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Abstract

Graphical Abstract

The main objective of this research was to evaluate by using the advanced 
oxidative process (AOP), a toxic compound, such as an initial hydroquinone 
concentration (C0) of 500 mg L-1 in a batch reactor. At this stage of the work, 
an optimization method was performed to obtain mineralization of the total 
organic carbon (TOC). Furthermore, hydrogen peroxide was used as a source of 
free hydroxyl radicals (•OH). First, a factorial planning 22 was carried out with 
the two most significant variables, and two levels were used for the variables 
(pH and RH). Second, a rotational central composite design (RCCD) was used to 
investigate the optimal point corresponding to the maximum mineralization of 
hydroquinone (HQ) and the variables used in the model were pH and RH. Third, 

the optimal point of HQ mineralization was obtained carried for the desirability function, ranging from 0.0 (very undesirable) 
to 1.0 (very desirable). Fourth, artificial neural networks (ANNs) was used and the values included in the experiment were 
time (t), initial hydrogen potential (pH), temperature of the liquid effluent (T), air flow supply (QAF), and the mole ratio of 
hydroquinone/hydrogen peroxide (RH). The optimal conditions for a TOC conversion, (>80%) were identified. Modeling using 
artificial neural networks (ANNs) was used to predict the TOC conversion as a function of time. The values of the correlation 
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Introduction

Water has been considered both as an energy source 
and an abundant natural resource important for life and 
environmental, and the treatment of emerging polluters 
in the aquatic environment is thus extremely relevant for 
planet sustainability [1,2].
 

The classes of phenolic organic compounds from 
petroleum such as hydroquinone and catechol (phenol 
intermediates), among others, have been considered as 
toxic and emerging polluters that have aroused the interest 
of researchers for years [3,4]. When in contact with living 
organisms, these organic substances have toxicological 
effects, which still need to be thoroughly analyzed [5,6]. 
Phenols and their aromatic intermediates are prevalent 
in industrial wastewater from the oil refining process 
[4,7]. Thus, the steps that produce contamination in these 
industrial effluents are distillation of crude oil, manufacture 
of lubricants, isomerization techniques, among others [8-
10].
 

According to The US Environmental Protection Agency–
USEPA [11], these organic contaminant compounds are not 
established in control planning and may be classified in 
environmental legislation in the next stages of management, 
corresponding to the results found on scientific research on 
toxicity, health effects, society understanding and the results 
acquired on the existence of these compounds in various 
matrices in the ecosystem [12]. These compounds include 
complex structures containing several carbon chains as 
well as aromatic hydrocarbons connected to one or more 
hydroxyl groups [13]. During the phenol degradation stage, 
the breakdown of the hydroxyl radical from the aromatic ring 
gives rise to one of the simplest intermediates, hydroquinone 
(1,4-dihydroxybenzene) [14,15]. This compound can be 
found in various types of industrial effluents [16,17] and as 
an intermediate in treatment processes containing phenolic 
effluents, and when present in low concentrations (ng L–1 to 
pg L–1), it can also cause harmful effects on living organisms 
[18,19]. Hydroquinone has been used in cosmetic products, in 
alkaline solutions used in photography, and as an antioxidant 

in the rubber and food industries [20,21]. Hydroquinone has 
an important effect on immune complex cells in the body and 
is known as ecosystem contaminant [22]. It is found in the 
atmosphere, also known as the gaseous layer of the earth, as 
a result of the burning of benzene in gasoline or some other 
hydrocarbon altered [23,24]. 

 Among the processes developed to treat effluent 
refractory organics, advanced oxidative processes (AOPs) 
which are based on the application of highly oxidizing 
species to promote a more effective degradation of the 
pollutant, have been highlighted, with excellent results in the 
remediation of recalcitrant chemical species [25-27]. The 
adsorption of phenol and hydroquinone by the PVAm-GO-(o-
MWCNTs)-Fe3O4 nanohybrid adsorbent and their competitive 
performance in batch experiments has been investigated 
[28]. The results indicated that the adsorption of phenol 
and hydroquinone reached equilibrium in approximately 
45 min and 60 min, respectively, and the maximum removal 
capacities for phenol and hydroquinone were 224.21 mg g–1 
and 293.25 mg g–1, respectively. This adsorbent is a highly 
efficient material for the simultaneous elimination of phenolic 
pollutants from aqueous solutions. The efficiency of phenol 
degradation in most of the technological processes currently 
used can reach approximately 100%, but total mineralization 
is not always obtained, and during the degradation process, 
refractory products that are more toxic than their precursors 
can form, and also require treatment. 

Brandao, et al. [18] report the use of several treatments 
through AOPs for the removal of organic pollutants, such 
as homogeneous systems with use of ozone (O3), hydrogen 
peroxide (H2O2)/ultravioleta (UV), Fenton ou Fenton/photo 
using. The heterogeneous method contain the photocatalysis 
[29, 30] and electron-Fenton systems [31,32]. 

Currently, several computational implements are used 
to optimize the experimental results in scientific research, 
such as linear or nonlinear programming methods, artificial 
neural networks, and simultaneous modeling of multiple 
responses. Thus, these methods are applied to optimize 
chemical techniques and decrease the time and cost of 

coefficients (R2) for agreement between the ANN predictions and the experimental results were approximately 0.97, indicating 
that the model was satisfactory. These techniques have shown to be very promising in the prediction of the degradation and 
mineralization of contaminants. Thus, the process modeling data by ANN, allowed to carry out a treatment of organic liquid 
effluents in vertical reactors installed on offshore platforms and then to release this treated water into the oceans, after the 
complete degradation of hydroquinone and the highest TOC conversion. Therefore, seas pollution caused by the exploration on 
offshore platforms of oil and natural gas, the main sources of obtaining energy in the planet, tends to be minimized, providing 
a more sustainable energy generation.

Keywords: Hydroquinone; AOPs; TOC; ANN
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analysis [27,33,34]. 

The complexity of the reaction mechanisms of advanced 
oxidative processes makes it difficult to determine kinetic 
models based on the phenomenology of the reaction [35]. 
Empirical mathematical models cannot satisfactorily describe 
the process; therefore, models based on artificial neural 
networks (ANNs) are used [36-38]. In chemical engineering, 
the use of neural networks was initiated by Hoskins and 
Himmelblau [39]. Since then, several applications have 
been suggested. These include the technique that employs 
unconventional advanced oxidative processes for the 
degradation and mineralization of phenolic effluents, known 
as direct contact thermal treatment (DiCTT). The DiCTT 
method uses a stainless-steel reactor in which natural gas 
combustion and hydroxyl radical production (•OH) occur, 
can oxidize phenolic compounds at low temperature and 
atmospheric pressure [27,40,41].

