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Abstract

In a previous study, wellbore cleaning coefficient (WCC) correlations for cleaned wellbores out of debris and bridge plug 
remnants were developed for three conventional coiled tubing sizes (2.375”, 2.625”, and 2.875”). The following key performance 

indicators (KPIs): (1) slick water density ( )fρ , (2) slick water viscosity ( )fµ , (3) hydraulic diameter c t(d - d ) between casing 

inner diameter (dc) and coil tubing outer diameter (dt), (4) average annular velocity ( )v  and (5) cleaning pressure gradient ∆P 
across a measured depth (MD) were employed in the empirical models. The models addressed operational conditions under 
which fractured wells will be identified as whether “clean” or “not clean”. 
In this study, the database from 150 wells, in the Spraberry formation in West Texas, was used to develop a predictive model 
to identify status of cleaned fractured wells: whether “clean” or “not clean”? About 70% of the data (99 wells) was used for 
training and about 30% (51 wells) for validation. 14 wells from the liquids-rich shale Woodford formation (Oklahoma) were 
utilized for testing. Six predictive modeling tools were designed to validate the derived empirical correlations. These tools are 
(1) Fit Stepwise, (2) Neural Boosted, (3) Boosted Tree, (4) Decision Tree (Partition), (5) Generalized Regression Lasso, and 
K-Nearest Neighbors. In the predictive models, independent variables are the annular velocity (AV), the Reynolds’ Number 
(Re), the Euler’s Number (Eu), and the coiled tubing roughness to internal radius ratio (ε/D). The dependent variable is well 
status; “clean” or “not clean”. 
Jump Scripting Language (JSL) code was used to develop user-friendly software. The software would be utilized to identify 
the fractured wellbore status, whether “clean” or “not clean”. Operators would be able to use the code to identify working 
conditions for which completed fractured wells are “clean” out of fracturing debris and remnants of bridge plugs or “not clean”. 
Input parameters to the code are AV, Re, Eu, and ε/D.
   
Keywords: Well Cleaning Coefficient; Neural Networks; Validation; Spraberry formation; West Texas; Woodford formation; 
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Literature Review

Artificial intelligence (AI) is a procedure that uses 
advanced algorithms, simulating the human brain, to train 
data and predict future systems operation [1]. AI has been 
used extensively in the fields of engineering, economics, 
medicine, the military, and certain marine sectors [2]. 
Artificial neural networks (ANNs), adaptive neuro-fuzzy 
inference systems (ANFIS), functional networks (FN), and 
support vector machine (SVM) are among the algorithms 
used in the oil and gas industry [3]. Three layers commonly 
characterize the architecture of an ANN model. These are 
an input layer, hidden layer(s), and an output layer [4]. 
Many algorithms were utilized for the learning procedure 
and control of the neurons’ processing capabilities [5]. 
To optimize the model network and enhance prediction 
accuracy, a set of weights and biases are utilized [6].

Ali [7] listed examples that included seismic pattern 
recognition, permeability predictions, identification of 
sandstone lithofacies, drill bit diagnosis, analysis, and 
improvement of gas well production. The author noted that 
neural network technology helped in the analysis, prediction, 
and optimization of well performance, integrated reservoir 
characterization, and portfolio management. Rispler, et 
al. [8] presented a case history in which ANN technology 
was used to successfully manage tubing strings during 
coiled tubing (CT) fracturing operations. The authors used 
the CT pressure ratings, tensile strength, and fatigue to 
determine CT life and identify a safe operating envelope. 
The ANN model they established could predict erosional 
wall loss and quantify critical performance parameters for 
specific applications. Ahmadi [9] utilized the least square 
support vector machine (LSSVM), adaptive network-
based fuzzy inference systems (ANFISs), and enhanced 
particle swarm optimization PSO-ANFIS tools to assess 
the equivalent circulating density (ECD) using mud initial 
density, pressure, and temperature. Other studies applied 
learning techniques to solve operational challenges and 
enhance systems performance Rolon, et al. [10]; Tariq, et al. 
[11]; Elkatatny, et al. [12]; Mousa, et al. [13]; Alsabaa, et al. 
[14]. AI has also been used in the identification of reservoir 
lithology [15], prediction of the pore and fracture pressures 
[16], estimation of PVT properties [17], evaluation of the oil 
recovery factor [18,19], projection of depths to the base of 
cap rocks in drilled formations [20], prediction of the rate 
of penetration (ROP) for various drilled formations [21-
23] determination of total organic carbon (TOC) content 
[24-26], approximation of the rock static Young’s modulus 
[27-30], determination of rock failure parameters [31,32], 
detection of downhole anomalies during lateral drilling [33], 

