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Abstract 

Gas condensate reservoirs represent unique and clean hydrocarbon source of energy, so prediction of their 

thermodynamic criteria especially dewpoint pressure (Pd) is crucial for reservoir characterization and management, 

since declining of initial reservoir pressure below dewpoint pressure result in liquid built up near wellbore and reduce 

gas productivity index. In this study, a mathematical modeling developed to estimate dewpoint pressure at reservoir 

temperature using reliable, precise, well-organized gene expression programming (GEP) approach in combination with 

multiple non-linear regression analysis. The dataset comprises 453 published data points, and the model developed as a 

function of compositional analysis of hydrocarbons components (ZC1-ZC7+), physical properties of heptane plus fractions 

(C7+) including molecular weight and specific gravity, the mole fraction of nonhydrocarbons (ZCO2& ZN2) and reservoir 

temperature. Experimental Pressure-Volume-Temperature (PVT) analysis including constant composition expansion 

(CCE) at reservoir conditions and compositional analysis are carried out through 27 gas condensate samples not used in 

model development, and covering a great range of PVT properties to evaluate the new predictive model accuracy. 

Assessment and validation of the developed and published correlations carried out by a statistical and graphical error 

analyses. The obtained relative errors indicate that the developed model employed as an alternative approach 

monitoring the dewpoint pressure of gas condensate reservoirs when the required real data are not accessible. 
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Introduction 

Retrograde gas reservoirs recognized as one of the 
most precious, and clean hydrocarbon energy sources in 
comparison to other fossil fuels [1-7]. They differ in their 
thermodynamic and flow behavior from other common 
gas reservoirs [8] since they exist as a gas phase at initial 
reservoir pressure [6], where the reservoir temperature 
lies between critical temperature (Tc) and 
cricondentherm temperature (Tct). By pressure declining 
below dewpoint pressure during “Flow-in” process, these 
reservoirs begin to condense isothermally until reach to 
separator conditions. By further pressure reduction, the 
liquid volume reaches a maximum value called maximum 
liquid drop out (LDO) at a certain pressure, then begins to 
vaporize [8]. One of the most characteristic physical 
parameters for gas condensate reservoirs is the dewpoint 
pressure, which defined as the pressure where a massive 
amount of gas phase is in equilibrium with a negligible 
volume of liquid phase [9] or qualitatively defined as the 
pressure at which the first droplet of condensate begins to 
condense [5]. Typical phase diagram of gas condensate is 
shown in Figure 1. By reducing pressure isothermally 
starting from point “1”, condensation begins at point “2” 
(dewpoint pressure) [4,10,11] and reach a maximum at 
point “3” then begins to decrease [12]. Point “G” 
represents separator condition that lies in the two-phase 
region, in which well stream separated into separator gas 
and separator oil [13]. Dewpoint pressure of the gas 
condensate reservoirs either detected in the lab during 
constant composition expansion test (CCE) [4] or 
estimated from empirical relations [14]. Petroleum 
engineers may resort to empirical correlation in case of; 
non-representative samples, unavailability of PVT 
analyses [15], quality check of lab analysis, expensive 
analysis cost [16,17]. Empirical correlations usually 
developed for district geographic provinces with given 
chemical composition of reservoir fluid and data range 
[16,18]. Thus, generalized accurate PVT relations are rare. 
Most empirical PVT relations were developed by multiple 
linear or non-linear regression techniques in addition to 
graphical techniques [16,19,20]. Several studies reported 
about the effect of dewpoint pressure on the well 
productivity in gas condensate reservoirs [21-25] and 
concluded that gas productivity, relative permeability, 
and gas recovery decrease below dewpoint pressure as 
condensate buildup increases around wellbore [5]. 
Therefore, estimation of dewpoint pressure is decisive for 
fluid characterization and management of gas condensate 
reservoirs [5,26]. Moreover, several mathematical 
models, equations of state and empirical correlations 

reported the estimation of dewpoint theoretically 
[6,9,27].  
 
 

 

Figure 1: Phase behavior of gas condensate reservoirs. 
 