The aim of the present research was mainly to propose 
an optimization and modelling process to the highest 
percentage of total organic carbon (TOC) conversion. Thus, 
this research was important to assess a synthetic toxic 
compound, such as the initial hydroquinone concentration 
(C0) by using the advanced oxidative process (AOP) in a 
batch reactor. A constant agitation speed of 500 rpm was 
used, in order to propose an optimization and modelling 
process for highest TOC conversion. This study presents the 
first example of process modeling with optimization by the 

use of a statistical software, and with hydrogen peroxide 
(H2O2) as a source of free hydroxyl radicals (•OH) for TOC 
conversion. The modelling methods (response surface 
methodology‒RSM and artificial neural networks‒ANNs) 
were used to determine the relationship between input and 
output variables.
 

Materials and Methods

Chemicals

Practical tests were performed in a batch reactor 
using a prepared synthetic solution of hydroquinone (99% 
PA, Dinamica), hydrogen peroxide, H2O2, analytical grade 
(35% PA, Vetec). The solution of sulfuric acid and sodium 
hydroxide were prepared in a concentration of 0.1 M, 
respectively, adjusting the initial pH of the wastewater as 
specified. Phosphoric acid (25% PA, Vetec) was used in the 
TOC analysis method.

Experimental Setup

Figures 1A and 1B indicate a photograph and schematic 
of the reactor, model 4848 (Parr Co., Moline, IL, USA) and 
constructed with stainless steel, applied in the tests. The 
reactor has a batch system, with a mechanical agitation, 
and which presents 1.3 L employee volume. The control of 
pressure, temperature and stirring speed of sampling is of 
simultaneous characteristic.

A
 

B
Figure 1: Batch Reactor: A) Photograph; B) Scheme:
1: Heating blanket; 2: Sample collector; 3: Condenser; 4: Coil for cooling; 5: Stirring and mixing system;
6: Thermocouple; 7: Relief Valve; 8: Air distribution system; 9: Rotameter; 10: Discharge valve

https://medwinpublishers.com/PPEJ/


Petroleum & Petrochemical Engineering Journal 
4

Brandao YB, et al. Advanced Oxidative Process for Treatment of Effluents with Hydroquinone in a Batch 
Reactor: Optimization/Modelling Technique by Response Surface Methodology and Artificial Neural 
Networks. Pet Petro Chem Eng J 2023, 7(3): 000358.

Copyright© Brandao YB, et al.

At the first stage of a proceeding, 1.3 L of a synthetic 
liquid effluent with an initial hydroquinone concentration 
(C0) of 500 mg L–1 was conducted by adjusting the initial pH 
of the effluent with 0.1 M H2SO4 or 0.1 M NaOH as required. 
This wastewater polluted with hydroquinone was conducted 
to a batch reactor showing a stirring method, temperature 
control, and air supply inlet, connected through an adaptor 
to a vapor condensation system. A rotation rate of 500 rpm 
was controlled. The operation of the system was stabilized 
by heating the water. The pressure used in the experiments 
was 1.0 kgf cm–2 (1.0 Bar). An small fraction of the mole ratio 
of hydroquinone to hydrogen peroxide (RH) was introduced 
into the reactor to initiate hydroquinone oxidation in the 
liquid phase. For each test, samples of approximately 20 mL 
of solution were collected in triplicate at successive times in 
dark plastic bottles and refrigerated. A sample of 20 mL of 
treated water without HQ was also collected to represent a 
blank for the hydroquinone solutions. The sample collection 
times (t) were 0, 45, 90, 135, and 180 min, totaling five 
samples. For the assay that used the optimum point, samples 
of approximately 5.0 mL of solution were also collected in 
triplicate in dark plastic bottles and refrigerated. A sample 
of treated water (5.0 mL) without hydroquinone was also 
collected. The tests conducted to obtain the ANN and times 
(t) in this assay were 0, 20, 40, 60, 80, 100, 120, 140, 160, and 
180 min, totaling 10 samples. 

Analytical Method

Total Organic Carbon (Toc): TOC conversion was analyzed 
by a TOC apparatus (VCSH Shimadzu model) to quantify the 
mineralization of the hydroquinone concentration formed in 
the advanced oxidation process. This analyzer that evaluates 
the TOC content can simultaneously quantify the total indices 
of organic carbon and total nitrogen [42,43].

Use of the Mole Stoichiometric Ratio and Description of 
Response Variables
The application of the molar stoichiometric of hydroquinone 
in the accumulation of hydrogen peroxide of 100% was used 
to totally transform 1 mole of hydroquinone into CO2 and H2O 
in promise with the response stoichiometry demarcated in 
the following equation:

  6 4 2 2 2 2Hydroquinone ( ) 13 6 16C H OH H O CO H O       (1)

This molar ratio other than 100% was calculated by resources 
of the stoichiometry in Equation (1). 

The proportion conversion of TOC was obtained as 
a response variable, measures the sum of Total Organic 
Carbon (TOC) transformed into CO2 and H2O, also defined 
as mineralization for the effluent treatment process, which 
converts this into innocuous substances. The percentage (%) 

adjustment of TOC was obtained using the calculation:

( ) 100 % 
0

0 x
TOCTOC
TOCTOCTOC

B−
−

=  (2)

where: TOC0= initial total organic carbon in liquid effluent; 
TOC= total organic carbon in liquid effluent at the given 
instant; TOCB= total organic carbon in the pure water (blank).

Experimental Methods

A statistical procedure was applied in the test to optimize 
the method and to assess the effects for TOC conversion, of 
the following operating parameters: the initial hydrogen 
ionic potential (pH, set at values 9.0, 10.1 and 11.2); and 
the molar stoichiometric ratio of hydroquinone to hydrogen 
peroxide (RH, 90, 110 and 130%). First, a 22 factorial was 
carried out around the inflection point for the variables (pH 
and RH) that were more significant in the process compared 
to the other variables. Second, a rotational central composite 
design (RCCD) was used to obtain the response surface 
methodology (RSM) for the same variables (pH and RH). 
Third, the optimal point of HQ mineralization was obtained 
carried for the desirability function, ranging from 0.0 to 
1.0. In the fourth step, t; pH; T; QAF; and RH were used as 
inputs to the ANN, whereas the outputs of the ANN was TOC 
conversion. The influence of the connection between input 
and output variables was determined and compared with the 
results obtained by RSM. 

