MEDWIN PUBLISHERS Petroleum & Petrochemical Engineering Journal
emmitted to create value for Researchers ISSN, 2578_4846

Appendix A: Derivation of Expression for the Area of Bow-Shaped Segments

The general bow-shape of interest is illustrated in Figure 2. An expression for the shaded area can be obtained from

integration of the equation for ellipse:
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The shaded area is expressed as
y

A= I xdy (A.2)
b

where x is given by Eq. (A.1) as

x:Ew/b2 —y? (A.3)

b
Substituting Eq. (A.3) into Eq. (A.2) gives

A= Jy'gwlb2 —y?dy (A4)
b
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which is integrated to yield
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For a given segment height h, y=h-b. Eq. (A.5) becomes

A= EBbZ +(h=b)yb? - (h—b) +b*arcsin (?ﬂ (A6)

b

For a segment of the circular shape, a=b=R. Eq. (A.5) becomes

A="R? 4y R2-y? +R2arcsin[l] (A.7)
2 R

For a given segment height h, y=h-R. Eq. (A.7) becomes

A=%R2+(h—R) RZ—(h—R)2+R2arcsin(h;Rj (A8)

Appendix B: Derivation of Expression of Frictional Pressure Gradient for Laminar Flow through a Channel of
Bow-Shaped Cross Section

The equation of the ellipse shown in Figure 6 is:
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Therefore,
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Figure 6: A general bow-shaped area as the bottom segment of an ellipse

The width of the shade area 2x is height-dependent:

2x=§,/b2—(y—b)2 (B.3)

b

The left side of Figure 7 illustrates profiles of flow velocity and shear stress in the flowing direction z. The right side
of the figure shows a sketch of viscous forces acting on a fluid element with a length of Az, a thickness of 4y, and a

width of 2x (not shown).

The force F; applied by the fluid pressure at Point 1 is given by
F =2xAyp (B.4)

where p is pressure. Likewise, the force F; applied by the fluid pressure at Point 2 is given by
d
F, = 2xAy( p-— d—pAz (B.5)
z

The frictional force exerted by the adjacent layer of fluid below the fluid element of interest is given by

F, =2xAzr (B.6)
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where 7is the shear stress. Similarly, the frictional force exerted by the adjacent layer of fluid above the fluid element

of interest is given by

dr
F, =2xAz| 7+ —Ay (B.7)
dy
Under steady flow conditions, the sum of all these forces must be equal to zero:
F-F+F-F =0 (B.8)
y y Az

Flow Direction

Figure 7: Velocity, shear stress, and viscous forces acting on a fluid element

Substituting Egs. (B.4) through (B.7) into Eq. (B.8) and dividing the resultant equation through by (2x4yAz) yield
dp dr

E _ d_y -0 (B.9)
Separation of variables gives:
dr = dp dy (B.10)
dz
which is integrated to get:
z'=%y+rO (B.11)
dz
where 7 is the shear stress at y=0. The shear rate } is given by
Yy = —% (B.12)



Petroleum & Petrochemical Engineering Journal

Thus for Newtonian fluids we obtain

dv
T=py=—p— (B.13)
dy
Substituting Eq. (B.11) into Eq. (B.13) gives

%y+r __ (B.14)
dz 0 ﬂdy '

Separating variables gives

dv:l(—%y—rojdy (B.15)

v=—2-——_0 y+V, (B.16)

where vy is fluid velocity at y=0. Since the fluid wets the slot walls, the velocity vy is zero for y=0 and y=h. Applying
these boundary conditions to Eq. (B.16) yields

0=-0-0+v, (B.17)
and
2
O:—h—%—ﬁh+v0 (B.18)
2udz  u
which give
V, = 0 (B.19)
and
h dp
=—=—. B.20
T (B.20)
Substituting these two expressions to Eq. (B.16) yields
1 dp 2
v=——lhy- B.21
2 (hy-y?) (B.21)

The total fluid flow rate is expressed as
h
0

where the equivalent width is defined as

A al|r . (h-b
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Substituting Egs. (B.21) and (B.23) into Eq. (B.22) gives

dp 2
Q= j o 9P (hy — y2 Yy (B:24)
2u dz )d
which is integrated to give
w. h® g
Q=12 P (B.25)
12 dz
which yields
dp 12
a = /IQS (B.26)
dz  wyh
Expressing the flow rate in terms of the mean flow velocity V,, = gives
eq
dp 12
P _ ﬂzv & (B.27)
dz h
Converting from consistent units to U.S. oilfield units of psi/ft, cp, ft/s, and inch, we obtain
d
_p = L‘/Z (B.28)
dz 1,000h

Eq. (B.28) is valid for Newtonian fluids only. For non-Newtonian fluids, the Newtonian viscosity u is replaced by the
apparent Newtonian viscosity s, (Guo and Liu, 2011). For Bingham plastic fluids, the apparent Newtonian viscosity is

expressed as

51yh

ty =, + (B.29)

av
where 14 is apparent viscosity in cp, 14, is plastic viscosity in cp, and 7 is yield point in 1bf/100ft2.

For Power Law fluids, the apparent Newtonian viscosity is expressed as

_ Kh" (2+41/nY) (30)
#a = 1aav-"\ 0.0208 |

where Kis consistency index in cp equivalent and n is flow behavior index.