determination of drill bit wear from drilling parameters 
[34-38], and prediction of the real-time drilling fluids 
rheological properties [14,17,35-38] used extensive data 
to build an ANN model that predicts equivalent circulating 
density (ECD) from surface drilling measurements. Three 
thousand five hundred and seventy (3,570) data points 
were utilized to develop the model. Two thousand seven 
hundred and forty-three (2,743) data points were employed 
for training and eight hundred and twenty-seven (827) data 
points were used for testing. Only one hidden layer with 15 
neurons was utilized for better prediction accuracy. Results 
indicated a correlation coefficient (R) of 0.99 and an average 
absolute percentage error (AAPE) of 0.24%. Model testing 
yielded an R of 0.98 and an AAPE of 0.3%. 

In the cited literature, there was no mention of empirical 
equations or neural networks that have been developed to 
identify the status of clean fractured wellbores. The goal 
of this study is to use 6 neural predictive tools to validate 
bridge plugs cleaning coefficient correlations that have been 
derived in a previous study and develop a JSL code. The code 
is user-friendly software that can be employed to identify 
operational conditions for which fractured wellbores are 
“cleaned” off fractured formation debris and remnants of 
bridge plugs. 

Data Description and Statistical Analysis

This study utilized real-time data (RTD) that was 
collected during cleaning operations in wellbores around 
the country. The original data deck contained statistics 
from 5000 wells, in Louisiana, Texas, Wyoming, Oklahoma, 
North and South Dakota, Colorado, and New Mexico. Most of 
the wells, 500, were drilled in Texas. The mined data were 
preprocessed using JMP and only 150 wells had complete 
datasets. The data included measured slick water density 
(ρf), slick water viscosity (µf), hydraulic diameter (dc-dt), 
average annular velocity (v),	  and cleaning pressure 
gradient (∆P).

Using the Buckingham-π theory, two dimensionless 
groups π1 and π2 were identified. π1, the well cleaning 
coefficient (WCC), is a slightly modified form of Eu. π2 is the 
inverse of Re. 

In the performed regression analysis, three models for 
“clean wells” for three roughness to coiled tubing diameter, 
ε/D ratios, have been developed. These empirical models 
that have been benchmarked against data from 14 wells from 
the Woodford formation are summarized below:
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ε/D Derived Equations R2

0.000460828 7 12 2Eu = 0.0196 - 8.566e × Re + 9.961e × Re− − 0.979

0.000510637 7 11 2Eu = 0.0217 - 9.389e × Re +1.098e × Re− − 0.897

0.000572517 7 12 2− −Eu = 0.01346 - 4.54e × Re + 4.367e × Re 0.848

Table 1: Derived models for “clean” wells.

In addition to linear regression, we applied 6 predictive 
models to validate the developed WCC empirical correlations. 
Neural networks provide a convenient approach to handling 
non-linear relationships in databases. The 6 predictive 
models have been used for comparative purposes. These are: 
(1) Neural Boosted, (2) Fit Stepwise, (3) Boosted Tree, (4) 
Decision Tree (Partition), (5) Generalized Regression Lasso, 
and (6) K Nearest Neighbors. 

Predictive Model Development 

Predictive modeling is all about finding the model that 
accurately predicts the outcome of interest, WCC in this case. 
There are maybe several possible predictive models one can 
fit. For example, one can fit a regression model, various types 
of tree-based models, or a neural network, to name a few. 
The question that comes to mind is which modeling platform 
should be used and what type of model will be able to predict 
the outcome most accurately? 