Statistical Techniques: According to Galdamez, et al. [44,45], 
the meaning of identify the relevant characteristics for a data 
analysis is quite important to obtain a good experimental 
planning. The response variables are the parameters on 
which the experiment has a direct influence and that cause 
considerable changes in a given assay. The control factors are 
the parameters that aim to evaluate the effects produced in 
the response variables; it contribute to the determination of 
the factors studied and are influenced by the experiment.

The statistical technique applied to the operational 
variables determines the parameters that prove to be most 
important in the efficiency of an AOP for the treatment of the 
organic effluent, for the TOC conversion. These parameters 
include the liquid effluent temperature (T), time (t), initial 
pH of the reaction medium (pH), air flow supply (QAF), and 
molar stoichiometric ratio of hydroquinone/hydrogen 
peroxide (RH).

In this first phase, factorial planning 22 was carried out 
with the two most significant variables, and two levels were 
used around the inflection point for the variables (pH and RH). 
Tests were conducted to obtain the experimental factorial 
design, including four runs and five repetitions at the central 
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point, totaling nine runs, with sample collection at times t 
= 0, 45, 90, 135, and 180 min, around the curvature region 
of the previous stage. The independent variables used in the 
experimental model were: pH, with the values 9, 10.1, and 
11.2; and RH, with the values 90, 110, and 130%, respectively. 
The values included in addition to the experimental ones 
were, for pH, − 1, 0, and +1, and, for RH, –1, 0, and +1. 

Oliveira, et al. [46] were successful in applying the MAGM 
technique to treat a p-cresol solution by a homogeneous AOP 
of the peroxidation type, in a batch reactor, at temperature of 
90°C and reaction time of 180 min. A 22-full factorial design 
was used with the addition of four repetitions at the central 
point, totaling 8 runs. The independent variables used in the 
experimental model were: R, with the values 64, 78, and 92%; 
and F, with the values 110, 120, and 130 L h−1, respectively, 
both corresponding to coded levels of −1, 0, and +1.

In the second phase of this research, a Rotational Central 
Composite Design (RCCD) was used to investigate the 
optimal point corresponding to the maximum mineralization 
of hydroquinone (HQ). For this, 13 runs were performed 
aiming to completement the nine runs of the 22-full factorial 
design. The tests carried out to obtain the RCCD included 
four runs, four axial points, and five central points, totaling 
13 runs, with sample collection at times t = 0, 45, 90, 135, and 
180 min. The independent variables used in the experimental 
model were, for pH, 8.5, 9, 10.1, 11.2, and 11.7; and, for RH, 
82, 90, 110, 130, and 138%, respectively. The values included 
in addition to the experimental values were, pH and RH, 
respectively, both corresponding to coded levels of −1.68, − 
1, 0, +1, and +1.68.

Oliveira, et al. [46] also used a RCCD to determine the 
maximum TOC conversion of p-cresol, in which the axial 
points determined with the Statistic 8.0 software were added, 
together with an additional central point run, to the runs of 
the 22-factorial design. Thus, 5 runs were performed aiming 
to complement the 8 runs of the 22-full factorial design. The 
independent variables were the same, R with the values of 
58, 78, and 98%; and F, with the values 106, 120, and 134 L 
h−1, respectively, both corresponding to coded levels of −1.41, 
0, and +1.41, while keeping the same central point conditions 
(R = 78%, F = 120 L h−1).

In the third phase of this study, the optimal point of 
HQ mineralization was obtained carried for the desirability 
function, available in the Statistica software, ranging from 
0.0 (very undesirable) to 1.0 (very desirable).

Finally, in the fourth phase, mathematical modeling of 
the experimental data collected in the batch reactor was 
performed with the computational tool of artificial neural 
networks (ANNs), using the Statistic software, version 8.0, 

Neural Networks module. The tests conducted to obtain the 
ANN included 10 runs, with sample collection at times t = 0, 
20, 40, 60, 80, 100, 120, 140, 160, and 180 min. The values 
included in the experiment were, pH = 9.3, T = 90°C; for QAF, 
50 L h–1; and, for RH, 110%.

Brandao, et al. [27] applied a modelling method for the 
ANN to determine the relationship between input and output 
variables to obtain the highest phenol degradation and TOC 
conversion rates, with consideration given to obtaining an 
evaporation rate below 11% and a liquid effluent temperature 
ranging from 70 to 780C. A total of 102 experimental data 
points were used to generate the ANN; 80% used for training, 
10% for testing, and 10% for validation. Activation functions 
used for training the hidden layer and output neurons 
included the logistic and exponential functions. The 20 best 
networks were retained using the sum of quadratic errors as 
a criterion. The selected ANN had four neurons in the hidden 
layer and R(2) equal to 0.9811 for training, 0.9909 for testing 
and 0.9339 for validation.
Validation of Optimal Conditions by the Desirability 
Function: Desirability function was used in the research 
with the variables (pH, T, QAF and RH) to obtain optimization 
for the maximum TOC conversion of hydroquinone after 
adding two more operational variables (T: temperature, 
and, QAF: the air flow rate). Desirability function is favored 
as the response moves away from zero, reaching maximum 
desirability value with unit value. Thus, it allows to optimize 
a significant variable to represent the dependent (output) 
and independent (input) variables from controlled values (0 
≤ d ≤ 1), according to Semenov, et al. [47]. 

Derringer and Suich [48] changed the original 
Desirability function and established optimization variable 
that were the following operating parameters: 𝑆𝑇𝐵 (smaller-
the-better), 𝐿𝑇𝐵 (larger-the-better), and 𝑁𝑇𝐵 (nominal-the-
better). These authors proposed a output variable (𝑦) with
lower specification limit (𝐿𝑆𝐿) and upper specification limit
(𝑈𝑆𝐿). The 𝑆𝑇𝐵 function seeks to minimize 𝑦, while the 𝐿𝑇𝐵 
function seeks to maximize 𝑦. The 𝑁𝑇𝐵 function seeks to
optimize from a target value (𝜆). The different Desirability
functions are defined as:

( )      
0         ( )

STB

y LSL y USLd LSL
y USL

τ

α
α

 −
≤ ≤= −

 >

            (3)

( )      
0         ( )

STB

y LSL y USLd LSL
y USL

τ

α
α

 −
≤ ≤= −

 >

            (4)
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λ




 −= ≤ ≤ −
 − ≤ ≤

−

          (5)

where α  is the smallest possible value for the response 
variable (y) and λ  is the nominal (target) value for y. The 
parameters τ  and s are constants of the Desirability function 
(0.01 to 10).

