

A Machine Learning Approach to Modeling Pore Pressure

Tanko A*, Diyokeugwu A and Tanko ID

Department of Mineral and Petroleum Resources Engineering, Kaduna Polytechnic, Kaduna, Nigeria

Review Article Volume 4 Issue 1 Received Date: December 18, 2019 Published Date: January 29, 2020 DOI: 10.23880/ppej-16000213

***Corresponding author:** Abubakar Tanko, Department of Mineral and Petroleum Resources Engineering, Kaduna Polytechnic, Kaduna, Nigeria, Tel: +2348034580686; Email: abubakartanko87@gmail.com

Abstract

Machine Learning techniques and applications have lately gained a lot of interest in many areas, including spheres of arithmetic, finances, engineering, dialectology, and a lot more. This is owing to the upwelling of ground-breaking and sophisticated machine learning procedures to exceedingly multifaceted complications along with the prevailing advances in high speed computing. Numerous usages of Machine learning in daily life include pattern recognition, automation, data processing and analysis, and so on. The Petroleum industry is not lagging behind also. On the contrary, machine learning approaches have lately been applied to enhance production, forecast recoverable hydrocarbons, augment well placement by means of pattern recognition, optimize hydraulic fracture design, and to help in reservoir characterization. In this paper, three different machine learning models were trained and utilized to explore the feasibility of forecasting pore pressure of a well. The machine learning algorithms include, Simple Linear Regression, Decision Stump and Multilayer Perceptron (ANN). The predictive accuracies of the algorithm was analyzed using statistical measures. Five (5) parameters were utilized as input variables in the models: hydrostatic pressure, overburden pressure, observed and normal sonic velocities and pore pressure. 80% of the data was used in training while the remaining 20% was used for testing of the models. A sensitivity analysis of the five variable was conducted so as to identify correlations of the variables. Results of the sensitivity analysis revealed that both hydrostatic and overburden pressures appear to have the strongest correlation with pore pressure (0.766) and closely followed by normal compacted sonic velocity (0.753). Meanwhile, observed sonic velocity has the least correlation (0.046).

The models were appraised by determining their Relative Absolute Errors. Results indicate that Multilayer Perceptron has the best prediction and least Relative Absolute Error of 5.77%. While the Decision Stump model had a Relative absolute error of 54.41%. The Simple Linear Regression had a relative absolute error of 67.93%. By and large, all three models appear to be suitable for modeling pore pressure but the Multilayer Perceptron is the most accurate.

Keywords: Machine learning; Pore pressure; Models

Introduction

Machine learning models are nowadays essential and commonly useful means for forecasting vital variables for

complex oil and gas systems with numerous influencing variables displaying highly irregular and/or non-linear relationships. Their application and diversity are growing by Schmidhuber J [1]. Machine learning methods have caught

the eyes of engineers thanks to their ability to associate input data to the output data.

Machine learning methods were utilized expansively in the majority of petroleum engineering purposes, such as, drilling, reservoir, production and engineering, as well as petrophysics, rock mechanics and exploration [2]. One of such is the Response Surface Model which is utilized in numerous facets of reservoir engineering such as history matching [3,4], determining the initial uncertainty of hydrocarbons [5], locating spots for well placement [6] and estimating initial hydrocarbon uncertainty. Production variation has been forecasted with the aid of pattern recognition based on the well locations. Mohaghegh SD, El-Sebakhy E introduced a novel computational intelligence modeling plan founded on the support vector machines SVR system to forecast both bubble point pressure and oil formation volume factor [7-10]. They utilized solution gas-oil ratio, reservoir temperature, oil gravity, and gas relative density as input parameters. Oloso (2009) established two novel models for assessing the viscosity and solution gas/oil ratio (GOR) [11].

Artificial Neural Networks are computational techniques that mimics the human brain in unraveling solutions to problems. It consists of a series of interconnected nodes, which are more or less the artificial versions of the neurons in the brain. Each node symbolizes the artificial neuron, while the arrows symbolize the link from an output node to an input node.