For any given modeling situation, the best model depends 
largely on the data – there’s no one type of model that works 
best for all problems. In some cases, a regression model might 
be the top performer, in others it might be a tree-based model 
or a neural network.  In the search for the best performing 
model, one might fit all the available models, one at a time, 
using cross-validation.  Then, one might  save the individual 
models to the data table, or to the Formula Depot, and then use 
Model Comparison to compare the performance of the models 
on the validation set to select the best one. 

Neural Boosted Structure 

In this paper, the dataset has been divided randomly into 
training and validation subsets. About 70% of the data (99 
wells) was used for training, and about 30% (51 wells) of 
the data was used for verification. The 14 Woodford wells 
were used for further testing. In ANN model development, 
the inferring of the number of nodes carrying the activation 
functions within the hidden layers was obtained by trial 
and error. Having multiple layers enables the modeling of 
complex relationships in the data. To generate an optimal 
structure and ultimately produce an efficient output, 
the hidden layers varied for each of the ANN models. An 

illustration of a multilayer perceptron ANN model, showing 
the input, hidden, and output layers, is displayed in Figure 1.

Figure 1: Neural network model diagram for the developed 
model.

The independent variables are AV, Re, Eu, and ε/D. The 
dependent variable is well status. Well status is used to 
identify whether the fractured well is “clean” or “not clean”?

The model prediction was evaluated using two 
statistical parameters (R2 and RASE). R2 is the coefficient 
of determination. It is a statistical measure in a regression 
model that determines the proportion of variance in the 
dependent variable that can be explained by the independent 
variable. Root Average Square Error (RASE) is a standard way 
to measure the  error  of a model in predicting quantitative 
data. RASE can be thought of as some kind of (normalized) 
distance between the vector of predicted values and the 
vector of observed values. A RASE of zero implies that 
the average equation fits practically all the training and 
validation data. 

Neural Boosted Model Training and Validation

Table 2 depicts training and validation plots for all 
collected data used in the Permian. An R2 exceeding 99% 
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was obtained for both training and validation. The R2 values 
replicate an excellent correlation. The RASE for testing and 
validation is practically zero. They are at 0.000006 and 
0.000161 for testing and validation, respectively. In model 

testing 82 wells were recognized as “clean”, 17 were identified 
as “not clean”. In model validation, 42 were identified as 
“clean” and 9 as “not clean”. 

Table 2: Neural trainisng and validation data.

Prediction profiler (Figure 2) proves that the well is 
totally “clean” for AV > 230, Re > 34,000, and Eu < 0.0028. 

The well is tagged as a “not clean” for AV < 200, Re < 29,000, 
and Eu > 0.0030.

Figure 2: Prediction profiler for the neural model.

Other Predictive Tools

Stepwise fit: The stepwise fit for well status indicates that 
the coefficient of determination R2 = 1.0 (Table 3). 

The Akaike’s Information Criterion corrected for small 
sample sizes (AICc) is a measure used in statistical modeling 
to assess the goodness of fit of a model while penalizing for 
the number of parameters in the model. It is particularly 

useful when dealing with a limited sample size. The AICc is 
defined as:

( ) -2 log 2
- -1

n
AIC likelihood kc n k

= +

where:
( )-2log likelihood is twice the negative log-likelihood of the 

model,
k is the number of estimated parameters in the model, and 
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n is the sample size.
	

The AICc for the developed WCC stepwise fit model is 
estimated at 10.6452 with an average log error validation 
that is close to zero (1.12 E-15). The developed empirical 
model formulation writes as follows:

 1 156 - 4.720  – 0.00581Re  22770 - 32816 /WCC AV Eu D= +

In the stepwise fit Table 3, ChiSquare for the intercept 
and the four independent variables, AV, Re, Eu, and ε/D was 
very close to zero, implying that the model can be taken as 
is and will not be reduced further, meaning that neither the 
intercept nor any of the four independent variables will be 
dropped nor disregarded from the empirical equation.

Table 3: Stepwise fit for well status.

The AICc is an adjusted version of the Akaike Information 
Criterion (AIC) and is designed to account for potential bias 
in the AIC when the sample size is small relative to the 
number of parameters in the model. The penalty term 
2

- -1

n
k

n k
​ increases as the number of parameters (k) 

increases, but it is adjusted based on the sample size (n).

