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Abstract

Gas clathrates or the gas hydrates are the solid ice particles encapsulating gas molecules (commonly methane - CH4 and 
carbon dioxide - CO2) within the water cavities, at moderately high-pressure and low-temperature conditions. The petroleum 
extraction process from the deep-sea environment favours the occurrence of hydrates, and CO2 hydrates require milder 
p, T conditions than CH4 hydrates. Thus, chocking the pipeline network and obstructing the petroleum flow; leading to a 
substantial economic loss and hazardous. Conventional hydrate inhibitors (methanol, ethanol, glycols, Amino acids, and ionic 
liquids, etc.) are used, which are chemically toxic, costly, and required in large volumes (30-50 wt %). Therefore a suitable 
additive preventing plug formation is on high demand. The present study disclosures the use of three green leaf extracts 
Azadirachta indica (Neem - NL), Piper betel (betel - BL), and Nelumbo nucifera (Indian lotus - LL) in low dosage (0.5 wt %) on 
the CO2 hydrate formation. Experiments are conducted in the isochoric method, with 0.5 wt % green-additives. The hydrates 
nucleate at higher subcooling (̴ 7-9 K), and the conversion is about ̴ 33-40 %. The induction time is nearly the same both pure-
H2O and H2O with LL, whereas, it is  ̴3 and 4 times higher for NL and BL. The hydrate growth kinetics also indicate significant 
retardation (2 – 4 times). Thus, these bio-additives, in low-dosage, could be an effective THI and also KHI for preventing the 
CO2 hydrates plugs. 
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Introduction

Gas hydrate is the ice-like solid, transformed from liquid 
water and gas at some suitable temperature and pressure 
conditions. The hydrogen bonding forms various polyhedral 
cavities where the gas molecules occupy these cavities and 
confine their motion with the week van der wall interactions. 
Depending upon the guest molecule, the hydrate structure is 
classified into three types, namely Structure-I (sI), Structure-
II (sII), and Structure-H (sH). The guest molecule to cavity 
size ratio governs the formation pressure-temperature 

conditions [1]. Natural gas hydrates are the accumulation 
of vast gas reserves, mainly occurring in the ocean bottom 
sediments and permafrost regions [2-3]. They are identified 
in various locations across the globe [4-10]. The amount 
of energy estimated form these hydrate deposits is double 
comparative to all the other types of hydrocarbon sources. 
The gas hydrate occurrence was first proposed by Sir 
Humphrey Davy in 1810 [1]. Later with due course of time in 
1934 it is established as an important topic due to blocking 
of pipelines in the hydrocarbon industry [11]. 

https://doi.org/10.23880/ppej-16000234
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The blocking/chocking of the gas transmission pipelines 
have paved a path for the new study area in the hydrocarbon 
industry traditionally developed has “Flow Assurance”. The 
oil and gas industries expend millions of dollars annually to 
restrict the hydrate occurrence in flow loops [12]. Blocking 
of the pipelines not only effects the gas production but also 
a factor of safety concern leading to hazardous havoc [1,13]. 
Among the three hydrate structures, sI and sII are ascertained 
in oil and gas production, and processing [14]. Methane is 
the principal constituent of the Natural gas. Several studies 
have been proposed and developed for the methane hydrate 
inhibition [15-19]. But very few studies have been evolved for 
the CO2 hydrate inhibition. Carbon dioxide, non-hydrocarbon 
gas found in petroleum, and in the rare scenario in the giant 
pre-salt reservoirs in Brazil. The CO2 fraction could make up 
to 80 % of the produced gas [20]. 

The occurrence of CO2 hydrates is high during petroleum 
production or CO2 re-injection in the same reservoir. The 
consideration of the CO2 hydrates is essential as they 
constitute the natural gas composition and are injected 
into aquifers through pipelines for CO2 sequestration [21]. 
Also, there are some natural gas reservoirs where the CO2 
gas content is high. They are preferentially located in the 
South China Sea, Australian Cooper- Eromanga basin, Gulf of 
Thailand, the North Sea South Viking Graben, and Taranaki 
basin, New Zealand [22]. Thailand and Indonesia countries 
have gas reservoirs that have over a 0.50-mole fraction of CO2 
[22,23]. Therefore, the study and technology development 
for CO2 hydrates inhibition is a point of concern for successful 
offshore operation in such locations and also for the liquid 
CO2 transportation in pipelines.