Usually, the most common methods used to predict formation pressure prior to drilling is by using correlations that require well logs or seismic analysis data as input parameters. However, these correlations have their limitations in that they are based on limited data sets that are not readily available, thus making such predictions somewhat tedious. Consequently, the oil and gas industry is constantly seeking for alternative techniques of forecasting pore pressures that are not so dependent on well log data. It is on this account that we adopt and assess the machine learning approach so as to ascertain their suitability to formation pressure prognosis.

Simple Linear Regression

The model learns a linear regression model based on a single attribute, it chooses the attribute that yields the least square error. It can deal with numeric attributes.

Multiple Layer Perceptron

This is a neural network that is trained using back propagation to learn to predict instances. This network has

three layers: an input layer on the left with one rectangular box for each attribute (colored green); a hidden layer next to it (red) to which all the input nodes are connected; and an output layer at the right (orange). The labels at the far right show the classes that the output nodes represent. Output nodes for numeric classes are automatically converted to unthresholded linear units.

Decision Stump

It does regression based on mean-squared error or classification based on entropy. It is designed for use with the boosting methods, builds one-level binary decision trees for datasets with a categorical or numeric class, dealing with missing values by treating them as a separate value and extending a third branch from the stump. Usually used in conjunction with a boosting algorithm.

Methodology

The methodology implemented for the work involved using 80% of the actual pore pressure data in training the three models while the remaining 20% was used for testing of the models. A sensitivity analysis was carried out in this work using scatter plots. This involved plotting the variables (hydrostatic pressure, lithostatic pressure, observed sonic compressional velocity Vp, and normal compacted shale velocity Vn) against one another. These plots give a very vivid and simplified illustration of the variables' sensitivity. The strength of the correlations between the variables was computed using the linear correlation coefficient [12].

$$r = \frac{\sum (\frac{x_i - x}{s_x})(\frac{y_i - y}{s_y})}{n - 1}$$
(1)

Where x = sample mean of the predictor variable S_{x} = standard deviation of the predictor variable y = sample mean of the response variable \mathcal{Y}_{r} = standard deviation of the response variable n=sample size

Performance of Models

r

A statistical measure was applied to ascertain the predictive accuracies of the algorithms. The measure was the Relative Absolute Error.

Results and Discussion

The outcome of the pore pressure modeling are presented below. Results reveal that the Multilaver Perceptron (ANN) accurately predicted pore pressure across most instances. This is evidenced by the low Relative absolute error of

5.77%. The decision stump also yielded good predictions with Relative absolute error of 54.41%. The simple linear

regression model yielded the least accuracy of the three models with a Relative Absolute Error of 67.93% (Table 1-2).