In general, when comparing different models, a lower 
AICc value indicates a better trade-off between model fit 
and complexity. Therefore, the model with the lowest AICc is 
often considered the preferred model among the candidates 
[39]. One reason that  ( )-2 log likelihood   is used is that the 
distribution of the difference between the full and reduced 
model  ( )-2 log likelihood  values is asymptotically ChiSquare. 
The degrees of freedom associated with this likelihood ratio 
test are equal to the difference between the numbers of 
parameters in the two models [40]. 

Researchers and analysts often use information criteria 
like AICc alongside other model comparison techniques, such 
as likelihood ratio tests, to make informed decisions about 

the most appropriate model for their data. In the regression 
model, BIC is defined as follows:

( ) ( )-2 log lnBIC likelihood k n= +

where  k  is the number of the estimated parameters 
and n is the number of observations used in the model.The 
BIC for the developed WCC stepwise fit model is estimated at 
22.9756 and a ( )- log likelihood  close to zero (7.198 E-12). 
AICc and BIC serve similar purposes but have different 
penalties for model complexity. AICc is often preferred when 
dealing with smaller sample sizes, while BIC tends to favor 
simpler models, especially in larger datasets. Researchers 
may use both criteria and other model selection techniques 
to make informed decisions about the most appropriate 
model for their data (Burnham and [41]. 

Boosted Tree: In addition, boosting builds a predictive 
model in an additive manner. Instead of constructing a single 
complex model, it creates a sequence of simpler models 
(often decision trees) called layers. Each layer is trained 
sequentially. The training of a layer involves fitting a decision 
tree to the residuals (the differences between the observed 
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and predicted values) of the model constructed from the 
previous layers. The purpose of fitting each layer based 
on residuals is to correct the errors made by the previous 
layers. Each subsequent layer focuses on the mistakes of the 
ensemble up to that point, improving the overall predictive 
accuracy. Typically, each decision tree in boosting consists 
of a small number of splits. These are often shallow trees, 
which helps prevent overfitting and ensures that each tree 
contributes a simple and focused correction. The training 
process involves minimizing the residuals, effectively 

refining the model’s predictions with each added layer. This 
process continues until a specified number of layers (or weak 
learners) are reached [42-45].

In Table 4, the boosted tree for well status gave an R2 of 
0.9974 and an RASE of 0.0026. The boosted decision tree 
technique used 152 layers on the 150 wells (with 99 training 
rows and 51 validation rows).The technique utilized 2 splits 
per tree with a learning rate of 0.073 and an overfit penalty 
of 0.0001, to evade overfitting of data. 

Table 4: Boosted tree results.

Figure 3 shows a decision tree (Layer 1) splitting, with 
99 training rows. The splitting of 2 per tree is done on 17 
training rows, where the fit based on residuals allows each 

layer to correct the fit for bad fitting from the previous layers. 
The final prediction for an observation is the sum of the 
predictions for that observation over all the layers.

Figure 3: Decision tree layer 1 results.
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The R2 cumulative validation plot confirms that the RASE 
reduces to a minimum of 0.0026, with 152 layers. As a matter 
of fact, R2 converges of 1.00 as the number of layers increases 

and the probability misclassification rate is reduced to 0 
(Figure 4). The misclassification rate acts as an important 
measure to decide the best model. 

Figure 4: Layers optimization in boosted layer model.

Decision Tree (Partition): The partition platform employs a 
recursive partitioning algorithm to build a decision tree. This 
means that the dataset is successively divided into subsets 
(partitions) based on the values of predictor variables.

The partitioning is done based on the relationship 
between predictor variables and the response variable. The 
algorithm identifies splits in the data that best predict, or 
explain the variation in the response variable. The partition 
algorithm explores all possible splits of predictor variables to 
find the ones that result in the best predictive performance. 
This involves evaluating different criteria or measures of 
impurity (e.g., Gini impurity, entropy) to determine the 
optimal way to partition the data at each step.

The splits or partitions are made recursively to form a 
tree structure. At each level of the tree, the algorithm decides 
on the best split, and the process is repeated for the resulting 
subsets until a stopping criterion is met.