The conventional methods adopted for the inhibition 
of Carbon dioxide hydrates are the use of inhibitors. These 
inhibitors are classified as Thermodynamic inhibitors (THI) 
(shifts the phase equilibrium curve to lower temperature 
and higher pressure, example methanol [24], ethanol [25], 
ethylene glycol [26], diethylene glycol [27], triethylene 
glycol [28], and glycerol [29].) and kinetic inhibitors (KHI) 
(kinetically retards the hydrate growth process and slow 
down the reaction process they do not change the hydrate 
equilibrium conditions, examples polymers, antifreeze 
proteins, ionic liquids, amino acids [30]). However, the 
bottlenecks associated with these conventional THI are 
expensive and required in high quantities (30-50 wt %). 
With KHI, the inhibition influences is probabilistic and works 
below par at higher subcooling conditions and are expensive. 
In recent times several researchers intensively studied and 
proposed various amino acids as prominent THI and KHI for 
the carbon dioxide hydrates. Depending on several factors, 
the CO2 hydrate inhibition is reported [20-22, 31-35].

There is an increasing demand for hydrate inhibitors 

in petroleum exploitation and transportation (pipeline 
network) from the deep waters because the hydrates could 
form plugs. This problem is critical for CO2 rich gas fields, as 
p, T conditions required for CO2-hydrates are mild. Present 
investigations explore the formation conditions of the CO2-
hydrates, using low dosage (0.5 wt %) green leaf extracts, 
namely, Azadirachta indica (Neem), Piper betel (betel), and 
Nelumbo nucifera (Indian lotus). These low dosage green 
extracts have various constituents that act as THI and also 
retards the hydrate growth kinetics leading dual role to act 
as KHI. Since these extracts are prepared from the powders 
of dried leaves, which are available in all seasons and 
easily soluble in water and also environmentally friendly 
and most important cost-effective they can be used as CO2 
hydrate inhibitors comparative to the expensive and toxic 
conventional additives.

Experimental Procedure 

Materials

99.95 % purity carbon dioxide gas is used to perform 
experiments procured from Bhuruka Gas Company. 
Deionized water type 1 is used to make the sample solution. 
The sample leaves were dried at ambient temperature for 
several days, and the dried leaves are powered in a domestic 
mixer (Philips- HL1643) and were sieved using a BSS-60 
sieve. The sample powder 0.5 wt % is added to the required 
amount of water and stirred for 30 minutes using a magnetic 
spinner. The homogeneous mixed solution is filtered with 
Whatman filter paper. The refined and filtered solution is 
used as a reactant.

Apparatus

The apparatus includes a high-pressure reactor vessel 
(400 mL volume) made of SS-316 which consists of stirrer 
headward to agitate the sample solution and can hold up 
the pressure up to 10 MPa. The temperature control is by 
a closed-loop chiller (CLASSIC-AL-RCC-90) using glycol 
and water mixture in the selected ratio as a coolant. The 
temperature and pressure measurements were measured 
using Platinum resistance thermometers (Pt100), and a 
pressure transducer (WIKA, type A-10 for pressure range 
0-25 MPa with ± 0.5 % accuracy). The stirrer rotations are 
controlled by a motor speed controller which operates in the 
range from 0-1300 rpm.

Procedure

The experiments are performed in a batch reactor 
following the isochoric method procedure. The filtered 
aqueous sample solution 89 g is poured into the reactor 
vessel. The experiments are performed in dynamic 
conditions. It is challenging and gruelling to structure the 
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pipeline model in the laboratory environment; instead, the 
tests in a stirred reactor vessel could help us understand 
the additives effect on the CO2 system [36]. We conducted 
CO2 hydrate formations with different stirring speeds in the 
range of 0 to 1000 rotations per minute (rpm). The stirrer 
headward is placed on the vessel and are clamped tightly 
together with the help of adjustable screws. CO2 gas with 
desired pressure is filled into the reactor vessel through the 
inlet valve using the Teledyne ISCO syringe pump. Before 
introducing the gas, the reactor cell is purged with sample 
gas for 3-4 times. The pump is disconnected after introducing 
the gas. The coolant circulations pipes are connected to the 
reactor vessel. The chiller is set to the desired experimental 
value to increase or decrease the temperature in the reactor 
vessel. The stirred head with required rpm is set into action 
with the help of an adjustable motor speed controller. The 
CO2 hydrate formation is inferred from the temperature 
spike because of the exothermic heat release during the 
hydrate crystal growth. The gas consumed in the hydrate 
conversion process is calculated from the observed pressure 
drop. The subcooling is defined as the difference between 
the phase equilibrium temperature at the operating 
pressure and the experimental formation temperature. 

