produced 
by a permanent electromagnet, driven by the same 
electric plant which is in the motor vehicle. 
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