 
Numerous empirical correlations are widely reported 

for dewpoint prediction; Eilerts and Smith [25] developed 
four correlations relate dewpointpressures to 
temperature, composition, molar average boiling 
pointand gas-to-oil ratio [28,29]. Olds, et al. [30] estimate 
the dewpoint pressure as a function of the gas-oil ratio 
(GOR), temperature, and stock tank oil gravity (API) for 
Palomafield [5] and represented their correlation in a 
graphical and tabular form [26]. Reamer and Sage [31] 
estimate dewpoint pressure as a function of the reservoir 
temperature and gas-oil ratio (GOR) in Louisiana field. 
Organickand Golding [31] estimate dew point pressure in 
the form of 14 working charts [32] for gas condensate 
systems with a relative error of 8% [5,8]. Nemeth and 
Kennedy [33] develop empirical correlation based on 579 
data set to predict dewpoint pressure by multiple 
regression analysis based on temperature, molecular 
weight, the specific gravity of C7+ and fluid compositions 
[4]. Crogh [34] presented a correlation by neglecting 
reservoir temperature in the Nemeth and 
Kennedycorrelation[33] in order to have a better 
prediction of dewpoint pressure. Carlson and Cawston 
[35] study the effect of non-hydrocarbon impurities, 
especially H2S on the dewpoint pressure in the Brazeau 
River area of Alberta, Canada and concluded that 
increasing of H2S content reduces liquid dropout volume 
[5]. Potsch and Braeuer [36] determine the dewpoint 
pressure as a function of Z-factor through a graphical 
model. Fang, et al. [37] develop a new empirical 
correlation which predicts the dewpoint pressure of 
gascondensate as a function of gas composition, 
temperature, heptane-plus fraction (C7+ )characteristics 
and average molecular weightof fluid mixture [28]. 
Humoud andAlMarhoun [38] utilize multi-regression 
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techniques to develop an empirical model for gas 
condensate samples extracted fromthe Middle East region 
[5]. Their correlation developed as a function of reservoir 
temperature, pseudo reduced pressure and temperature, 
separator gas/oil ratio, separator pressure and 
temperature, relative densities of separator gas and the 
heptane-plus fraction [28], with an average absolute error 
of 4.3%, and a maximum relative error of 15.1% [26]. 
Marruffo et al. [39,40] proposed a mathematical model to 
predict dewpoint pressure and C7+characteristics ofgas 
condensate reservoirs using146 PVT data points through 
nonlinear regression software from Western Venezuela 
(Anaco) fields [5]. Elsharkawy [41] develop an empirical 
model which predict dewpoint pressure based on 340 
measured data point as a function of molecular weight, 
temperature, fluid composition, and specific gravity of C7+ 
components. Al-Dhamen and Al-Marhoun [42] use the 
artificial neural network to develop a new correlation as a 
function of reservoir temperature, gas/oil ratio,gas and oil 
specific gravity. Shokir [9] use 245 data set and apply 
mathematical genetic approach and orthogonalleast 
squares algorithm to predict dewpoint pressure as a 
function of reservoir fluid composition and 
reservoirtemperature [28] neglecting specific gravity of 
C7+. Godwin [43] used 259 gas condensate sample 
covering a wide range of gas properties and develop a 
new model predicting dewpoint pressure as a function of 
gas composition analysis and reservoir temperature with 
an average relative error of 0.0488% and absolute 
average relative error of 0.099%. Wang, et al. [44] predict 
dewpoint pressures of gas condensate reservoirs as a 
function of reservoir temperature, gas composition and 
physical properties of C7+ component based on 14 group 
of gas condensate samples in China. Kaydani, et al. [28] 
develop a new correlation based on multi-gene genetic 
programming to determine dewpoint pressure of gas 
condensate reservoirs. Kamari, et al. [8] develop a new 
modelfor predicting dewpoint pressure in gas condensate 
reservoirs using gene expression soft-computing 
programming, based on 562 experimental data set from 
constant volume depletion (CVD) tests. Ahmadi and 
Elsharkawy [32] develop a correlation to estimate the 
dewpoint pressure in gas condensate reservoirs using 
gene expression programming (GEP).  
 

