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Abstract

The inevitable result that gas wells witness during their life production is the liquid loading problem. The liquids that come 
with gas block the production tubing if the gas velocity supplied by the reservoir pressure is not enough to carry them to 
surface. Researchers used different theories to solve the problem naming, droplet fallback theory, liquid film reversal theory, 
characteristic velocity, transient simulations, and others. While there is no definitive answer on what theory is the most valid 
or the one that performs the best in all cases. This paper comes to involve a different approach, a combination between 
physics-based modeling and statistical analysis of what is known as Machine Learning (ML). The authors used a refined ML 
algorithm named XGBoost (extreme gradient boosting) to develop a novel full procedure on how to diagnose the well with 
liquid loading issues and predict the critical gas velocity at which it starts to load if not loaded already. The novel procedure 
includes a combination of a classification problem where a well will be evaluated based on some completion and fluid 
properties (diameter, liquid density, gas density, liquid viscosity, gas viscosity, angle of inclination from horizontal (alpha), 
superficial liquid velocity, and the interfacial tension) as a “Liquid Loaded” or “Unloaded”. The second practice is to determine 
the critical gas velocity, and this is done by a regression method using the same inputs. Since the procedure is a data-driven 
approach, a considerable amount of data (247 well and lab measurements) collected from literatures has been used. Convenient 
ML technics have been applied from dividing the data to scaling, modeling and assessment. The results showed that a well-
constructed XGBoost model with an optimized hyperparameters is efficient in diagnosing the wells with the correct status and 
in predicting the onset of liquid loading by estimating the critical gas velocity. The assessment of the model was done relatively 
to existing correlations in literature. In the classification problem, the model showed a better performance with an F-1 score 
of 0.947 (correctly classified 46 cases from 50 used for testing). In contrast, the next best model was the one by Barnea with 
an F-1 score of 0.81 (correctly classified 37 from 50 cases). In the regression problem, the model showed an R2 of 0.959. In 
contrast, the second best model was the one by Shekhar with an R2 of 0.84. The results shown here prove that the model and 
the procedure developed give better results in diagnosing the well correctly if properly used by engineers. 
      
Keywords: Gas Wells; Machine Learning; XGBoost

Introduction

The problem of liquid loading in gas wells has been 
discussed widely in literature. A definition of the problem 

is when the co-produced liquids with gas (water and 
condensate) can accumulate in the wellbore if the reservoir 
energy depletes. The liquid loading happens in all types of gas 
wells; vertical, inclined and horizontal which causes severe 
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slugging [1]. This phenomenon could be studied in many gas 
fields around the world conventional and unconventional 
[2] such as Marcellus gas field in the United states [3], 
Turkmenistan gas fields [4], China gas fields [5], the huge gas 
field of Hassi R’Mel in Algeria [6], Reggane and Ahnet fields 
in Algeria [7,8] and other fields around the world such as 
Qatar, Oman and Nigeria gas fields. In order to intervene in 
the wells and reduce the severity of the liquid loading, one of 
the deliquefaction technics that follow should be used:
•	 Mechanical intervention: velocity string, plunger lift, 

scheduled opens and shuts of the wells manually or 
automated, and downhole pumps.

•	 Chemical intervention: Foaming agents, or surfactants, 
and gas lift.

These interventions proved to be efficient if used 
properly at the right time of the well’s life. The term “right 
time” refers to the time of the start of liquid loading or the 
onset of liquid loading. Building on this, knowing when the 
well will start to load is as critical as the intervention itself. 
For this reason, several researchers investigated theoretically 
and in practice the mechanism that lead to liquid loading. 
The theories vary while describing the problem and how to 
approach it. The early hypothesis was proposed by Turner, et 
al. [9] of what is known later as the Droplet Fallback model. 
This later suggests that liquids are transported as entrained 
droplets inside the gas core. This conclusion was elaborated 
after analyzing their field data with the two methods: droplet 
fallback and liquid film reversal. Researchers afterwards 
worked on improving the model by suggesting modifications 
and including new parameters based on lab experiments or 
new field data naming Belfroid and Zhou [10-16]. Another 
theory is the liquid film reversal model adopted by Barnea 
[17] who derived the analytical model starting from the 
momentum balance equations. Researchers such as (Alsaadi 
[19]; Chen, et al. [20]; Fan, et al. [21]; Liu, et al. [22]; van ’t 
Westende, et al. [23]; C Vieira, et al. [24]; Waltrich, et al. [25]) 
and other investigated the theory by doing lab experiments 
and observed the same thing, which is that the onset of liquid 
loading coincides with the start of the film reversal. Other 
researchers based their studies on this theory and tried to 
improve the model to work better in all cases [26-29] or 
to be more realistc [30]. Other researchers used different 
theories such as Lea, et al. [31] who suggested that the 
onset of liquid loading occurs at the minimum of the outflow 
performance curve in the nodal analysis. Adesina, et al. [18]; 
Guo, et al. [12] used the minimum kinetic energy criterion 
to the 4-phase (gas, oil, water, and solid particles) mist-flow 
model and elaborated a closed-form analytical equation to 
predict the minimum gas flow rate. Gaol, et al. [32] did not 
consider the onset of liquid loading as a single event, and 
developed a model based on the characteristic velocity as 
a scaling variable to track the overall liquid content inside 
the wellbore. Some other researcher relied on transient flow 