 
The final decision tree consists of a set of decision rules that 
guide the prediction of the response variable for new, unseen 
data. Each path from the root to a leaf node represents a 
combination of predictor variable conditions that lead to a 
specific prediction. The splitting process continues until a 
desired level of fit is reached or until a predefined stopping 
criterion is met. Stopping criteria may include a certain 
depth of the tree, a minimum number of data points in a 
leaf node, or other measures to prevent overfitting [42-45]. 
The partition of well status graph indicates that for R2 for 
training (99 wells) is 0.979. That for validation (51 wells) is 
also 0.979. The partition graph also confirms that for AV < 

220 wells are “not clean” and that for AV > 220 the wells are 
totally “clean” and defines a partition (a divide) at AV = 220. 

Figure 5: Partition predictive tool.

Generalized regression Lasso: The generalized regression 
personality provides variable selection techniques, including 
shrinkage techniques such as the Lasso and Elastic Net. 
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The Lasso and Elastic Net are two popular techniques 
that perform variable selection as part of the modeling 
procedure. They are effective in handling situations with 
multicollinearity and high-dimensional data. Large datasets 
with many variables often exhibit multicollinearity issues. 
The presence of correlated predictors can lead to instability 
and poor performance in classical modeling techniques. The 
Lasso and Elastic Net address these challenges by performing 
variable selection and regularization. It accommodates 
continuous, binomial, count, or zero-inflated response 
variables. This flexibility makes it suitable for a wide range of 
modeling situations. The generalized regression personality 
is recommended for situations where users want to compare 
models obtained using different techniques. It allows 
for the fitting of models with various distributions and 

provides a basis for model comparison. This personality is 
recommended when there is an interest in variable selection, 
suspicion of collinearity in predictors, or a need to fit models 
for comparison with models obtained using other techniques.

In summary, the generalized regression personality is 
a versatile tool that addresses challenges associated with 
correlated and high-dimensional data. It is applicable to 
both large datasets with multicollinearity issues and small 
datasets, offering variable selection capabilities and flexibility 
in handling different response variable distributions. It 
is a valuable option for users seeking to build predictive 
models, reduce model complexity, or compare models across 
different scenarios [42-45].

 

Table 5: Generalized regression results.

The binomial distribution was chosen because of set 
problem outcomes “clean” or “not clean”. The obtained 
generalized likelihood for a clean well is R2 of 0.97. The 
regression model used 5 parameters, an intercept and the 4 
independent variables AV, Re, Eu, and ε/D. The following best 
fit equation was obtained: 

  -49.58  0.226  – 0.000351Re – 7357   66363 /WCC AV Eu D= + +

A ChiSquare value of 2.22 indicates that Eu is the independent 
variable with the highest predictive power. AV is the next 
powerful predictor.

Figure 6: Prediction profiler probability distribution.
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The prediction profiler tool for the generalized regression 
model (Figure 6) confirms that the well is 99.9 % “clean” for 
AV ≥ 234, Re ≥ 34,816, and Eu ≤ 0.00283. The findings are in 
line with conclusions drawn from other predictive tools.
 
K Nearest Neighbors: K Nearest Neighbors is a flexible 
and intuitive algorithm that makes predictions based 
on the proximity of data points in the feature space. Its 
nonparametric nature allows it to handle diverse datasets, but 
attention must be paid to predictor selection. The algorithm 
has found success in applications requiring classification or 

prediction tasks, such as image classification and medical 
diagnostics [42-45]. 

The model selection plot (Figure 7) displays a solution 
path across k based on the misclassification rate for 
categorical response. The slider (red line) placed on the 
value of K=1 implies that model 1 is the best performing 
model for training (misclassification rate = 0.000, light grey 
line). Model 1 (marked with an asterisk) also has the lowest 
number of observations that are incorrectly predicted by the 
model. 

-0.01

0

0.01

0.02

0.03

0.04

0.05

0.06

0 2 4 6 8 10

K

Figure 7: Misclassification rate.

However, for validation (black line, k=10), the 
misclassification rate is the lowest (0.196), the number of 
misclassifications is also the lowest, however, R2 the highest 

with a value of 0.80981 (Table 6). That makes k=10 the best 
predictive model. 