Owing to complex relations between composition and 
dewpoint pressure [45], itis not practical to develop a 

universal global correlation to predict thisparameter as 
stated in the literature [29,31,46]. Moreover, the 
experimental determination of dewpoint pressure for the 
gas condensate fluid at reservoir temperature is relatively 
expensive andtime-consuming [2,27,28,30,41,47]. This 
led the authors in this study to build up a novel relation 
using gene expression programming (GEP) as a soft 
computing approach in combination with multiple least 
squares non-linear regression analysis to predict 
dewpoint pressure for retrograde gas condensate 
reservoirs based on the published data covering a wide 
range. Moreover, the accuracy of the developed 
correlations as compared to the widely well-known 
published ones determined through statistical error 
analysis, then correlation validated by other 
27experimentally measured dataset not used in model 
development.  
 

Experimental PVT analysis 

 Dewpoint pressure determined experimentally in our 
PVT-lab through constant composition expansion (CCE) 
test. This test carried out to simulate the pressure-volume 
relations of the hydrocarbon systems [48]. The measured 
results are summarized in Table 1. The procedure 
reported in detail through literature [49,50] with minor 
modification and can be concluded as follow; a portion of 
the reservoir fluid sample was charged to the automated 
mercury free Vinci-PVT cell then, subjected to the 
reservoir temperature and excess of initial reservoir 
pressure. CCE test carried out by pressure declining 
isothermally without mass change where the dewpoint 
pressure and corresponding volume were recorded by 
running the Macro-built in Software and the retrograde 
liquid drop out detected by Interface Detection System 
(IDS). Composition analysis determined according to 
ASTM 1945 [51], using Clarus 500 Perkin Elmer gas 
chromatograph in line with the condensate cell utilizing 
four packed columns connected in series with thermal 
conductivity detector and capillary column matched with 
flame ionization detector. Helium used as a carrier gas 
and the oven isothermal temperature adjusted at 100°C in 
order to provide highly efficient detection of aromatics 
and paraffin’s (normal and isomers) up to heptane plus 
fractions, in addition to non-hydrocarbon components 
(N2,H2S & CO2). 
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# Pd, psia T res, F 
Mole Fraction 

