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Abstract 

The preparation of hierarchical mesoporous zeolites has lately become one of the principal focuses in the catalysis field. 

In this work, hierarchical mesoporous ZSM-5 zeolite (HM-ZSM-5) was successfully synthesized using soluble starch as a 

cheap mesoprogen. Techniques such as XRD, N2 adsorption, FT-IR and TGA have been conducted to study the structural 

characteristics of the synthesized mesoporous ZSM-5 zeolite. The XRD and FTIR results verified the formation of 

aluminosilicate with MFI framework topology. Nitrogen isotherm of the HM-ZSM-5 sample showed a broad hysteresis 

loop can be in the relative vapor pressure range of 0.4-1.0 bar corroborating the generation of hierarchical mesoporosity 

in the synthesized zeolite sample. Additionally, the BJH pore-size distributions of HM-ZSM-5 confirmed the presence of 

hierarchical mesoporsity. The prepared HM-ZSM-5 sample has high thermal stability comparable to that of the 

conventional microporous counterpart. In light of its excellent properties including hierarchical porosity, large surface 

area as well as high thermal stability, HM-ZSM-5 can be deemed as a potentially promising catalyst with efficient mass-

transfer, reduced diffusion limitation and improved resistance against coke deactivation. 
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Introduction 

Over the past decades, zeolites have been extensively 
used as efficient heterogeneous acid catalysts for a wide 
variety of important processes in the oil refining and 
petrochemicals industries [1-8]. These processes include 
fluid catalytic cracking (FCC), hydrocracking, xylene 

isomerization, alkylation of aromatics, reforming, linear 
paraffin isomerization and methanol-to-hydrocarbon 
conversions. The outstanding performance of zeolites as 
heterogeneous catalysts mainly originates from their 
strong Brønsted acidity and excellent shape selectivity 
[3,9].  
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In spite of the advantages offered by zeolite 
microporsity in terms of the extremely high surface area 
and the unique shape selective properties, the sole 
presence of micropores induces severe mass transport 
limitations [8,9]. It causes inefficient utilization of the 
internal voids of zeolite [10-18]. The access of the bulky 
reactant molecules to the catalytically active sites located 
within them is hampered, thus the conversion of bulky 
reactants takes place only over the active sites located on 
the outer surfaces of the zeolite [8,9,19,20]. Additionally, 
it may also cause fast deactivation of the catalyst by pore 
plugging by carbonaceous residue (coke) [8,20].  

 
In recent years, two different strategies have been 

described in the literature to improve mass transfer in 
zeolite pores and increase accessibility to the catalytic 
active sites (see Figure 2). The first strategy is to shorten 
the diffusion path length for reactants and products via 
decreasing the crystal size of zeolite, the so-called 
nanosized zeolite crystals or nano-zeolites [3,18]. 
Although, nano-zeolites have been found to have superior 
catalytic performance, particularly when dealing with 
bulky molecules, and higher resistance against 
deactivation by coke formation as compared to their 
conventional micrometre-sized counterparts [21-25], 
their high synthesis cost and the problems encountered in 
their efficient separation from reaction media severely 
restrict their practical utility on a large-scale [3,18,26]. 

 
The second strategy involves the introduction of a 

secondary mesoporous system i.e. pores with diameters 
ranging from 2.0 and 50 nm, inside the microporous 
zeolite crystals [3,8,18,19]. The term hierarchical zeolites 
is commonly used in the literature to describe this type of 
zeolites because they have two levels of porosities; a 
supplementary mesoporoisty in addition to the original 
zeolite microporsity and thus having a hierarchy of pore 
sizes [3,8,27]. Hierarchically structured zeolite has gained 
enormous and increasing interest during recent years 
because they combine the positive aspects found in both 
microporous zeolites (shape-selectivity, strong acidity, 
high hydrothermal stability) and mesoporous materials 
(efficient mass-transfer, reduced diffusion limitation and 
improved resistance against coke deactivation) in one 
material. These properties make these materials suitable 
for catalytic applications which are beyond the reach of 
the conventional microporous zeolites or mesoporous 
materials [3,8,18,27]. Throughout the last several years, 
mesostrucured zeolites have proven to be highly efficient 
catalysts in a large variety of reactions, including selective 
hydrogenation [28], alkylation of benzene [29], 
conversion of methanol to hydrocarbon [30], xylene 

isomerization [31,32], hydrocracking [33] and fluid 
catalytic cracking [34]. 