Actual PP (psi)	Multilayer Perceptrpon	Error	Decision Stump	Error	Simple Linear	Error
					Regression	
3594.011	3568.511	-25.5	3700.757	106.747	3592.914	-1.096
3646.879	3619.062	-27.817	3700.757	53.878	3768.246	121.367
3978.16	3931.212	-46.948	5302.041	1323.88	4624.097	645.937
3396.181	3367.373	-28.808	3700.757	304.577	3947.288	551.107
4478.573	4492.593	14.02	3700.757	-777.816	4216.355	-262.218
3884.521	3889.688	5.166	3707.041	-177.481	3359.318	-525.204
3693.725	3668.527	-25.198	3707.041	13.315	3937.371	243.646
4635.664	4609.2	-26.464	3707.041	-928.623	4626.092	-9.573
3912.968	3923.552	10.584	3707.041	-205.928	3316.009	-596.959
5077.577	5078.88	1.304	5429.303	351.727	4671.212	-406.365
3666.297	3665.683	-0.614	3716.706	50.409	3504.419	-161.878
3697.584	3692.041	-5.543	3716.706	19.122	4419.735	722.151
4341.272	4371.699	30.426	3716.706	-624.567	4208.815	-132.458
5990.89	5933.745	-57.146	5215.934	-774.956	4895.377	-1095.51
3193.493	+3217.351	23.857	3716.706	523.212	3225.24	31.747
3093.845	3130.836	36.991	3747.078	653.232	3925.674	831.829
3916.394	3875.2	-41.195	3747.078	-169.316	4356.151	439.757
3558.819	3482.809	-76.01	3747.078	188.258	3838.111	279.292
5764.953	5766.679	1.726	5244.176	-520.777	4933.404	-831.549
3388.047	3510.594	122.547	3747.078	359.031	4533.01	1144.963
3027.477	3059.142	31.665	3716.499	689.022	3854.903	827.426
3733.722	3779.288	45.567	3716.499	-17.223	4588.498	854.776
4357.154	4322.766	-34.389	3716.499	-640.655	4175.159	-181.995
3786.709	3803.458	16.749	3716.499	-70.21	3458.754	-327.955
5184.277	5184.914	0.637	5316.761	132.483	4815.115	-369.162
3618.611	3632.898	14.287	3722.596	103.985	3254.789	-363.822
4116.115	4113.96	-2.155	3722.596	-393.519	4354.416	238.301
3258.714	3309.186	50.471	3722.596	463.882	3073.216	-185.498
3723.978	3693.664	-30.314	3708.781	-15.197	4042.469	318.492
3575.72	3518.66	-57.06	3708.781	133.061	3641.539	65.819
3976.176	3967.18	-8.996	3708.781	-267.395	4309.866	333.69
3868.439	3880.146	11.706	3708.781	-159.658	4445.456	577.017
3955.665	3910.463	-45.203	3704.245	-251.421	4054.808	99.143
3926.871	3885.181	-41.689	3704.245	-222.626	4097.6	170.729
3698.16	3655.713	-42.447	3704.245	6.085	3667.494	-30.666
5104.135	5137.625	33.49	5326.779	222.643	4756.179	-347.957

3517.212	3617.109	99.897	3727.812	210.6	3252.878	-264.334
3581.517	3595.871	14.354	3727.812	146.295	3529.754	-51.763
5775.789	5716.045	-59.745	5284.118	-491.672	4919.433	-856.357
4953.752	4974.705	20.953	5284.118	330.366	4789.31	-164.442
3798.472	3763.202	-35.27	13723.844	-74.628	3667.966	-130.506
3357.758	3414.65	56.892	3723.844	366.086	3105.226	-252.532
3797.28	3875.678	78.399	3723.844	-73.435	3278.843	-518.437
5231.326	5243.386	12.06	5310.88	79.554	4706.971	-524.355

Table 1: Table presenting results of pore pressure modelling using the three models.

	Decision Stump	Simple Linear Regression	Multilayer Perceptron
Relative absolute error	54.41%	67.93%	5.77%

Table 2: Statistical Performance of the models.

Sensitivity Analysis

The cross-plots of hydrostatic pressure, overburden pressure and sonic velocities against the measured pore pressure above showed varying degrees of correlation with the pore pressure. The cross-plot of normal compacted shale sonic compressional velocity (Vn) against pore pressure (bottom left) showed that sonic compressional velocity has a strong influence on the pore pressure as both parameters increased together and are tightly positioned along an imaginary line thereby implying a positive correlation. The scatter plot of observed sonic velocity (Vp) and pore pressure (top right) initially showed a positive correlation but later exhibited a negative correlation (decrease of Vp with increase in pore pressure). More so, the data points where spread out around the imaginary line, implying the correlation is not very strong. Lastly both the hydrostatic and overburden pressures showed strong correlations with the measured pore pressure as they both increase with it. Furthermore, results of the computed correlation measure of the input variables and the pore pressure shows that the hydrostatic pressure (0.766), overburden pressure (0.766) and normal compacted sonic velocity (0.75) have strong correlations with the pore pressure as their values are close to 1. The observed sonic velocity however, appears to have a weak relationship with pore pressure as it yielded a value of 0.47 which is quite far from 1 (Figure 1).

Tanko A, et al. A Machine Learning Approach to Modeling Pore Pressure. Pet Petro Chem Eng J 2020, 4(1): 000213.

Overall it can be surmised that all model input parameters are crucial to the pore pressure predictions of the model but the parameters with the most effect on the pore pressure predictions appear to be the hydrostatic and overburden pressures as well as the normal compacted sonic velocity (Vn) owing to their positive correlations with the pore pressure (Figure 2).