SG -C7+ M.Wt- C7+ 
C1 C2 C3 C4 C5 C6 C7+ N2 CO2 

1 2845 290 0.705 0.108 0.089 0.031 0.009 0.008 0.005 0.000 0.045 0.776 129.139 

2 3415 318 0.881 0.023 0.008 0.005 0.003 0.003 0.006 0.000 0.071 0.789 149.595 

3 3850 318 0.858 0.024 0.009 0.007 0.005 0.006 0.016 0.001 0.074 0.789 150.024 

4 3631 318 0.811 0.041 0.011 0.007 0.005 0.005 0.006 0.000 0.113 0.788 147.486 

5 2640 300 0.785 0.090 0.040 0.020 0.006 0.007 0.022 0.001 0.029 0.790 151.669 

6 4153 279 0.669 0.111 0.042 0.015 0.010 0.021 0.082 0.000 0.049 0.812 168.908 

7 1986 155 0.817 0.073 0.053 0.029 0.010 0.005 0.010 0.001 0.002 0.779 134.739 

8 2056 161 0.857 0.062 0.037 0.018 0.008 0.004 0.005 0.000 0.009 0.790 145.129 

9 2268 162 0.800 0.064 0.051 0.029 0.012 0.013 0.026 0.000 0.004 0.788 143.462 

10 4275 296 0.808 0.069 0.022 0.009 0.003 0.003 0.011 0.000 0.075 0.788 130.441 

11 5120 311 0.765 0.067 0.033 0.021 0.010 0.011 0.043 0.000 0.051 0.794 154.946 

12 3852 278 0.761 0.090 0.048 0.019 0.005 0.004 0.016 0.000 0.056 0.788 144.801 

13 3305 317 0.754 0.107 0.047 0.020 0.008 0.005 0.023 0.000 0.036 0.778 126.803 

14 3281 278 0.711 0.105 0.061 0.030 0.012 0.010 0.041 0.001 0.029 0.796 156.507 

15 3950 279 0.619 0.124 0.083 0.033 0.012 0.014 0.069 0.001 0.046 0.799 159.594 

16 4382 267 0.838 0.053 0.025 0.014 0.007 0.007 0.027 0.001 0.029 0.797 157.715 

17 3500 220 0.910 0.040 0.017 0.008 0.003 0.003 0.012 0.002 0.007 0.802 147.669 

18 2853 212 0.857 0.058 0.033 0.018 0.007 0.007 0.011 0.000 0.009 0.787 141.940 

19 3285 211 0.832 0.061 0.031 0.018 0.009 0.012 0.029 0.000 0.008 0.789 144.503 

20 2321 186 0.799 0.073 0.049 0.024 0.011 0.012 0.028 0.001 0.002 0.780 133.709 

21 1139 162 0.828 0.076 0.052 0.025 0.009 0.004 0.006 0.001 0.000 0.776 130.481 

22 5495 214 0.918 0.035 0.014 0.008 0.004 0.004 0.013 0.000 0.004 0.801 161.772 

23 2205 160.2 0.925 0.033 0.020 0.009 0.003 0.002 0.004 0.000 0.004 0.786 140.389 

24 3321 181.76 0.899 0.043 0.023 0.013 0.005 0.004 0.011 0.000 0.002 0.791 152.153 

25 2534 170.6 0.961 0.018 0.009 0.005 0.002 0.002 0.003 0.000 0.001 0.790 149.387 

26 3500 192.8 0.911 0.034 0.021 0.010 0.005 0.006 0.011 0.000 0.002 0.793 149.035 

27 2900 182.4 0.934 0.030 0.014 0.007 0.003 0.003 0.007 0.000 0.001 0.795 152.763 

Table 1: Measure PVT Data. 
 

Correlation Built Up and Computation 
Method 

Recently, genetic algorithm (GA) used to solve 
mathematical regression expressions in petroleum 
industry [8]. Genetic algorithm modeling differs from 
numerical modeling in the method of variables 
arrangement which is a genotype in the former, and 
phenotype in the later [52,53]. GEP first introduced by 
Ferreira [54] as a mathematical modification of GA. It 
resembles its predecessors; genetic algorithms (GA) and 
genetic programming (GP) in the selection of individuals 
populations according to fitness. The higher the fitness, 
the higher the probability of leaving more offspring, then 
introduces genetic variation. The main difference relies on 

individual’s nature. In GA the individuals are symbolic 
strings of fixed length (chromosomes). In GP the 
individuals are non-linear moieties of different sizes and 
shapes (parse trees). In GEP the individuals are symbolic 
strings of fixed length(chromosomes) which are 
expressed as non-linear entities of different sizes and 
shapes capable of representing any expression tree 
[54,55]. To express GEP approach, an algebraic 
expression; 

 

*a b
d e

c
+ −  (Equation 1) 
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Can be represented as a genotype of GEP chromosomes as 
shown in Figure 2, Where (a, b, c, d, e) considered as 
terminals and (Q, /, *, -) expressed for the functions. 
 
 
 

 

Figure 2: Two genotype GEP chromosomes. 
 
 

Generally, regression analysis used to build up 
empirical correlations [14,56]. Regression analysis used 
to correlate a set of independent variables to predict one 
dependent variable. If only one independent variable 
isinvolved, it is known as a simple regression analysis 
whilemultiple regression analysis involvesmore than one 
independent variable [16]. General multiple regression 
models, which relates a dependent variable “y” to “k” 
predictor of independent variables, x1, x2, ..., xk, is given by 
Equation 1 :  
 

1 1 2 2     .........   k ky x x x   = + + + +  

 (Equation 2) 
 
Where α and β's are regression analysis coefficients and 
expressed in matrix form as follow [16,57]. 
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 (Equation3) 

 
Least-squares regression technique applied upon the 

nonlinear weighted values to minimize the sum-of-
squared residuals between measured and simulated 
quantities [58]. The data fitted by a method of successive 
approximations [14,59]. The linearity or nonlinearity of 
the data pattern checked using scatter gram plotting. 
Since the precision of GEP models depends on different 
factors, so the number of genes and depth of expression 
tree increased. In this model development, we apply four 
genes including average percent relative error (ARE%), 
Average absolute percent relative error 
(AARE%),Standard deviation (S) and coefficient of 
determination (R2) as a fitness functions (Figures 3-6), 
and a function set including (∗,+,–,ln, /) in order to 
develop the GEP-based model. The model correlated as a 
function of compositional analysis of hydrocarbon 
components (Zc1-Zc7+), physical properties of heptane plus 
fractions (C7+) comprising molecular weight and specific 
gravity, the mole fraction of nonhydrocarbons (ZCO2& ZN2) 
and reservoir temperature. Physical properties and data 
range of 453 published data set used in model growth, as 
well as 27 datasets used in model validation, are reported 
in Table 2. The application range of this proposed formula 
to predict dewpoint pressure ranged from 1835.0 to 
8553.0 psi. The optimum model for dewpoint prediction 
in this study is expressed as follow; 

