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Appendix A: Derivation of Expression for the Area of Bow-Shaped Segments 

 

The general bow-shape of interest is illustrated in Figure 2. An expression for the shaded area can be obtained from 

integration of the equation for ellipse: 
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The shaded area is expressed as 
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where x is given by Eq. (A.1) as 
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Substituting Eq. (A.3) into Eq. (A.2) gives 
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which is integrated to yield 
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For a given segment height h, y=h-b. Eq. (A.5) becomes 
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For a segment of the circular shape, a=b=R. Eq. (A.5) becomes 











R

y
RyRyRA arcsin

2

2222
      (A.7) 

For a given segment height h, y=h-R. Eq. (A.7) becomes 
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Appendix B: Derivation of Expression of Frictional Pressure Gradient for Laminar Flow through a Channel of 

Bow-Shaped Cross Section 

The equation of the ellipse shown in Figure 6 is: 
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Therefore, 
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Figure 6: A general bow-shaped area as the bottom segment of an ellipse 

The width of the shade area 2x is height-dependent: 
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The left side of Figure 7 illustrates profiles of flow velocity and shear stress in the flowing direction z. The right side 

of the figure shows a sketch of viscous forces acting on a fluid element with a length of z, a thickness of y, and a 

width of x (not shown). 

The force F1 applied by the fluid pressure at Point 1 is given by 

 ypxF  21
           (B.4) 

where pis pressure. Likewise, the force F2 applied by the fluid pressure at Point 2 is given by 
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The frictional force exerted by the adjacent layer of fluid below the fluid element of interest is given by 

 zxF  23           (B.6) 
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where  is the shear stress. Similarly, the frictional force exerted by the adjacent layer of fluid above the fluid element 

of interest is given by 
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Under steady flow conditions, the sum of all these forces must be equal to zero: 

 04321  FFFF          (B.8) 
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Figure 7: Velocity, shear stress, and viscous forces acting on a fluid element  

 

Substituting Eqs. (B.4) through (B.7) into Eq. (B.8) and dividing the resultant equation through by (2xyz) yield 
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Separation of variables gives: 
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which is integrated to get: 
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where 0 is the shear stress at y=0. The shear rate  is given by 
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Thus for Newtonian fluids we obtain 
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Substituting Eq. (B.11) into Eq. (B.13) gives 
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Separating variables gives 
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which is integrated to give 
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where v0 is fluid velocity at y=0. Since the fluid wets the slot walls, the velocity v0 is zero for y=0 and y=h. Applying 

these boundary conditions to Eq. (B.16) yields 
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which give 
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Substituting these two expressions to Eq. (B.16) yields 
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The total fluid flow rate is expressed as 
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where the equivalent width is defined as 
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Substituting Eqs. (B.21) and (B.23) into Eq. (B.22) gives 
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which is integrated to give 
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which yields 
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Expressing the flow rate in terms of the mean flow velocity 
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Q
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Converting from consistent units to U.S. oilfield units of psi/ft, cp, ft/s, and inch, we obtain 
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Eq. (B.28) is valid for Newtonian fluids only. For non-Newtonian fluids, the Newtonian viscosity  is replaced by the 

apparent Newtonian viscosity a (Guo and Liu, 2011). For Bingham plastic fluids, the apparent Newtonian viscosity is 

expressed as 
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where a is apparent viscosity in cp, p is plastic viscosity in cp, and y is yield point in lbf/100ft2. 

For Power Law fluids, the apparent Newtonian viscosity is expressed as 
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where  is consistency index in cp equivalent and n is flow behavior index. 

 

 