The hydrate dissociation is performed at slower rates to 
avoid the measurable deviation from the phase boundary 
line. Each experiment was repeated three times to obtain 
an average value. The schematic experimental operation 
is shown in Figure 1. The temperature and pressure data 
points are recorded every 30 seconds. In all the cycles, the 
experimental parameters were kept constant. The following 
equation defines the molar gas concentration of CO2 gas in 
the solidified hydrate phase during an experiment at any 
given time t 

 0, ,0 ng, t
P V PVtnH t ng

Z RT Z RTo o t t

   
∆ = − = −   

     
 (1)

Where
Z - is the compressibility factor, calculated using the Peng-
Robinson equation of state.
P - Pressure, V - Volume, T - Temperature, R - Gas constant 
0 – initial point, t - a point at any given time

The volume changes during phase transformation 
are neglected, and volume is considered to be constant 
throughout the experiment.

Figure 1: Schematic experimental setup designed to study the process. 

Results and Discussion

To understand the effect of bio leaf extracts on the 
CO2 hydrate formation, a sequence of experiments was 
performed. The primary objective is to assess the CO2 
hydrate formation conditions using the bio-additives in the 
stirred configuration by varying stirring speeds 0, 300, 500, 
and 1000. The initial conditions for all the experiments are 
at ̴ 3.5 MPa CO2 pressure and ambient (298 K) temperature. 
In the preliminary step, the tests have been performed using 
all three sample solutions (BL, NL, and LL) without any 

agitation (0 rpm) and pure H2O (bulk) is presented as the 
control experiment. The above said pressure-temperature 
cycles had been reported in our earlier work [37]. With 0 
rpm arrangement, lesser hydrate conversion (̴8-12 %) and 
higher subcooling (10-13 K) and greater induction time (̴ 2-6 
hours) are observed with these green additives. The above 
said result provokes to use these bio-additives as suitable 
inhibitors for the CO2 hydrate formation. Since to scale 
these powders as efficient inhibitors and use them in real-
time applications, the experiments need to be performed in 
the dynamic conditions. The agitation has been performed 
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using a speed control motor with 300, 500, and 1000 rpm. In 
Figure 2, the temperature-pressure trajectories for the CO2 

hydrate formation using BL, NL, LL, and bulk H2O for 500 
rpm are shown. 

Figure 2: pressure-temperature profiles of the CO2 hydrate formation with 500 rpm using bio powders and bulk system. The 
red colour line indicates the cooling process and the blue line indicates the dissociation process. The black line represents the 
phase equilibrium curve of CO2 (sI) hydrate computed using CSM GEM. 

Form the figure 2, it is evident that the addition of these 
bio-extracts is not altering the phase equilibrium conditions 
of the CO2 hydrate. In all the agitations pure H2O-CO2 system 
is performed as the control experiment. The red colour line 
indicates the cooling process and the blue line indicates the 
dissociation process. The black line represents the phase 
equilibrium curve of CO2 (sI) hydrate computed using CSM 
GEM [1]. The above figure shows the amount of subcooling 
required in triggering the hydrate formation with the rotation 
speed of 500 rpm is nearly ̴ 7, 10, 8 and 6 K for BL, NL, LL and 
pure system respectively. BL and LL require the almost same 
amount of subcooling, whereas, NL required an additional 
2 K showing the highest inhibition (10 K). The subcooling 
is defined as the difference between the phase equilibrium 
temperature at the operating pressure and the experimental 
formation temperature. The pressure-temperature plots for 
the other two rpms (300 and 1000) are similar to 500 rpm, 
and the dissociation pattern follows the hydrate equilibrium 
curve. The critical parameters for evaluating materials, 
as hydrate inhibitors, are subcooling (ΔT), induction time 
(min), percentage of hydrate conversion (% H2O conversion) 
and the amount of time taken for the hydrate growth (t90 
kinetics) (t90 is the amount of time taken for the 90 % of the 
hydrate conversion). We systematically measured all these 
for chosen green additives for CO2-hydrates. Histograms 
in Figure 3 show the amount of subcooling required in the 

presence of the three natural bio powders and bulk system 
with different rotations speed. The bio powders require 
higher subcooling comparatively than the pure system. Since 
at 0 rpm the system is under the static condition the amount 
of subcooling required is very high 14.6 ± 0.7, 12 ± 0.2, 10 ± 
2 and 10.3 ± 1.4 for BL, NL, LL, and bulk system respectively. 
The average degree of subcooling for the CO2 hydrates in the 
dynamic state is in the order (high to low) is NL>LL>BL>Bulk 
system with inhibition capacity of 9.1± 0.7, 7.9± 0.06, 6.8± 
0.4 and 6.3± 0.5 K respectively. 