simulations to predict the onset of liquid loading by tracking 
the liquid holdup [33,34,35]. Nagoo, et al. [36] considered 
that the flow in gas wells is extremely complicated and 
cannot be described by only one theory of either droplet 
fallback or the liquid film reversal, rather they developed a 
new analytical equation based on the axial buoyancy vector, 
the convective inertial and the interfacial tension forces to 
elaborate an easy-to-use equation reliable enough to give the 
onset of liquid loading as they state in their paper. On the 
other hand, only few researchers tried to solve the problem 
by learning from previous lessons and analyzing the data 
from a statistical point of view. To the best of our knowledge, 
Ansari, et al. [3] were the only ones who used a statistical 
approach and involved Machine Learning technics to solve 
the problem of the prediction of the onset of liquid loading. 
They used data from 160 gas wells in the Marcellus shale 
and developed an Artificial Neural Network model that was 
able to outperform all the correlations compared with. The 
novelty of this paper is to develop a full procedure using 
Machine Learning (XGBoost specifically) on how to diagnose 
a well that is suspect of liquid loading and predict the liquid 
loading state from a classification perspective, a direct value 
prediction of the critical gas velocity and how to combine the 
knowledge of both to decide when to intervene in the wells 
to minimize the severity of liquid loading. The following 
sections will discuss in great details on a step-by-step basis 
how to develop the model and how to use it. 

Data Collection and Processing

In order to model the onset of liquid loading properly, 
meaningful data needed to be collected from the literature. 
There are a good number of published articles on liquid 
loading, but only a few published data that can be used in 
such a modeling approach. Data were collected from field 
studies Luo, et al. [27]; Turner, et al. [9]; Veeken, et al. [14] 
and labs [19,37]. Choosing these sources is due to the fact 
that the published data has all parameters which could 
influence the onset of liquid loading, naming; (Superficial 
liquid velocity, liquid density, gas density, liquid viscosity, 
gas viscosity, interfacial tension, the inclination (degrees) 
of the well or the experimental setup, diameter, superficial 
gas velocity and the status of the well or the experimental 
setup whether it is loaded or not). Since the data comes from 
different systems, it has to be brought to a united system, the 
SI units, and the figures below show the distribution of the 
parameters.
 

As can be seen in the plot, superficial gas velocity 
covers a wide range of values which commonly found 
in field observations, and liquid superficial velocity also 
encompasses a wide range of values that represent wells that 
produce a minimal amount of water or condensate (liquid) 
or wells which have a considerable amount of liquid. The 
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wells and experimental setups which data are coming from 
included mostly vertical cases, with some cases from nearly 
vertical to nearly horizontal and with a small diameter or 
relatively large diameter up to 7” (0.1772 m). The most 
critical observation could be the status of the well, as we 
notice here most of the wells are loaded with a ratio of 3:1 
between loaded and unloaded.

 
The fluids properties plotted in Figure 1 showing liquid 

density and viscosity reveal that both water and condensate 
are produced from the wells in which the data are collected, 
Gas density is measured at the wellhead conditions, the point 

where field engineers measure their fluid properties and rely 
on to determine the status of the well whether is loaded or 
not. This explains the high values shown in the plot which 
also refers to a high-pressure producing well. The interfacial 
tension plot also indicates that both water and condensate 
are coproduced with gas.

The total measurements obtained from the data 
gathered resulted in 246 measurements for both field and 
lab experiments (196 samples from field studies and 50 
samples from lab experiments).

