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Abstract 

In this paper, a macroscale magnetostrictive velocity driven energy harvester is presented. This harvester has non-

vibrating base and the external harmonic force is applied to the tip of the cantilevered harvester by a rotary DC motor. 

Due to ductility, high stiffness, machinability and suitability for welding, Galfenol is selected as the active material of this 

harvester. The performance of the presented macroscale harvester in the presence of various magnetic fields, various 

exciting frequencies and different resistive loads is measured. The harvester shows the highest performance, when it is 

excited in its natural frequency. The energy density extracted from this harvester is 1535 μW/cm3 in the presence of 2 A 

current bias across resistive load of 98 Ω. This promising amount of energy density shows that the harvester is a reliable 

energy source for photovoltaic solar Gilders in cloudy and windy weathers. 
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Introduction 

     Nowadays, mechanical harvesters are employed 
everywhere to increase the efficiency of systems with 
vibrational sources. Impulse harvesters under the fan’s 
foot on the sport stadiums and recharging the battery of 
pacemakers using body motion are good examples to 
scavenge the energy from dissipated energy. the generated 
power by vibrational base harvesters seems very low, 
however, this amount of energy is enough to energize 
health monitoring systems of mechanical, civil and 
aerospace structures or any other wireless sensor 
networks. Most of the vibrational based scavenging 
sources are electromagnetic [1-7], electrostatics [8-13], 
piezoelectric [14-20] and magnetostrictive [21-23] 
harvesters. Electromagnetic harvesters are suitable for 
low frequencies (f < 5Hz) ambient applications. 
Electrostatics needs external voltage source, which is not 

suitable for compact applications. Although, piezoelectric 
harvesters are suitable for wide frequency bandwidth, 
their poor electromechanical coupling coefficient and 
brittleness of piezolelectric makes piezoelectric material 
unreliable for long life operation [24-26]. Magnetostrictie 
materials have wide applications in actuators [27-37], 
sensors [38,39], and harvesters [40-42]. Although, the 
hysteresis behavior and presence of Eddy current in 
magnetostrictive materials [42-45] cause complicate 
modeling process for harvester, high stiffness combined 
with high magneto-mechanical coupling coefficient [31,32] 
make them suitable for harvesters that have long life and 
operate with high efficiency in wide range of temperature 
[34]. Usually harvesters are categorized as force driven 
and velocity or displacement driven. 
 
     Force driven harvesters consist of a magnetostrictive 
rod and a pick-up coil [40]. Displacement or velocity 
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driven harvesters are normally a cantilever beam covered 
by a pick-up coil. Based on the Villari effect, when the rod 
is under normal stress or the cantilever beam is under 
lateral bending, the change of the magnetization induces 
voltage in the pick-up coil. In this research, we 
concentrated on the velocity driven harvester. Most of the 
developed velocity driven magnetostricve harvesters are 
in miniature size with base-excitation [40]. Thanks to 
closed magnetic circuits [46-48] for higher performance, 
Ghodsi developed a novel magnetostrictive harvester [48]. 
Meticulous investigations highlighted this fact that in some 
of the developed devices, the combination of 
electromagnetic and magnetostrictive are the sources of 
energy. However, the main percentage of the developed 
energy is because of the change in operating point of 
permanent magnet when the velocity driven harvester is 
under bending.  
 
     The aim of this research is to develop a velocity driven 
magnetostrictive harvester for macroscale applications. It 
means that the beam is not excited from the base. 
Macroscale magnetostrictive harvesters can be installed in 
the wing of photovoltaic glider to generate power in the 
cloudy and windy atmosphere that the performance of the 
photovoltaic is very low. In the experiments, the harvester 
is evaluated under different excitation frequency ranges, 
resistive loads and magnetic field.  
 

Principle of Macroscale Harvester and 
Experimental Setup 

    The schematic of a harvester is shown in the Figure 1. 
The harvester is made of an oscillating magnetostrictive 
rod inside a pickup coil. The ends of the magnetostrictive 
rod are clamped in iron yokes by screws. To avoid the 
noisy disturbance generated by the oscillating system on 
the pickup coil, the source of vibration is allocated far from 
the pickup coil by an aluminum bar. There is a permanent 
magnet attached to the tip of the aluminum bar. A drum 
armed with an array of PMs on its circumference is 
connected to a DC motor. Rotation of the DC motor 
instigates an attraction/repulsive force between 
permanent magnets of the drum and tip of aluminum bar. 
Therefore, the frequency of oscillation can be controlled by 
the rotary drum connected to the DC motor. To investigate 
the performance of harvester in the presence of magnetic 
field, a magnetic bias coil is installed over the pickup coil to 
generated bias magnetic field. Significant parameters in 
the developed harvester are beam oscillation frequency 
(f), intensity of bias magnetic field (Ibias) and resistive load 
(R). The displacement of the beam can be defined by Euler-
Bernoulli beam equation as: 
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Where w(x,t) is the displacement of the beam at point x at 
time t and μ is the effective mass of the harvester in unit 
length. E is Young's modulus and I is the moment of inertia 

of the cross-section of the beam. 
extr and 

intr are the 

external and internal damping respectively. On the other 
hand, the magneto-mechanical model of Galfenol can be 
written as: 
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where B and H are magnetic flux density and magnetic 
field, respectively, 𝜎 and 𝜀 are applied stress and strain. 