The values predicted (optimal point) by the desirability 
function for the independent variables were used in triplicate 
tests for HQ mineralization that were submitted to Statistic 
8.0 software package. The factors used to validate the optimal 
conditions after applying the desirability function were pH= 
9.3, T= 90°C, QAF= 50 L h–1, and RH= 110%. Thus, pH and RH 
are the variables optimized by the desirability function.
Process Modelling via Artificial Neural Networks: 
Mathematical modeling of the process was performed using 
artificial neural networks (ANNs) from Statistic software 
version 8.0, and a database acquired by the application 
of the neural network module was used to obtain the HQ 
mineralization. In this study, 1,000 artificial neural networks 
(ANNs) were tested, with characteristics of the multilayer 
perceptron (MLP) type, to obtain the optimized kinetic 
conditions for the HQ mineralization process. The activation 
functions used in the input layers (independent variables) 
and output layers (dependent variables) by ANN were 
exponential and logistic, respectively. In this study, the ANN 
results were generated from data provided at the neural 
network entrance, where 153 of these data points were 
applied to create the ANN: 70% used for training, 20% for 
testing, and 10% for validation of the neural network. The 

other ten data points were used to predict the values of total 
organic carbon conversion at the optimum point. 

The ANN was created with the following input 
parameters: the reaction time (t), the initial pH of the reaction 
medium (pH), the temperature (T), the air flow supply 
(QAF) and the molar stoichiometric ratio of hydroquinone/
hydrogen peroxide (RH), where the TOC conversion was the 
neural network output.
 

In this research, the neural network MLP with Yi 
(input data), Wij and W’jk (weights), f(αj) and f(α’k) (logistic 
sigmoidal and exponential activation function) and Yk 
(output data) were used [34]. The neural network presents 
neurons connected in parallel through the weights (Bk, bias).
The logistic sigmoidal activation function is specified by

( ) 1
1 jáejf α −=
+

 and ( ) '
' 1

1 k
kf

e α
α

−
=

−
             (6)

 The exponential activation function is given by

( ) j
jf e αα −=  and ( ) '' k

kf e αα −=                      (7) 

n

j ij i k
i

W Y Bα = +∑                                  (8)

( )' ' .
n

k jk j k
j

W f Bα α= +∑                           (9)

Table 1 shows the TOC values that were used for neural 
network training, testing, and validation. As before, the same 
factors (pH = 9.3, T = 90 °C, QAF = 50 L h–1, and RH = 110%) 
were used in the neural network to predict the values of TOC 
at the optimum point and compared with the TOC values 
obtained experimentally for the maximum mineralization of 
HQ (optimal point).

Index Time 
(min) pH(-) T (0C) QAF 

(L h-1) RH (%) *TOC (%) Index Time (min) pH(-) T (0C) QAF 
(L h-1) RH (%) *TOC (%)

1 20 9.3 90 50 110 2.18 78 180 7 70 100 50 10.3
2 40 9.3 90 50 110 8.31 79 0 7 70 200 50 0
3 60 9.3 90 50 110 25.73 80 90 7 70 200 50 7.1
4 80 9.3 90 50 110 48.52 81 180 7 70 200 50 16.7
5 100 9.3 90 50 110 64.26 82 0 9.2 90 120 65 0
6 120 9.3 90 50 110 72.04 83 90 9.2 90 120 65 44.5
7 140 9.3 90 50 110 75.43 84 180 9.2 90 120 65 61.3
8 160 9.3 90 50 110 76.83 85 0 10.3 90 130 70 0
9 180 9.3 90 50 110 77.3 86 90 10.3 90 130 70 58.1

https://medwinpublishers.com/PPEJ/


Petroleum & Petrochemical Engineering Journal 
7

Brandao YB, et al. Advanced Oxidative Process for Treatment of Effluents with Hydroquinone in a Batch 
Reactor: Optimization/Modelling Technique by Response Surface Methodology and Artificial Neural 
Networks. Pet Petro Chem Eng J 2023, 7(3): 000358.

Copyright© Brandao YB, et al.