          

          

          

 

Figure 1: Data distribution frequency histograms.
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Modelling Method

Chen, et al. [20] at the University of Washington, 
developed XGBoost for the first time and described it as a 
scalable Machine Learning system for tree boosting. The 
basis of XGBoost is set on decision trees as the classifier 
or regressor, including some modifications of the objective 
function by adding some regularization to limit the over-
fitting. An important novelty in the XGBoost is the boosting 
mechanism introduced, which not only boosts the decision 
trees but also makes the computation faster than any other 
ML algorithm. What makes the XGBoost different than 
Random-Forest and other tree-based algorithms is the 
architecture that keeps building on previous trees and keeps 
minimizing the error until it becomes infinitely small (Figure 
2).

Chen, et al. [20] stated on their paper the mechanism on 
how the algorithm works by the following example:
For a dataset of m features and n number of examples where

( )( ){ ,  ,  ,  m
i i i iD x y D n x y= = ∈ ∈  , the output iy  is 

predicted using K additive functions as follows:

 ( ) ( )
1

   ,  
k

i i k i k
k

y x f x fφ
=

= = ∈∑ 

Here 𝔽 is the space of regression trees, and k is the 
number of trees in the model. The solution of the model is 
obtained by minimizing the regularization loss function and 
by finding the best set of functions to embed in the model:

( ) ( ) ( ) ,i i k
i k

l y y fφ = + Ω∑ ∑

where,

( ) 21  
2

f Tγ λωΩ = +

Here l represents the loss function, or the difference between 
the predicted output iy  and the actual output iy . Ω  
measures the complexity of the model and controls the over-
fitting of the model. T is the number of leaves of the tree, w is 
the weight of each leaf.

Figure 2: XGBoost Model Schematic.

The term Boosting refers to the process of adding new 
function f as the model keeps training while working on 
minimizing the objective function in decision trees. Trees or 
functions are added as follows:
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Here , i ig h  are first and second order gradient statistics 
on the loss function.

The complete model equations and details can be found 
in the article by Chen, et al. [20].
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As can be seen, the model has multiple parameters, often 
referred to as hyper parameters that construct a full set of 
equations to be solved to obtain a final prediction of the 
critical gas velocity. The model equations are translated to 
a coded algorithm that trains on the data supplied and then 
tested to get the best performance. It is worth mentioning 
that all the coding related to this research was done in Python. 
This open-source programming language was used to model 
and tune the model’s hyperparameters to produce the final 
predictive model. The process of tuning the parameters will 
be discussed in the next section.

Modelling Approach

The standard field practice is to calculate the critical gas 
velocity at which liquid loading occurs, using correlations 
such as Barnea [17]; Luo, et al. [27]; Turner, et al. [9] or 
transient multiphase flow simulations. This process is done 
before and after the onset of liquid loading and results in 
classifying the well as ‘Loaded’ or ‘Unloaded’. 
Since we are employing Machine Learning to model this 
problem, the solution provided will contain two parts:
•	 The first part is a classification problem where a 

classification model of XGBoost will be developed and 
compared with the correlations commonly used in 
literature to see which method better classifies the wells 
to their correct state. 

•	 The second part is a regression problem where a 
regression model of XGBoost will be developed to predict 
a value of a critical gas velocity at which liquid loading 
occurs, then compare the results of the prediction with 
the same correlations.

The reason behind this modeling approach is that a 
correlation or a model may be conservative and predict 
critical gas velocity values higher than what was observed 
in the field or the lab leading to wrong interventions, which 
may cause extra expenses that could have been avoided. 
In the reverse case, a model could be too optimistic and 
consistently predict values less than what was observed 
in the field, which may lead to more damages that could 
have been avoided. Contemplating this problem, this paper 
proposes a two-step modeling approach to generate a cost-
effective tool that will not only classify the wells as loaded 
or not but also provide a close approximation of what was 
observed in the field at the onset of liquid loading.

Since the two steps fall under the Machine Learning 
modeling, data will be divided randomly with a ratio of 80% 
training to 20% testing. 

Classification problem: This section aims to develop a 
model that classifies the well to a correct status, whether 
loaded or not. The first step is to encode the status to an 

interpretable numeric value; for this purpose, the following 
coding was considered (Table 1):

Well status Status Code
Loaded 1

Unloaded 0

Table 1: Status encoding.