 
Over the past few years, several methods for the 

preparation of hierarchical meso-structured zeolites have 
been reported. Generally, these methods can be 
categorized into three classes namely, assembly, 
demetallization and mixed methods. In the assembly 
methods, also called ‘bottom-up’ or ‘constructive’ 
methods, the mesoporous system is generated by mean of 
the self-assembly of nano-sized zeolite crystals in the 
presence of a sacrificial mesopore directing agent [8]. In 
the demetallization methods, also called ‘top-down’ or 
‘destructive’ methods, mesoporosity is generated into pre-
existing microporous zeolites through the selective 
extraction of framework Si or Al atoms [8] and [35]. The 
third approach for the formation of hierarchically 
structured zeolites is the mixed methods or the zeolite 
recrystallization approach which is a combination of the 
above mentioned two methods. This route involves two 
steps: partial dissolution of a pre-synthesized 
microporous zeolite in an alkaline solution followed by 
the reassembling of the zeolitic fragments into a 
mesoporous structure in the presence of a surfactant [8] 
and [36]. 

 
In this work, hierarchical mesoporous ZSM-5 zeolite 

(HM-ZSM-5) was synthesized through the hard-template 
using strach as the mesoporous template. The structural 
characteristics of the HM-ZSM-5 were investigated by X-
ray powder diffraction (XRD), N2 sorption isotherm, 
Fourier Transform-Infrared Spectroscopy (FTIR) and 
thermal gravimetric analysis. 
 

Experimental 

Preparation of Hierarchical Mesoporous ZSM-5 

A hierarchical mesoporous ZSM-5 (HM-ZSM-5) was 
synthesized using the tradition hydrothermal method 
[37]. Starch was used as a cheap mesopore template for 
modifying the pores of the catalyst. A typical synthesis 
was carried out as follows. In a 50 ml propylene bottle; 
0.083 g of NaAlO2 (Si/Al=20) was dissolved in 4.8 g 
TPAOH solution under vigorous stirring for 1 h to obtain a 
clear aluminate solution. 10.8 g deionized water and 
0.032 g NaOH were added to solution under stirring then 
4.2 g TEOS was added dropwise into the resulting 
solution. The mixture was stirred for 4 hours at 353 °K in 
an oil bath to obtain a uniform sol-gel, and then 3.5 g 
starch was added and stirred over night at 353 °K. Finally, 
the mixture was crystallized in a Teflon lined stainless 
steel autoclave at 453 °K for 48 h. The solid product was 
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separated by centrifugation, washed to neutral with 
deionized water several times, dried overnight at 373 °K 
and finally calcined in air at 873 °K for 10 h.  

 
The H-form ZSM-5 sample was obtained as follows. 

Calcined ZSM-5 sample was put in 1 mol/L NH4OH 
aqueous solution (with solid to liquid ratio of 1:40) and 
stirred for 6 h at 353°K. Then, the NH4-type ZSM-5 was 
separated and washed by deionized after three times of 
ion-exchange. Finally, the solid was dried overnight at 
373°K and calcined in air at 873°K for 3 h. 
 

Catalyst Characterization 

Powder X-ray diffraction (PXRD) patterns were 
recorded on a Bruker AXS D8-ADVANCE diffractometer 
using a filtered CuKα radiation source (λ = 1.54056 Å) 
operated at 40 kV and 30 mA. Diffraction data were 
collected in the 2θ range of 3-40° with a 0.02° 2θ step size 
and 0.4 s count time. The surface characteristics of the 
prepared samples were determined from N2 adsorption-
desorption isotherms measured at liquid nitrogen 
temperature (-196°C) using a Quantachrome Nova 3200 S 
instrument. Before the measurements, the samples were 
degassed at 573°K under vacuum overnight to remove 
any guest molecule from catalyst surface and pores. The 

specific surface area was evaluated using the BET method 
applied to the range of relative pressures between 0.05 
and 0.15. The total pore volume was calculated using 
single-point adsorption method at a relative pressure of 
P/P0 = 0.95. Fourier transform infrared (FT-IR) spectra 
were obtained on an ATI unicam (Mattson 936) Bench 
Top spectrometer with pressed KBr pellets in the range of 
4000-400 cm-1.  
 

Results and discussion 

XRD 

In the current investigation, hierarchical mesoporous 
ZSM-5 zeolites were synthesized using the co-templates 
of TPAOH and starch by adding starch in the conventional 
ZSM-5 synthetic gel. X-ray diffraction (XRD) 
diffractograms of the as-obtained HM-ZSM-5 sample is 
shown in Figure 1. The pattern of the micro-ZSM-5 sample 
prepared without the addition of starch is also given in 
the same figure for the sake of comparison. Both samples 
displayed diffraction lines at 2θ of 7.86°, 8.78°, 14.78°, 
23.18°, 23.90° and 24.40° which can be readily attributed 
to ZSM-5 zeolite (JCPDS no. 43-0321), suggesting that the 
two samples have the MFI framework topology. 