Training Validation

K Count R2 Misclassification 
Rate Misclassifications K Count R2 Misclassification 

Rate Misclassifications

1 99 0.60245 0 0* 1 51 0.54106 0.01961 1*
2 99 0.75731 0.0101 1 2 51 0.63201 0.01961 1
3 99 0.80926 0.0101 1 3 51 0.65266 0.05882 3
4 99 0.8425 0.0101 1 4 51 0.65517 0.05882 3
5 99 0.85174 0.0101 1 5 51 0.70079 0.05882 3
6 99 0.84927 0.0202 2 6 51 (0.72538 0.05882 3
7 99 0.84509 0.0202 2 7 51 (0.73439 0.01961 1
8 99 0.85306 0.0202 2 8 51 0.73912 0.01961 1
9 99 0.83583, 0.0202 2 9 51 0.80908 0.01961 1

10 99 0.84335, 0.0404 4 10 51 0.80981 0.01961 1

Table 6: Misclassification rate comparison for 10 models.
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In addition, the mosaic plot (Figure 8) proves that K = 1 
model performs the best for training. 

Furthermore, in the contingency figure (Figure 8), the 
mosaic plot is a graphical representation of the two-way 

frequency table (“clean” and “not clean”). A mosaic plot is 
divided into rectangles of varying dimensions; the vertical 
length of each rectangle is proportional to the proportions of 
the Y variable within each level of the X variable.

Figure 8: Mosaic plot for training

Figure 8 a graphical representation that is designed 
to visually communicate the relationship and association 
between two variables (X and Y). X is “clean” or “not clean” 
and Y is the predicted probability. The width of partitions 
on the horizontal axis gives insight into the distribution 
of observations across different levels of the X variable. 
Meanwhile, the proportions and response probability on 
the vertical axis provide information about the relationship 
between the X and Y variables, including a reference to the 

null hypothesis of no association.

Table 7 summarizes all six predictive tools. The top 
3 tools for training are Fit Stepwise (R2 = 1.0, RASE = 4.3 
E-13), Nominal Logistic (R2 = 1.0, RASE = 5.8 E-12), and 
Neural Boosted (R2 = 1.0, RASE = 3.07 E-6). For validation, 
Fit Stepwise has an R2 of 1.0 and RASE of 6.4 E-14, Nominal 
Logistic has an R2 of 1.0 and RASE of 1.8 E-12, and Neural 
Boosted has an R2 of 1.0 and RASE = 0.00016.

Training
Method N Sum Wgt Entropy R2 Misclassification Rate RASE Generalized R2

Fit Stepwise 99 99 1 0 4.30E-13 1
Neural 99 99 1 0 3.07E-06 1

Boosted Tree 99 99 0.9958 0 0.00262 0.9974
Decision Tree 99 99 0.9786 0 0.01916 0.9868

Generalized Regression Lasso 99 99 0.934 0 0.05773 0.9585
K Nearest Neighbors 99 99 0.6024 0 - -

Validation
Method N Sum Wgt Entropy R2 Misclassification Rate RASE Generalized R2

Fit Stepwise 51 51 1 0 6.40E-14 1
Neural 51 51 1 0 0.00016 1

Boosted Tree 51 51 0.9953 0 0.00297 0.9972
Decision Tree 51 51 0.9785 0 0.01942 0.9869

Generalized Regression Lasso 51 51 0.9308 0.0196 0.08954 0.9565
K Nearest Neighbors 51 51 0.5411 0.0196 - -

Table 7: Summary table for training and validation using the 6 predictive tools.
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Using the developed code (see Appendix) for the 
Spraberry wells, 14 wells (“clean” and “not clean”) from 
Woodford have been used to test the validity of the code. 3 

wells have been identified as “not clean” since AV is lower 
than 200, Re is less than 10,000, and Eu is larger than 0.003 
(Figure 9). 

Figure 9: Model testing using the developed code

The most likely well status distributions in Figure 
10 demonstrate the validity of the developed code. The 
distribution histograms (hatched oblique lines) align with 

the most likely well status operating conditions for “clean” 
wells with AV > 220, Re > 25,000, and Eu < 0.003. 