The bio extracts with the NL shows the highest 
subcooling for triggering CO2-hydrates. With increasing rpm, 
the hydrate formation temperature is not influenced and 
requires the same amount of subcooling. The bio extracts 
show functional inhibition capacity until their respective 
nucleation temperature. Further cooling triggers the hydrate 
nucleation, and the growth takes place. Thus, within the 
threshold temperature window, these bio extracts can work 
as effective THI’s for the CO2 hydrates. 

Another critical aspect being studied is the amount 
of induction time required for the CO2 hydrates to trigger, 
crossing the phase equilibrium curve. Figure 4 describes 
the influence of bio powders on the induction time for CO2 
hydrates. 
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Figure 3: The histograms represent the amount of subcooling required for the CO2 hydrate formation with BL, NL, LL, and bulk 
system at different rpm’s. 

Figure 4: The histograms represent the amount of induction time required for the CO2 hydrate formation with BL, NL, LL, and 
bulk system at different rpm’s. 

Under steady-state or 0 rpm the amount of time 
required for the hydrate to nucleate is in the order (high to 
low) BL>NL>Bulk>LL with 481± 16, 294 ± 7, 211± 25, 128± 
20 minutes respectively. From the graph, it is clear that in 
the bulk system with increasing rotations, the induction 
time is decreased. Since the stirring enhance the interfacial 
mass transport, thereby quickening the hydrate growth [38-
40]. In the LL context, it shows poor behaviour on induction 
time, and also with increasing rotations, the induction time 

is decreased behaving similarly like the bulk system. In the 
NL the induction time is high (̴ 250 min) up to threshold of 
500 rpm and upon on reaching 1000 rpm the induction time 
is lowered by four times compared to 300 and 500 rpms. BL 
shows the higher induction time up to a threshold of 300 
rpm, and upon crossing the threshold, it is lowered by two 
times. In the dynamic state, the degree of induction time 
form (high to low) is BL> NL> LL> Bulk system, respectively. 
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Figure 5: Plot represents the time vs gas consumed during the hydrate formation. The red colour line indicates for 1000, the 
blue colour line indicates for 500, and the black colour line indicates for 300 rpm respectively.

In Figure 5, the formation kinetics of the three bio-
additives compared with the bulk system is shown. The black, 
blue, and red colour indicate the gas uptake kinetics for 300, 
500, and 1000 rpms respectively. The gas uptake kinetics in 
the presence of low dosage bio powders is shown up to 800 
minutes. The first 40 minutes of the hydrate growth is rapid, 
and later with an increase in time, the growth is slowed. 
The t90 kinetics is higher for the NL and then BL and LL and 
lastly bulk system. The addition of these bio extracts delays 
the hydrate growth and acts as effective KHI’s for the CO2 
hydrate system. The average time for growth kinetics using 
the bio powders with increasing rotations requires more 
considerable time. Systematically measured parameters 
were tabulated in Table 1.

The overall gas uptake or the amount of hydrate 
conversion using bio powders in stirring mode is nearly ̴ 
33-40 % whereas the bulk system is about ̴ 27 %. Figure 6 
shows the hydrate yield for all the bio powders compared 
with bulk water. The amount of hydrate yield is very less in 
static conditions since the constituents in the bio extracts 
profoundly hinder the CO2 hydrate growth. The overall 
hydrate conversion is less than 50 % in the presence of bio 
extracts. The reason for the lesser conversion is still obscure 
but can be a useful material to retard the carbon dioxide 
hydrates.

The exact reason for the inhibitory function of these 
bio extracts is not clearly understood. It requires further 
detailed investigations. On the other hand, Elechi, et al. [41] 