10 0 4 80 150 25 0 87 180 10.3 90 130 70 77.2
11 90 4 80 150 25 15.7 88 0 11.4 90 140 80 0
12 180 4 80 150 25 18.9 89 90 11.4 90 140 80 50
13 0 10 80 150 75 0 90 180 11.4 90 140 80 52.8
14 90 10 80 150 75 26.2 91 0 8.1 80 110 60 0
15 180 10 80 150 75 41.2 92 90 8.1 80 110 60 25.4
16 0 7 70 100 50 0 93 180 8.1 80 110 60 41.1
17 90 7 70 100 50 6.2 94 0 11.4 90 140 80 0
18 180 7 70 100 50 6.8 95 90 11.4 90 140 80 45.4
19 0 10 60 50 75 0 96 180 11.4 90 140 80 40.8
20 90 10 60 50 75 3.2 97 0 8.4 90 50 75 0
21 180 10 60 50 75 5.3 98 90 8.4 90 50 75 31.9
22 0 7 70 100 50 0 99 180 8.4 90 50 75 58.8
23 90 7 70 100 50 6.4 100 0 9.3 90 50 95 0
24 180 7 70 100 50 9.7 101 90 9.3 90 50 95 51.1
25 0 7 70 100 50 0 102 180 9.3 90 50 95 72.5
26 90 7 70 100 50 4.1 103 0 10.3 90 50 110 0
27 180 7 70 100 50 7 104 90 10.3 90 50 110 45.8
28 0 4 60 150 75 0 105 180 10.3 90 50 110 83.9
29 90 4 60 150 75 2.6 106 0 9.8 90 50 100 0
30 180 4 60 150 75 4.1 107 90 9.8 90 50 100 66.5
31 0 4 60 50 25 0 108 180 9.8 90 50 100 82.2
32 90 4 60 50 25 1.7 109 0 10.7 90 50 120 0
33 180 4 60 50 25 4.1 110 90 10.7 90 50 120 81.5
34 0 10 80 50 25 0 111 180 10.7 90 50 120 83.2
35 90 10 80 50 25 21.7 112 0 11.2 90 50 130 0
36 180 10 80 50 25 25.8 113 90 11.2 90 50 130 74.3
37 0 4 80 50 75 0 114 180 11.2 90 50 130 74
38 90 4 80 50 75 13.3 115 0 10.1 90 50 110 0
39 180 4 80 50 75 31.6 116 90 10.1 90 50 110 70.3
40 0 10 60 150 25 0 117 180 10.1 90 50 110 73.1
41 90 10 60 150 25 0.2 118 0 11.2 90 50 130 0
42 180 10 60 150 25 1.1 119 90 11.2 90 50 130 33.4
43 0 7 70 100 50 0 120 180 11.2 90 50 130 34.4
44 90 7 70 100 50 5.3 121 0 11.2 90 50 90 0
45 180 7 70 100 50 8.9 122 90 11.2 90 50 90 54
46 0 4 80 150 75 0 123 180 11.2 90 50 90 54.1
47 90 4 80 150 75 21.2 124 0 10.1 90 50 110 0
48 180 4 80 150 75 30.1 125 90 10.1 90 50 110 68.2
49 0 10 80 50 75 0 126 180 10.1 90 50 110 76
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50 90 10 80 50 75 19.8 127 0 10.1 90 50 110 0
51 180 10 80 50 75 30.1 128 90 10.1 90 50 110 54.9
52 0 10 60 150 75 0 129 180 10.1 90 50 110 76.9
53 90 10 60 150 75 6.2 130 0 10.1 90 50 110 0
54 180 10 60 150 75 6.3 131 90 10.1 90 50 110 50.2
55 0 4 80 50 25 0 132 180 10.1 90 50 110 79.8
56 90 4 80 50 25 10.1 133 0 8.5 90 50 110 0
57 180 4 80 50 25 12.2 134 90 8.5 90 50 110 48.9
58 0 10 80 150 25 0 135 180 8.5 90 50 110 76.2
59 90 10 80 150 25 12.1 136 0 11.7 90 50 110 0
60 180 10 80 150 25 21.2 137 90 11.7 90 50 110 50.3
61 0 10 60 50 25 0 138 180 11.7 90 50 110 49.8
62 90 10 60 50 25 3.4 139 0 10.1 90 50 80 0
63 180 10 60 50 25 3.5 140 90 10.1 90 50 80 41.8
64 0 4 60 50 75 0 141 180 10.1 90 50 80 69.6
65 90 4 60 50 75 0.7 142 0 10.1 90 50 140 0
66 180 4 60 50 75 3.4 143 90 10.1 90 50 140 45.1
67 0 4 60 150 25 0 144 180 10.1 90 50 140 73
68 90 4 60 150 25 0.8 145 0 9 90 50 90 0
69 180 4 60 150 25 2.2 146 90 9 90 50 90 61.7
70 0 7 90 100 50 0 147 180 9 90 50 90 75.1
71 90 7 90 100 50 40.1 148 0 9.4 90 50 110 0
72 180 7 90 100 50 39.9 149 90 9.4 90 50 110 62.5
73 0 13 70 100 50 0 150 180 9.4 90 50 110 78
74 90 13 70 100 50 23.1 151 0 9 90 50 130 0
75 180 13 70 100 50 26.6 152 90 9 90 50 130 47.5
76 0 7 70 100 50 0 153 180 9 90 50 130 73.2
77 90 7 70 100 50 5.2

*TOC values to be predicted by the model generated from neural networks. 
Table 1: Data used for hydroquinone modelling by ANN.

Results and Discussion

Statistical Analysis of the TOC Conversion

Teododio, et al. [43] used a statistical technique in their 
experiments to optimize the process and to assess the effects 
for hydroquinone degradation (HD) and TOC conversion. The 
following operating variables were: the initial hydrogen ionic 
potential of the reaction medium (pH) of 4, 7, and 10; the 
temperature (T) of the liquid effluent of 60, 70, and 80°C; the 
air flow rate (QAF) of 50, 100, and 150 L h–1; and the molar 
stoichiometric ratio of hydroquinone to hydrogen peroxide 
(RH) of 25%, 50%, and 75%. First, a 24 factorial design was 
performed to obtain the effects of the variables (pH, T, QAF 

and RH); Second, the maximum ascending gradient method 
(MAGM) was performed to analyze the optimal point of the 
process on the effects of the variables (pH, T, Q and R), and, in 
the third phase a lumped kinetic model (LKM) was obtained 
to describe the profile of the TOC conversion.

Factorial Planning (22)

A new factorial planning (22) was elaborated in this 
research, around the region of curvature at the MAGM 
stage after the results obtained by Teododio et al. [43], 
being a continuation of their experimental results for this 
recent study, with the objective of finding the maximum 
mineralization point for hydroquinone. In this stage, only the 
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2 variables proved to be significant, so the use of a planning 
with only two levels (22) was studied. Thus, two independent 
variables were initially designated, that was pH and RH, 
whose actual values were 9, 10.1 and 11.2; and 90, 110, and 
130%, respectively, corresponding to coded levels of ‒1, 0, 
and +1.

Table 2 shows the results obtained from the factorial 
planning (22) for the hidroquinone mineralization. The 
highest TOC conversion in trials 5 to 9 at the center point 
were obtained and is possibly due to the increase in the 
oxidation rate of hydroquinone at higher pH. Furthermore, 
highest TOC conversion in trial 8 with value of pH (10.1) and 

RH (%) (110), respectively were obtained, approximately, 
80%.

From assay 5, the equilibrium shift in the direction of 
the formation of parabenzoquinone was observed during 
the adjustment of the initial pH of the reaction medium. This 
reaction intermediate was verified by the darkening of the 
model effluent (red-brown coloration). The concentration 
of quinone, the intermediate product of the reaction, 
catalyzes the oxidation of hydroquinone. Quinone reacts 
with the hydroquinone dianion to form an unstable radical 
(semiquinone), which can react quickly and spontaneously 
with oxygen, forming a stable dimer [49].

Test pH RH (%) TOC (%)
1 9 (‒) 90 (‒) 75.12
2 11.2 (+) 90 (‒) 54.16
3 9 (‒) 130 (+) 73.27
4 11.2 (+) 130 (+) 34.41
5* 10.1 (0) 110 (0) 76
6* 10.1 (0) 110 (0) 73.2
7* 10.1 (0) 110 (0) 75.6
8* 10.1 (0) 110 (0) 79.98
9* 10.1 (0) 110 (0) 78

*Center point
Table 2: Matrix for factorial planning 22 and results obtained.