Figure 10: Well status distributions
 

Software Development

JSL allows JMP users to write scripts, enabling the 
recreation of analysis results. Power users often use JSL 
to extend JMP’s functionality and automate analyses in 
production settings. JSL in JMP serves as a powerful scripting 
language that allows users to automate analyses, extend 
functionality, and reproduce results. It is particularly useful 
for documenting and automating repetitive tasks, making 
it a valuable tool for data analysis and exploration in JMP 

[42-45].Top of Form The JSL code is depicted in the paper 
Appendix. In the future, an interface will be developed to 
create a user-friendly software that will be commercialized. 

Commercializing the JSL Code

The commercialization of the developed JSL code 
involves several steps to ensure that the software is sold or 
distributed in a way that aligns with the business goals and 
legal requirements. The following is an outline of a general 

https://medwinpublishers.com/PPEJ/
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guide that will help with the commercialization of the JSL 
code:

Code licensing: Choose a suitable software license that 
aligns with the business goals. Common licenses include 
open-source licenses like MIT, GPL, or commercial licenses. 
These licenses will allow retaining more control over the 
code.
Intellectual Property Protection: Consider protecting 
intellectual property through patents, trademarks, or 
copyrights, depending on the nature of the code and the type 
of protection it requires.
Documentation Creation: Develop comprehensive 
documentation that explains how to install, configure, and 
use the JSL code. This will be crucial for users and potential 
customers to understand the product.
User Interface Building: The code has a user interface 
that is user-friendly and visually appealing. A well-designed 
interface can enhance the overall user experience.
Licensing Mechanisms Implementation: Licensing 
mechanisms are implemented to control access and usage. 
This includes activation keys, license files, or other methods 
to verify the legitimacy of users.
Strategy Pricing: A pricing strategy for the software will be 
decided. This is a one-time purchase, subscription-based, or 
a combination of both. 
Distribution Channel Set Up: Distribution of the software 
will be through a website, third-party platforms, or a 
combination of both. In addition, aligning the distribution 
channels with the business strategy will be ensured.
Processing Payment: To handle transactions, a secure and 
reliable payment processing system will be set up. This might 
involve integrating with third-party payment processors or 
using an e-commerce platform.
Marketing and Sales: To promote the software, a marketing 
strategy will be developed. This may involve creating a 
website, utilizing social media, and reaching out to potential 
customers. Besides, offering demos or free trials, to attract 
users, will be considered.
Customer Support: A system will be established to provide 
customer support. This will include email support, forums, or 
a dedicated support team. We will guarantee good customer 
support to maintain customer satisfaction.
Staying Compliant: We will ensure that the commercialization 
efforts comply with all relevant laws and regulations. This 
will include data protection laws, export regulations, and 
other industry-specific requirements.
Regular Updates and Maintenance: We will commit to 
maintaining and updating the software to fix bugs, add 
new features, and ensure compatibility with the latest 
technologies.

This was a general guide, and the specific steps that will 
be taken will depend on the nature of the JSL code, the target 

market, and the business goals. Besides, legal professionals 
will be consulted to ensure that all legal and regulatory 
requirements are met.

Conclusion

Six Predictive tools have been used to further validate 
the developed WCC correlations for 151 Spraberry formation 
fractured wellbores from West Texas. The Neural Boosted 
model showed an excellent degree of fit with an R2 of 1.0000 
for training and an R2 of 1.000 for validation. The strong 
correlation between WCC and the annular velocity, Reynolds, 
and the Euler Numbers have been tested with 14 wells from 
the Woodford formation in Oklahoma.

A JSL code has also been written to identify whether 
fractured wellbores are “clean” or “not clean” from debris 
and bridge plug fragments. The input used are annular 
velocity, Reynolds, and Euler Numbers. It was proved that for 
AV > 220, Re > 29,000, and Eu < 0.003 fractured wellbores are 
all 99.99% deemed “clean”. The code will allow operators to 
identify conditions for which completed fractures wells are 
“clean” of debris and fragments of bridge plugs. 

A commercialization document has been established 
to emphasize that the software is properly marketed and 
complies with legal considerations. 
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