 is the magnetic permeability in constant mechanical 

stress. d and d* are two magnetostrictive coefficients. The 
combination of the magneto-mechanical equation and the 
solution of equation (1) gives the generated voltage of the 
harvester in the form of: 
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and ( )''
X x is the second derivation of the displacement, 

which is found from the solution of equation (1).  
In the experiment, the harvested voltage is measured by 
data acquisition system with an input impedance of 1MΩ. 
The specifications of the pickup coil and magnetic bias coil 
are presented in Table 1.  
 
     The manufactured macroscale harvester is shown in 
Figure 2. In this setup, the Galfenol rod, with 51 mm length 
and 10 mm diameter, is clamped between two iron rods 
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and at the end, an aluminum rod is attached to them and 
all together have made a cantilever beam. The beam is 
fixed in one end, and the other end is free to vibrate. There 
are 6 permanent magnets around the disk attached to DC 
motor and another permanent magnet is attached to the 

end of beam. The interaction of these magnets produces a 
vertical displacement at the free end of the cantilever 
beam (the gap between rotary and fixed magnet is 25 
mm). The frequency of the vibration can be easily adjusted 
by the input voltage of DC motor.  

 
 

 

Figure 1: Schematic structure of the harvester. 
 
 

 Pickup coil DC bias coil 
Number of turns 1500 567 

Wire thickness (mm) 0.3 1 

Dimension (mm) 
l=20 

din= 22 
dout = 38 

l=42 
din= 75 
dout = 95 

Resistance (Ω) 33 3.7 

Table 1: Pickup coil and magnetic bias coil specifications. 
 

 

 

Figure 2: Experimental setup of magnetostrictive 
harvester. 

     The strain of the Galfenol, because of bending, produces 
a variable magnetic field inside the Galfenol. Based on the 
Faraday’s law, a pickup coil, around the Galfenol, is 
responsible to convert the variable magnetic field to 
electricity. The pick-up coil is 1500 turns coil with 33 ohm 
resistance and 20 mm length and its wire is 0.3 mm 
thickness. The pickup coil is connected to a wide range of 
resistors (1 to 4700Ω). The generated voltage and power 
are measured across the resistive loads. The tests are done 
in different frequencies by adjusting the rotational speed 
of DC motor. It is revealed that the frequency coincident 
with the natural frequency of the cantilever beam (19.2 
Hz) shows the highest performance. 
 

Results of Experiments 

     The relationship between induced voltage in the pickup 
coil and resistor loads in the presence of different 
magnetic fields are shown in Figure 3. The generated 
voltage is enhanced by increasing the resistor loads. In 
most of the bias magnetic fields, the induced voltage 
saturates at 1500 Ω. Furthermore, the induced voltage 
improves in the presence of bias magnetic fields and 
reaches its maximum value, 933 μV, at 2 A current bias. By 
increasing the magnetic bias to more than 2 A, the 
generated voltage is reduced. Figure 4 illustrates the 
general behavior of the generated power across various 
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load resistors. The generated power increasing and reach 
its maximum value at 98Ωand reduces by higher value of 
resistive load. It is also obvious that magnetic bias 
enhances the generated power and the maximum power, 
2654 μW, is achievable at 2 A current bias. The main 
reason to have higher voltage or power in a certain 
magnetic bias field can be referred to the fact that 
magnetic permeability of magnetostrictive materials 
depends on the bias magnetic fields. In other words, the 
maximum magnetic permeability occurs in certain value of 
magnetic field. For example, in this harvester the 
maximum permeability happens in 2 A current bias. 
Another important issue is the energy density generated 
by this macroscale harvester that is almost 1535μW/cm3.  
 

 

 

Figure 3: Generated voltage in different resistances 
and biases. 

 
 

 

Figure 4: Generated power in different resistances and 
biases. 

 
 

Conclusions 

     In this paper, a macroscale magnetostrictive velocity 
driven energy harvester is proposed. This harvester has 
non-vibrating base and the external transverse force can 
be applied at any point of the beam. Due to ductility, high 
stiffness, machinability and suitability for welding, 
Galfenol has been chosen as the active material of this 

harvester. The performance of the presented macroscale 
harvester was measured in the presence of various 
magnetic bias by different resistive load. The harvester 
showed the highest performance when it was excited by 
19.2 Hz that is the natural frequency of harvester. The 
energy density extracted from this harvester was 1535 
μW/cm3 in the presence of 2A current bias across load 
resistance of 98 Ω. Such an energy density generated by 
this harvester shows its reliability as an energy source for 
photovoltaic solar Gilders in cloudy and windy weathers.  
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