The analysis of the data through ANOVA for the 
significant factors (pH and RH) is described in Table 3. The 
two main factors pH and RH were significant in this new 
interval studied. The determination coefficient (R2) and 
adjusted determination coefficient (R2

Adj) values for the 

model were 61.17% and 37.90%, respectively. Thus, the 
lack of adjustment to the linear model of the data showed 
that possibly a quadratic model can be better adjusted to the 
experimental data.

Experimental complete factorial, (22), Significant Terms
QS DF QA F p

(1) pH 894.639 1 894.639 136.094 0.0003
(2) RH 116.665 1 116.665 17.7472 0.0136
1 by 2 80.093 1 80.093 12.1839 0.0251

Lack of Adjustment 666.539 1 666.54 101.4 0.0006
Pure Error 26.295 4 6.5737

QS Total 1784.23 8
QS= Quadratic Sum; DF= Degrees of Freedom; QA=Quadratic Average; F= F Test; p= p-value. 
R2= 0.6117; R2

Adj= 0.379.
Table 3: Analysis of variance for the TOC conversion, factorial planning (22).
 

Figure 2 indicates that highest TOC conversion was 
greater than 80% when the pH levels are lower (equal to 9), 

independent of the range of the RH. 
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Figure 2: Response surface methodology for theTOC conversion, factorial (22): RH (%) versus pH.

Teododio, et al. [43] recently investigated the treatment 
of effluents containing hydroquinone in a batch reactor by a 
homogeneous AOP with the reaction time of 180 min. First, a 
24 factorial design was carried out for the classification order 
of the significant variables (pH, T, QAF, and RH) for the TOC 
conversion. 

The results shows that the TOC conversion increased 
(>35%) when the levels of these factors (pH and T) 
increased to T= 80ºC and pH >7, for values at their maximum 
levels, pH >7 and RH= 75%, and for T= 80ºC and RH = 75%, 
respectively, showing a positive interaction between these 
variables for the mineralization of hydroquinone. Second, 
the maximum ascending gradient method (MAGM) was 
used to determine the optimum point of the process for the 
same variables (pH, T, QAF, and RH) for the TOC Conversion 
and HQ degradation. The results shows the maximum TOC 
conversion of approximately 84%, and HQ degradation of 
100%, considering a water evaporation rate of up to 11%. 
 

Oliveira, et al. [46] applied the MAGM technique to treat a 
p-cresol solution by a homogeneous AOP. These authors used 
the variables (T, R and F) with the reaction time of 180 min 
to obtain the point optimal for TOC conversion. The results 
shows the maximum TOC conversion of approximately 64%, 
considering a water evaporation rate of up to 11% and with 
the same batch reactor used in this actual research and by 
Teododio, et al. [43].

Norouzi, et al. [50] studied the phenol contaminated water 
treatment by photocatalytic degradation on electrospun 
Ag/TiO2 nanofibers and response surface method (RSM) 
was used for the design of experiment (DOE) for statistical 
optimization. The three factors used were pH, initial phenol 
concentration, and concentration of photocatalyst in water. 
The maximum phenol degradation of 92.91% was obtained 
at optimal values of phenol concentration, catalyst dosage 

and pH, respectivamente, corresponding the values of 5.62 
mg L-1, 2.06 g L-1, and 7.87.
 

Brandao, et al. [41] recently described the use of an 
unconventional AOP for the treatment of synthetic water 
containing phenol in a reactor, called Direct Contact Thermal 
Treatment (DiCTT) using the combustion of natural gas and 
excess air, acts as a thermochemical process. The three factors 
used were initial phenol concentration, molar stoichiometric 
ratio of phenol/hydrogen peroxide and reaction time. The 
maximum phenol degradation of 99% and a TOC conversion 
>40% was obtained at optimal values, while the liquid phase 
flowrate, burner power dissipation, air excess, and recycle 
rate of gaseous thermal wastes were set at 170 L h−1, 38.6 
kW, 10%, and 100%, respectively.

Ji, et al. [51] reported degrade refractory pollutants 
using perovskite oxides as heterogeneous catalysts by a AOP. 
These catalysts showed the efficiency of activating oxidizing 
species and forming other reactive oxygen compounds 
with high redox potential and degrade contaminants in 
water. However, the use of perovskite-based AOPs has some 
limitations, such as leaching of metal ions, small surface area, 
low number of active sites, etc.

Rotational Central Composite Design

Table 4 shows the matrix of the planning of the rotational 
central composite design (RCCD) with the addition of the 
axial points from the factorial planning (22). The highest TOC 
conversion in trial 12 was obtained at the center point of 
110, with an average of approximately 79.98%.

The analysis of variance Table 5 shows that the factors 
that influence the response are pH (quadratic and linear 
terms) and the quadratic term of the RH. The interaction 
between these two factors was also significant, as was the 
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lack of adjustment to the linear model. This result proves the 
existence of a maximum region where there is an optimal 

point at which mineralization reaches the highest value. The 
quadratic model is the best fit for the experimental data.

Test pH RH (%) TOC (%)
1 9 90 75.12
2 9 130 73.27
3 11.2 90 54.71
4 11.2 130 34.41
5* 8.5 110 76.42
6* 11.7 110 50.01
7* 10.1 82 69.79
8* 10.1 138 73.12
9** 10.1 110 76

10** 10.1 110 73.2
11** 10.1 110 75.6
12** 10.1 110 79.98
13** 10.1 110 78

*Axial Points; **Central Points
Table 4: Matrix for RCCD.

Planning, (RCCD), Significant Terms
QS DF QA F p

(1)pH (L) 1180.18 1 1180.18 179.352 0.0002
pH (Q) 526.037 1 526.037 79.942 0.0009

(2)RH (L) 35.659 1 35.659 5.419 0.0804
RH (Q) 145.497 1 145.497 22.111 0.0093

1L by 2L 80.108 1 80.108 12.174 0.0251
Lack of Adjustment 280.899 3 93.633 14.23 0.0124

Pure Error 26.321 4 6.58

QS Total 2212.905 12

QS= Quadratic Sum; DF= Degrees of Freedom; QA=Quadratic Average; F= F Test; p= p-value.
R2= 0.86; R2

Adj= 0.76.
Table 5: Analysis of variance for the TOC conversion, planning RCCD.

Figure 3 indicates that the highest TOC conversion was 
greater than 80% when the pH levels were lower (<10), and 
the range of RH was greater than 90%. It was possible to 
observe a region of curvature, that is, a region of maximum, 
which explains the lack of adjustment to the linear model 
obtained in the analysis of ANOVA. Thus, the maximum 
mineralization point is in a pH range of approximately 8.7 to 
10.0 and an RH range of 100% to 130%.