 

(Equation 4) 3 3
dP x y= +  

(Equation 5) 
2

0 1 1 2 2 3 4 4 4 5 5 6 6 7 7

8 9

( ) ( )C C C C C C Ca a Z a Z a Z a Z a Z a Z Z a T
x

a T a

++ + + + + + + +
=

+
 

(Equation 6) 7

7
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7 8
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C

C
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+
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0.036879 b1= 36.805444 b0= 25340412.798272 a1= 30831054.885209 a0= 
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-27.417773 b3= -18.404394 b2= 55676491.863096 a3= 17321431.646474 a2= 
-14.849297 b5= 1.070394 b4= -4136106.206982 a5= -4992350.346216 a4= 
-0.734094 b7= -6.962479 b6= -54451.523407 a7= 54245584.212136 a6= 

 2.064002 b8= -2571018.026613 a9= 2545.141256 a8= 
 

Parameters 
Model development data 

(453)point 
Model Validation data 

(27) point 
 Maximum Minimum Average Maximum Minimum Average 

Pd, psia 8553 1835 4615.691 5495 1139 3261.556 

T res, F 313 40 204.2936 318 155 237.7689 

ZC1, mole fr. 0.9604 0.2038 0.8003 0.9606 0.6185 0.8226 

ZC2, mole fr. 0.1485 0.0021 0.0593 0.1239 0.0176 0.0635 

ZC3, mole fr. 0.109 0.001 0.0314 0.0888 0.0082 0.0349 

ZC4, mole fr. 0.0801 0.0012 0.0203 0.0329 0.0049 0.0166 

ZC5, mole fr. 0.123 0.0013 0.0127 0.0124 0.0019 0.0068 

ZC6, mole fr. 0.0871 0.001 0.0097 0.0211 0.0016 0.0069 

ZC7+, mole fr. 0.1356 0.0027 0.0391 0.0819 0.0026 0.0201 

ZCO2, mole fr. 0.5292 0 0.0156 0.1129 0.0002 0.0281 

ZN2, mole fr. 0.434 0 0.0116 0.5355 0 0.0101 

Specific gravity (γC7+) 0.8681 0.733 0.7866 0.8117 0.7758 0.7901 

Molecular weight C7+ (g mol-1) 208 106 146.1082 168.9077 126.803 146.4725 

Table 2: Summary of maximum, minimum and average data ranges used in model build up and validation. 
 

 

Figure 3: Performance of dew point correlations with respect to Average percent relative error. 
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Figure 4: Performance of dew point correlations with respect to Average absolute percent relative error. 

 

 

 

Figure 5: Performance of dew point correlations with respect to Standard deviation. 
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Figure 6: Performance of dew point correlations with respect to the coefficient of determination. 
 
 

Results and Discussions 

The accuracy and reliability of the developed 
correlation checked by statistical and graphical errors 
[16]. 
 

Statistical Error analysis 

Accuracy and validity of the developed model were 
evaluated using the following statistical means; Average 
percent relative error (ARE%) [20,49], Average absolute 

percent relative error (AARE%) [60], Standard deviation 
(SD) [61] and coefficient of determination (R2).The 
mathematical expression of each parameter reported in 
the literature [18]. Statistical errors of the published 
correlations and the developed one in this study are 
reported in Table 3. It is observed that the developed 
correlation has lower relative errors, lower root mean 
square error and lower standard deviation as compared 
to the published one, so it has more reliability to the 
measured values. 