Confusion Matrix

Row Id	Vp (m/s)	Vn (m/s)	Pres Litho (psi)	Phyd (psi)	PPP (psi)
Vp (m/s)	1	0.6903	0.6747	0.6817	0.04642
Vn (m/s)	0.6903	1	0.9992	0.9996	0.75292
Pres-Litho (psi)	0.6747	0.9992	1	0.9999	0.7658
Phyd (psi)	0.6817	0.9996	0.9999	1	0.7600
PPP (psi)	0.04642	0.7529	0.7658	0.7600	1

Table 3: Values of the confusion matrix.

Conclusion

Machine Learning algorithms can be realistically trained and utilized to direct pressure measurements in other to forecast pore pressure. In this work, the pore pressure of a formation was predicted using existing pore pressure data with the aid of three machine learning models namely, Simple Linear Regression, Decision Stump and Multilayer Perceptron. The models were trained with Eighty percent of the dataset after which the remaining twenty percent was utilized in the validation of the models' accuracies. Results obtained showed that the Multilayer Perceptron model has

a laudable prediction accuracy. The Decision Stump model equally showed a good prediction performance. The Simple Linear Regression had the highest Relative Absolute Error. Furthermore, sensitivity analysis of the data used in the work showed that the hydrostatic pressure, overburden pressure and normal compacted sonic velocity have best correlations with the pore pressure as their values are closest to 1. On the whole, it can be surmised that the Multilayer Perceptron can be successfully utilized in the projection of pore pressures as demonstrated by the end result.

References

- 1. Schmidhuber J (2015) Deep Learning in Neural networks: An Overview. Neural Networks 61: 85-117.
- 2. Anifowose FA, Ewenla AO, Eludiora SI (2011) Prediction of Oil and Gas Reservoir Properties Using Support Vector Machines. International Petroleum Technology Conference, Bangkok.
- 3. Ahmadi MA, Ebadi M, Hosseini SM (2014) Prediction breakthrough time of water coning in the fractured reservoirs by implementing low parameter support vector machine approach. Fuel 117(Part A): 579-589.
- 4. Ahmadi MA, Ebadi M, Shokrollahi A, JavadMajidi SM (2013) Evolving artificial neural network and imperialist competitive algorithm for prediction oil flow rate of the reservoir. Applied Soft Computing 13(2): 1085-1098.
- 5. Mohaghegh S (2006) Quantifying uncertainties associated with reservoir simulation. SPE Annual Technical Conference and Exhibition, USA.

- 6. Ahmadi MA, Soleimani R, Alireza B (2014) A Computational Intelligence Scheme for prediction of equilibrium water dew point of natural gas in TEG dehydration systems. Fuel 137: 145-154.
- Manceau E, Mezghani M, Zabalza-Mezghani I, Roggero F (2001) Combination of experimental design and joint modeling methods for quantifying the risk associated with deterministic and stochastic uncertainties. SPE Annual Technical Conference and Exhibition, Louisiana.
- 8. Mohaghegh S, Arefi R, Ameri S, Hefner MH (1994) A methodological approach for reservoir heterogeneity characterization using artificial neural networks. SPE Annual Technical Conference and Exhibition, Louisiana.
- 9. Mohaghegh SD, Liu JS, Gaskari R, Maysami M, Olukoko OA (2012) Application of well based surrogate reservoir models (SRMs) to two offshore fields in Saudi Arabia. SPE Western Regional Meeting, USA.
- 10. El-Sebakhy E, Sheltami T, Shaaban Y, Raharja PD (2007) support vector machines framework for predicting the PVT properties of crude oil systems. SPE Middle East Oil & Gas show and conference, Bahrain.
- 11. Oloso M, Khoukhi A, Abdulraheem A (2009) Prediction of crude oil viscosity and gas/oil ratio curves using recent advances to neural networks. SPE/EAGE Reservoir Characterization and Simulation Conference, UAE.
- 12. ThoughtCo (2019) Calculating the Correlation Coefficient.
- 13. Ian Witten, M. H. (2016). Data Mining. Morgan Kaufmann.