reported the inhibitory effect of a medicinal plant extract 
named Costaceae, which contains a wide variety of bioactive 
compounds like phenols, alkaloid, flavonoid, tannins, and 
saponins. These compounds could be responsible for 
assisting the hydrate formation to lower temperatures [41]. 
Similarly, all the three bio-additives constitute of several 
bioactive compounds. The neem leaf extracts may contain 
triterpenoids, alkaloids, phenolic compounds, flavonoids, 
carotenoids, ketones, and steroids. The most biologically 
active compound is azadirachtin. The phytochemistry 
screening of Neem leaves extracts revealed the presence of 
tannins, saponins, flavonoids, alkaloids, glycosides, reducing 
sugars, polyphenols [39]. The betel leaf named piper betel 
belongs to the Piperaceae family. Betel leaves contain 
reasonable amounts of vitamins, particularly nicotinic acid, 
ascorbic acid, and carotin. They also comprise all essential 
amino acids except glycine, histidine, and arginine. Large 
concentrations of asparagines are present while glycine 
and proline occur in a reasonable amount [42]. The lotus 
leaf possesses pharmacologic and physiologic compounds, 
which including hepatoprotective, antioxidant, antidiarrheal, 
antiviral, immunomodulatory, and antiobesity effects. 
The leaves also contain several flavonoids and alkaloids 
[43]. All three classes of leaves possess several bio-active 
components which mostly consist of proteins, antioxidants. 
Close observations give an idea that these antioxidants which 
inhibit the reactions promoted by oxygen compounds could 
be responsible for the hydrate nucleation to occur at lower 
temperatures and retards the CO2 hydrate growth. A detailed 
study is required in understanding the micro-level analysis 
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of these components. At present, the study exposes the use 
of natural bio powders in low concentration (0.5 wt %) can 
act as effective thermodynamic inhibitors and also KHI for 

the CO2 hydrates. These components are marked to be very 
useful than traditional inhibitors like glycol or methanol. 

Figure 6: The histograms represent the amount of hydrate conversion occurred in the process with various rpms. 

Rotation/minute % H2O conversion Induction time (min) Subcooling ΔT (K) t90 Kinetics (min)
Bulk H2O

0 10.5 ± 2.2 211 ± 25 10.3 ± 1.4 362 ± 58
300 22.09 ± 6 69 ± 36 6.4 ± 1.2 61 ± 10
500 28.4 ± 1.4 65.2 ± 16.3 6.7 ± 1.2 196 ± 79

1000 31.1 ± 1.6 46.1 ± 10.2 5.7 ± 0.2 116 ± 3
Lotus Leaf Extract

0 16 ± 1 128 ± 20 10 ± 2 538 ± 40

300 31.4 ± 4.4 90.25 ± 40.6 8 ± 0.7 205 ± 30
500 35.8 ± 2.8 43.5 ± 4.9 7.9 ± 0.9 296 ± 80

1000 34.4 ± 3 50.2 ± 2.7 7.9 ± 0.5 241 ± 43
Betel Leaf Extract

0 12.5 ± 0.6 481 ± 16 14.6 ± 0.7 161 ± 14
300 33.4 ± 1.6 454 ± 25 6.3 ± 0.28 120 ± 55
500 29.4 ± 2.6 209 ± 23 7 ± 0.42 469 ± 43

1000 33.4 ± 6.4 220 ± 19.4 7.1 ± 0.1 364 ± 34
Neem Leaf Extract

0 6.7 ± 0.7 294 ± 7 12 ± 0.2 683 ± 42
300 41.2 ± 2.4 269 ± 25 9.2 ± 0.2 398 ± 0.7
500 37.1 ± 3.43 225 ± 91 9.8 ± 1.2 490 ± 4.9

1000 44 ± 0.8 62.6 ± 18.3  8.3 ± 0.7 706 ± 19
Table 1: The average values of measured parameters such as total hydrate yield, subcooling, induction time, and t90 kinetics 
during the hydrate formation.
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Conclusions

In summary, we investigated the CO2-hydrate formation 
behaviour in an aqueous solution, consisting of soluble bio-
powders, namely Azadirachta indica (Neem), Piper betel 
(betel), and Nelumbo nucifera (Indian lotus). The addition 
of these bio-additives in low-dosage (0.5 wt %) demands a 
higher subcooling (~7-9 K) for the CO2 hydrates nucleation. 
The average induction time is relatively high in BL and NL 
up to their threshold rpms. LL shows inferior performance 
in induction time. In comparison with the bulk system, the 
average hydrate growth kinetics (retarding the hydrate 
growth) is 4.2 times higher in the NL system and 2.2 times in 
the LL and BL systems. The overall hydrate conversion in the 
presence of these bio leaf extract is less than 50 %. Higher 
subcooling, sluggish kinetics, more considerable induction 
time, and lesser hydrate conversion in the presence of these 
bio-additives for the CO2 hydrates marks these materials 
has effective CO2 hydrate inhibitors. Conclusively, the three 
naturally occurring bio-additives which are low cost, less 
toxic, and readily available have been assessed and identified, 
which has the competency to act as potential THI and KHI for 
the CO2 hydrates. 
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