According to Brandao, et al. [52] the presence of excess 
air, which is used as an oxidant has been an essential step 

for the radical production reaction. As well, the junction 
of excess air plus hydrogen peroxide helps in chemical 
oxidation, facilitating the degradation process of persistent 
organic pollutants to wastewater treatments.

Benali, et al. [53] described that the saturation with 
molecular oxygen applied in several existing methods for 
the treatment of organic liquid effluents can generate some 
recent radicals by a sequence of several recombination 
reactions. In the Catalytic Wet Peroxide Oxidation (CWPO) 
system, for example, complementary •OH radicals can be 

https://medwinpublishers.com/PPEJ/


Petroleum & Petrochemical Engineering Journal 
12

Brandao YB, et al. Advanced Oxidative Process for Treatment of Effluents with Hydroquinone in a Batch 
Reactor: Optimization/Modelling Technique by Response Surface Methodology and Artificial Neural 
Networks. Pet Petro Chem Eng J 2023, 7(3): 000358.

Copyright© Brandao YB, et al.

produced by activating molecular oxygen in addition to 
hydrogen. Consequently, the presence of oxygen facilitates 
the increase of the propagation steps of the radical reactions, 

and thus favors the increase of the degradation efficiency of 
the compounds.

Figure 3: Response surface methodology for the TOC Conversion, planning RCCD: pH versus RH(%).

 Barrault, et al. [54] reported that some types of gases 
are often not efficient to obtain a high degradation and 
mineralization of the compound in the reaction steps. The 
degradation of phenol and the conversion of TOC, for example, 
remain low in the presence of atmospheric nitrogen, an 
inverse result obtained for the use of atmospheric air under 
the same reaction conditions.

Brandao, et al. [18] evaluated the liquid phase flow rate 
(QL) of 100 and 170 L h−1 and the effect of initial phenol 
concentration (CPh0) of 500, 2000 and 3000 mg.L−1 for the 
treatment of synthetic water containing phenol in a reactor 
DiCTT. The experiments studies were performed using a 
molar stoichiometric ratio of phenol/hydrogen peroxide 
(RP/H) of 50%, an air excess (E) of 40%, a combustion gas 
recycling rate (QRG) of 50%, and, a natural gas flow (QGN) 

of 4 m3 h−1. The complete degradation of phenol of 100% 
was obtained independently of QL, and, of CPh0, with the 
reaction time of 170 min. A TOC conversion of almost 35% 
was observed corresponding to an operational time of 
approximately 210 min at a QL of 170 L h−1.

Optimization for TOC (Desirability Function)

At this stage of the research, the optimal point of HQ 
mineralization was obtained using the desirability function, 
available in the Statistic software. This function allows the 
transformation of each response variable into an individual 
function, ranging from 0.0 (very undesirable) to 1.0 (very 
desirable). The dependent variables were chosen to achieve 
greater overall desirability. Table 6 lists the values of the 
critical point calculated using this desirability function.

Factor Minimum observed Critical values Maximum observed
pH 8.54 9.33 11.66
RH 81.72 110 138.28

Predicted value for TOC (%) at the critical point (optimal) = 80.77
Table 6: Values of the critical points, factors (pH and R), for the TOC conversion.

Figure 4 shows the predicted value for hydroquinone 
mineralization at the critical point, and this value is 

approximately 81% for predicted values, pH and RH, 
respectively.
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Figure 4: Desirability function, for the TOC conversion at the optimal point.

Oliveira, et al. [46] recently reported the treatment of 
effluent containing p-cresol through an advanced oxidation 
process in a batch reactor to identify the most significant 
process variables and propose an optimization approach 
for complete p-cresol degradation and maximum TOC 
conversion. In this research, the Desirability function 
method was used with the variables (R and F) to obtain 
optimization for TOC conversion. Thus, the application of the 
Desirability function to the experimental data with T of 90°C 
pointed to the following conditions as the optimal ones for 
TOC conversion: R= 78%, and F= 120 L h−1. The results shows 
that the Desirability function achieved the highest value (d= 
0.88572) for R= 78%, and TOC conversion of 62.6%. The 
curves correlated to air flow suggest maximum points (d= 
0.88572, TOC= 62.6%) for F= 120 L h-1. The upper curve (on 
the right) suggests that the maximum TOC conversion of 
64% (d= 1) can be achieved for optimized values of R and F.

Test at the Optimal Point

Table 7 shows the values obtained for o TOC conversion 
after 180 min. Thus, with the values of the variable pH 
(9.3) and RH (110%) from the critical point (optimal 
point) obtained through the desirability function triplicate 
tests were performed to determine the mineralization of 
hydroquinone.

The experimental results obtained in the TOC 
conversion (80.1%) after 180 min of the process, confirm 
the prediction made by the desirability function. This 
predicts a mineralization of approximately 81% for TOC 
conversion (Figure 4) in 180 min, in the oxidation reaction 
of hydroquinone, using the values of factors (pH and RH) at 
the optimal point.

Time (min) TOC (mg L-1) TOC (%)
0 323.12 0

20 307.76 4.8
40 236.92 26.7
60 185.88 42.5
80 143.16 55.8

100 98.16 69.7
120 89.38 72.3
140 77.36 76.2
160 67.92 79.1
180 64.52 80.1

Operational parameter: RH= 110%, pH= 9.3, T=900C, QAF= 50 L h‒1.
Table 7: Hydroquinone Oxidation Reactions with TOC conversion.

https://medwinpublishers.com/PPEJ/


Petroleum & Petrochemical Engineering Journal 
14

Brandao YB, et al. Advanced Oxidative Process for Treatment of Effluents with Hydroquinone in a Batch 
Reactor: Optimization/Modelling Technique by Response Surface Methodology and Artificial Neural 
Networks. Pet Petro Chem Eng J 2023, 7(3): 000358.

Copyright© Brandao YB, et al.

Process Modeling by Artificial Neural Networks 

The ANNs were evaluated by the sum of the errors. 
Thus, the ANN with a 5:4:1 configuration presented the ideal 
features, with the lowest error and the highest accuracy. In 
this study, the logistic sigmoidal activation function was used 
for the neural network hidden layer, and a logistic exponential 
activation function was used for the neural network output. 
Approximately 50,000 neural networks were tested for 

training, of which the best 10 results were selected for 
evaluation. The minimum and maximum numbers of 
neurons in the hidden layer were three and six, respectively. 
Among the 1000 trained networks, the 10 best networks 
were retained. Table 8 shows the 10 neural networks chosen 
according to training, testing, and validation, and index 2 
presented a better configuration with an error sum equal to 
0.011. 