 
Correlation ARE, % AARE, % SD R2 

Nemeth and Kennedy, [33] 3.32 7.64 10.32 0.88 
Elsharkawy, [41] -9.07 12.58 18.86 0.75 

Marruffo, [40] 50.3 50.3 52.9 -3.17 

Shokir, [9] -2.23 9.43 15.3 0.84 

Godwin, [43] -10.18 19.9 27.12 0.49 

Wang et al, [44] 99.61 99.61 99.73 -10.6 

Kaydani et al, [28] -237.38 237.38 246.16 -63.96 

Kamari et al, [8] -1.55 7.41 11.36 0.89 

Ahmadi and Elsharkawy,[32] -1.97 7.9 10.67 0.9 

This study -0.6 6.72 8.75 0.92 

Table 3: Statistical accuracy of the published and developed correlations. 
 

Graphical Error Analysis 

Graphical error analysis including cross plot technique 
was used in this study, where the predicted data are 
plotted against the measured one. Line with an angle of 
45° degree is drawn through the predicted data, since the 

closer the plotted data to this line, the higher is the 
accuracy and prediction capability of the correlation [18]. 
Graphical plots of the published and developed 
correlations are reported in Figure 7.  
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Figure 7: Cross plot of the published correlations versus experimental data. 
 

 
The coefficient of determination (R2) exhibits the 

strength of association between two variables, including 
the experimental and predicted data. The closer the R2 to 
one, the closer the predicted values to the experimental 
data [18]. The cross plot indicates that the developed 
correlation has a higher coefficient of determination and 

correlation coefficient (R2= 0.9225 & r=0.9604) than the 
published relations, so it is expected that it has high 
accuracy. Figure 8 reveals a great compliance between the 
measured and calculated data, which indicate high 
reproducibility of the proposed relation. 
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Figure 8: Comparison between experimental and calculated dew point pressure. 
 
 

Validation of Correlation 

Validity and applicability of thedeveloped empirical 
correlations carried out through graphical and statistical 
error analysis using 27 data sets not used in the 
correlation development. Figure 9 shows the cross plot of 
the measured and predicted data. We can observe that the 

coefficient of determination reach (R2= 0.9451) which 
indicates a high accuracy of this correlation related to 
samples validation. Also, the statistical analyses show low 
relative error percentage, low standard deviation and 
high coefficient of determination. (ARE%= -1.0771, 
AARE%= 6.9707, and SD= 0.0888). 

 

 

 

Figure 9: Cross-plot of new model validation. 
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Conclusion 

A novel model with precise estimation of dewpoint 
pressure in retrograde gas condensate reservoirs was 
developed depending on 453 dataset as function of mole 
fraction of (ZC1-ZC7+), physical properties of heptane plus 
fractions (C7+) including molecular weight and specific 
gravity, mole fraction of nonhydrocarbons (ZCO2 & ZN2) 
and reservoir temperature using a combination of gene 
expression programming (GEP) and multiple regression 
analysis. Experimental PVT analysis carried out to 
measure dewpoint pressure of the samples used in model 
validation in addition to compositional analysis. 
Comparative evaluation of the developed model and the 
well-known published correlations from the literature 
carried out using statistical and graphical error analyses. 
The obtained results indicate that, the developed 
correlation exhibit great accuracy and reproducibility 
with a coefficient of determination (R2= 0.9225) and 
lower relative errors (ARE%= -0.6, AARE%= 6.72). Model 
validation carried out on 27 gas condensate samples 
through graphical and statistical error analysis where the 
coefficient of determination reach (R2= 0.9451) which 
indicates a high reliability of the proposed correlation.  
 

Nomenclature 

Pd Dewpoint pressure, psi 

GEP Gene expression programming 

PVT Pressure-volume-temperature 

CCE Constant composition expansion 

GA Genetic Algorithm 

Tc Critical temperature 

Tct Cricondentherm temperature 

LDO liquid drop out 

CVD Constant volume depletion 

GOR Gas-oil ratio 

API Oil gravity 

GA Genetic algorithm 

γC7+ The specific gravity of heptane plus components 

MC7+ 
The molecular weight of heptane plus 

components (g mol-1) 

ZC1-ZC7+ 
The mole fraction of hydrocarbon components 

from methane to heptane plus components 

ZCO2 The mole fraction of CO2 

ZN2 The mole fraction of N2 

T Reservoir temperature, °F 

ARE% Average percent relative error 

AARE% Average absolute percent relative error 

SD Standard deviation 

r Correlation coefficient 

R2 Coefficient of determination 
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