 
 

      

Figure 1: XRD patterns of micro-ZSM-5 (a) and hierarchical ZSM-5 (b). 
 

 

FTIR 

FT-IR spectra of the hierarchical and microporous 
ZSM- zeolite samples are depicted in Figure 2. The FTIR 
spectrum displayed a band at 3445 cm−1 that can be 
assigned to stretching siloxane groups or O-H stretching 
of adsorbed water molecules [38,39]. The band at 1644 
cm-1 can be indexed to physically adsorbed water [38]. 
The symmetric stretching of the siloxane groups appeared 
at 792 cm-1 [40]. The bands located at 545 and 447 cm1 
are due to double five ring asymmetric stretching vibration 
and Si-O-Si bending mode [38,39], respectively. The two 
peaks at 1225 and 1102 cm-1 stand for the external and 

internal asymmetric stretching vibration of the siloxane 
groups [38,40]. The FTIR spectra of the samples verified 
the formation of aluminosilicate MFI structure, in line 
with XRD results. 
 

SSA 

In order to fully understand the porous features of the 
synthesized zeolites, nitrogen sorption analysis at −196°C 
was conducted and the obtained isotherms are illustrated 
in Figure 3 together with the Barrett-Joyner-Halenda. 
(BJH) pore size distribution plots. As is shown in Fig. 3a, 
micro-ZSM-5 sample presented a typical type I isotherm 
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characteristic of microporous materials according to 
IUPAC classification of adsorption isotherms. This was 
further confirmed by the BJH pore size distribution plot 
(Fig. 3b), where no peak can be observed in the 

mesoporous range, indicating the sole presence of 
microporosity in the micro-ZSM-5 sample prepared 
without the addition of starch in the synthesis gel. The 
micro-ZSM-5 has BET specific  

 
 

      

Figure 2: FTIR spectra of micro-ZSM-5 (a) and hierarchical ZSM- (b). 
 

 
Surface area and total pore volume of about 311 m2g-1 

and 0.15 cm3g-1, respectively, with low mesoporous 
surface area and pore volume of 31 m2g-1 and 0.015 cm3g-

1, respectively. On the other hand, the obtained adsorption 
isotherm of the hierarchical ZSM-5 sample (Fig. 3c) can be 
deemed as an intermediate between Type-I and Type-IV 
isotherms, based on the IUPAC classification of sorption 
isotherms, indicating the coexistence of both micro- and 
mesoporosity. The amount of adsorbed nitrogen was 
found to increase dramatically in the low relative vapor 
pressure region of the isotherm demonstrating the 
existence of microporosity. Additionally, broad hysteresis 
loop can be also seen in the relative vapor pressure range 
of 0.4-1.0 bar, thus corroborating the generation of 
hierarchical mesoporosity in zeolites by employing starch 
as a mesopore-forming template. Additionally, the BJH 
pore-size distributions of HM-ZSM-5 (Fig. 3d) confirmed 
the presence of hierarchical mesoporsity. 

  

The hierarchical sample displayed much larger 
mesoporous surface area (409 m2/g) and pore volume 
(0.315 cm3/g) as compared to the conventional micro-
ZSM-5. The hierarchical sample displayed much larger 
mesoporous pore volumes (0.173 cm3/g) as compared to 
the conventional micro-ZSM-5 (0.015 cm3/g). 

The Thermal Gravimetric Analysis (TGA) 

The thermal gravimetric analysis (TGA) of hierarchical 
and microporous ZSM- zeolite samples under N2 gas flow 
was conducted to study the effect of introducing 
mesoporosity on the thermal stability of the obtained 
hierarchical zeolite and the results are shown in Figure 4. 
As can be seen in this figure both samples have almost the 
same thermal stabilities, in other words the introduction 
of secondary mesoporous system has no adverse effect on 
the thermal stability of zeolite.  
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Figure 3: Nitrogen adsorption isotherms and BJH pore size distribution curves of micro-ZSM-5 (a,b) and hierarchical 
ZSM-5 (c,d). 

 
 

      

Figure 4: TGA curves of micro-ZSM-5 (a) and hierarchical ZSM-5 (b). 

 

Conclusions 

In the present work, we report the synthesis of 
hierarchical mesoporous ZSM-5 zeolite through the hard-
template approach using soluble starch as a cheap, 
sustainable and available mesoprogen. The obtained 
hierarchical mesoporous ZSM-5 zeolite exhibited high 
surface area, hierarchical porosity, and excellent thermal 
stability. These properties make HM-ZSM-5 suitable for 
catalytic applications which are beyond the reach of the 
conventional microporous zeolites. 
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