Index Network Training error Test error Validation error Hidden activation Output activation Sum error
1 MLP 5:3:1 0.004 0.0031 0.0076 Logistic Exponential 0.0147
2 MLP 5:4:1 0.0036 0.0032 0.005 Logistic Exponential 0.0117
3 MLP 5:6:1 0.004 0.0035 0.0056 Logistic Exponential 0.013
4 MLP 5:3:1 0.0061 0.004 0.0063 Logistic Exponential 0.0163
5 MLP 5:3:1 0.0056 0.0035 0.0064 Logistic Exponential 0.0155
6 MLP 5:3:1 0.005 0.0035 0.0053 Exponential Exponential 0.0137
7 MLP 5:5:1 0.0061 0.0033 0.0183 Exponential Exponential 0.0276
8 MLP 5:3:1 0.006 0.0032 0.006 Exponential Logistic 0.0152
9 MLP 5:5:1 0.0041 0.0035 0.0063 Logistic Exponential 0.014

10 MLP 5:5:1 0.0041 0.0034 0.007 Logistic Exponential 0.0145

Table 8: ANN used according to training, testing and validation. 

Table 8 shows the best 10 models tested. And of these 
10 models, the best result was obtained in the second index 
with a configuration of 5:4:1, also shown and proven in 
Figure 5A, due to the lower sum of errors in training, testing 
and validation. Thus, the minimum explained variable was 
0.9614.

Table 9 shows the weights (W1 and W2) of the input and 
output variables, and the hidden layer/input (bias) obtained 

by the ANN for the TOC conversion. In this ANN, an MLP with 
a 5:4:1 design was obtained that corresponded five input 
data (t, pH, T, QAF, and RH), four neurons in the hidden layer 
and one output results (TOC conversion). The consistency 
of the results obtained (output variable) was observed from 
the data modeled by the neural network and presented 
according to the experimental results, for the data set of 
training, testing and validation. Neural network training 
was used to adjust ANN weights and the test to evaluate its 
configuration.

Conections W1 W2

No. of neurons t (min) pH(‒) T (0C) QAF(L h-1) RH(%) Layer/Input (Bias) Output/TOC 
conversion

1 -0.25 0.4009 0.4884 -2.532 -2.672 1.0859 -1.6556
2 3.441 -2.9039 -1.2909 -0.694 -1.635 0.3659 4.1162
3 -4.83 -0.9765 -10.763 0.8507 -0.688 4.0423 -4.1284
4 0.501 -2.1527 -1.158 -1.721 -2.543 3.3366 -3.7797

HLa 0.2698
aHL: hidden layer/(bias).
Table 9: Weight values between the input and output layers, W1, and between the hidden and output layers, W2, for TOC 
conversion.
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Figure 5: A) ANN with sum error; Comparison between the calculated and experimental values of the output variable (TOC 
conversion) for ANN: B) Training, C) Test and D) Validation; E) Modeling at the optimal point.

Figure 5A shows the behavior presented by the best ten 
ANNs retained based on a low sum of errors in training, testing, 
and validation. These neural networks were compared, and 
although ANN 7 showed a small variation in its interval, it 
was observed that the other ANNs had practically the same 
sum of errors. However, ANN 2 was chosen because it had the 
lowest sum of errors. 

The ANNs selected had four neurons in the hidden 
layer. Figures 5B, 5C, and 5D show the data generated by 
neural network modeling of the dataset, compared with 
the experimental results based on the TOC conversion (%). 
To observe the consistency of the results obtained (output 
variable) by ANN, the figures were generated based on the 
calculated data, presented according to the experimental 
results for the training, test, and validation data sets. The 
linear correlation factors (R2) were obtained through a linear 
fitting of the configuration of the analyzed network. 

These results show the good agreement of the data 
simulated by the network with the experimental data used 
for the training, test, and validation, and that represent well 
the behavior of the system. The validation showed a slightly 
lower linear correlation index when compared to training and 
testing of the network, but the models presented a good fit 
of the calculated data, with the following linear correlations: 
training, R2= 0.9648; test, R2= 0.9701; and validation, R2 
= 0.9614. Figure 5E shows the predicted values of TOC 
conversion together with the experimental results (mean of 
three values of the test results at the optimal point for HQ 
oxidation). The prediction of the neural network was a good 
approximation to the experimental results for TOC conversion 
at the optimal point, with linear correlation R2= 0.9916. 

Brandao, et al. [27] studied an unconventional advanced 
oxidation processes for phenolic compounds, and obtained 
in the experimental results for total organic carbon (TOC) 
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conversion (>30%) for a given rate of evaporation for 
the liquid phase (<11%) and effluent temperature (70–
78°C). The ANN-type MLP with a 4:4:2 configuration for 
the construction of RSM proved to be satisfactory for a 
correlation coefficient (R2) of 0.999 for TOC conversion.

Conclusions 

The results obtained during this research showed 
that the TOC conversion values increased. Furthermore, 
highest TOC conversion with pH (10.1) and RH (%) (110), 
respectively were obteined, approximately, 80%, showing 
the excellent efficiency of the method to obtain the best 
optimized process conditions, allowing a twofold increase 
in hydroquinone mineralization. According to the tests 
performed at the optimal point (pH= 9.3, RH= 110%), the 
prediction made by applying the desirability function was 
validated, obtaining a mineralization of 80.10%, and the 
value prediction of the TOC was 80.76%. The ANN had a 
5:4:1 configuration at the 10 best networks retained with 
the lowest error sum equal to 0.011 for training, testing, 
and validation were observed for the ANN-type MLP. ANN 
shows four neurons in the hidden layer to predict the most 
accurate response to TOC conversion. The results obtained 
by ANN presented to be a good agreement due to linear 
adjustment for the configuration of the analyzed network, 
with linear correlations: training (R2= 0.9648), test (R2= 
0.9701) and validation (R2= 0.9614). In the study obtained 
by ANN mathematical modeling for the construction of RSM 
proved to be efficient, in relation to the experimental results, 
performed from the experimental planning RCCD, being the 
best quadratic model that fits the experimental data. Thus, 
the results achieved in this research corroborate with the 
experimental data, to obtain greater TOC conversion (>80%), 
at the reaction time (t) (180 min), with the most important 
operating variables for the process (pH= 9.3, T= 90 °C, RH= 
110% and QAR= 50L h-1). 
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