After encoding the well’s status, the first practice is to 
choose the features to be asserted as inputs for the model. 
Since the problem being solved is not a purely statistical 
problem, so it will not be treated as conventional statistical 
problems where features are selected using technics like 
recursive features elimination or principal component 
analysis; rather, the features will be chosen based on previous 
observations from analytical models such as the liquid film 
model by Barnea or correlations such as Turner correlation. 
The reason behind this comes from the engineering 
perspective of the problem, where each parameter presents 
specific influence on the problem.
 

Considering the analytical film model by Barnea 
(Appendix) the following parameters coming from the 
momentum balance equation are chosen to be inputs for the 
model (diameter, liquid density, gas density, liquid viscosity, 
gas viscosity, angle of inclination from horizontal (alpha) and 
superficial liquid velocity). Considering the model of Turner 
(Appendix), the interfacial tension is added to the inputs list.

Building an effective classification XGBoost model 
requires tuning the hyperparameters used inside the model 
to generate a prediction. To tune the parameters, multiple 
values should be tested; for that, the Randomized Search 
technic from Scikit-Learn was used.

RandomizedSearchCV implements a “fit” and a 
“score” method; it uses a random combination of the 
hyperparameters from the supplied lists of the values to train 
and test the model by applying specified cross-validation 
over the data. Randomized Search chooses the combination 
of the hyperparameters, which gave a better performance on 
the testing data.
The list of the parameters considered to be tuned is below:
•	 Number of estimators: this parameter controls the 

number of decision trees used by the XGBoost. Values 
list [20,50,100,200,300,500,1000].

•	 Lambda: this is used to handle the regularization part of 
XGBoost and avoid overfitting. Values list [0.01,0.1,1].

•	 Max-depth: the maximum depth of a tree is used to 
control overfitting as well. More trees depth means 
that the model is learning relations very specific to a 
particular sample. Values list [3,4,5,7,8,9,10,12,14,20].

https://medwinpublishers.com/PPEJ/
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•	 Gamma: it specifies the minimum loss reduction required 
to make a split. Values list [0,0.1,0.25,0.5,1].

•	 The learning rate: it defines the step size shrinkage used 
in update to prevent overfitting. Values list [0.01,0.05,0.
1,0.2,0.3,0.5,0.6,1].

The final optimized hyperparameters are presented below 
(Table 2):

Parameter Value selected
Number-of-estimators 300

Lambda 1
Max-depth 20

Gamma 0.1
Learning rate 0.2

Table 2: Hyperparameters selected for the XGBoost classifier.

Since the goal is to compare the performance of the model 
to other correlations in the literature and looking at the fact 
that the correlations generate a solid value of the critical gas 
velocity, the following procedure was followed to bring the 
results to the same page, as was done by Chemmakh, et al. 
[30] to compare the predicted values by different correlations 
and the field observation rates as follows: 
•	 If the critical rate predicted by the models is bigger than 

the field rate and the actual status of the well is loaded, 
the case is labeled “True Loaded TL”.

•	 If the critical rate predicted by the models is smaller than 
the field rate and the actual status of the well is loaded, 
the case is labeled “False Unloaded FU”.

•	 If the critical rate predicted by the models is bigger than 
the field rate and the actual status of the well is unloaded, 
the case is labeled “False Loaded FL”.

•	 If the critical rate predicted by the models is smaller 
than the field rate and the actual status of the well is 
unloaded, the case is labeled “True Unloaded TU”.

The confusion matrix presented in Figure 3 displays the 
obtained results for the model’s predictions on the testing 
dataset (50 samples). The confusion matrix is an effective 
tool to compare the field observations to the predicted ones. 
Turner’s model, for example, could predict the correct status 
of the well only in 15 measurements (3 True Loaded well and 
12 True Unloaded wells) and misclassified 35 measurements 
(34 False Unloaded and 1 False Loaded) which could be 
interpreted as an underprediction of the critical gas velocity 
leading to very late alert by classifying a well as flowing while 
it is already loaded or started loading. Similar observation 
for the model of Belfroid where it performed similarly to 
Turner’s model. These two models represent the droplet 
fallback theory models, and as can be seen here, the models 
did not perform well as aligned with other research article 
findings naming Luo, et al. [27]; Shekhar, et al. [29]; Veeken, 
et al. [14]; Cleide Vieira, et al. [38] that stated the Turner’s 
model or the droplet fallback models tend to underpredict the 
critical gas velocity and giving late alerts to field engineers to 
intervene in the wells.

Figure 3: Confusion matrix for model’s predictions.
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The model of Barnea, on the other hand, performs 
slightly better by correctly classifying 37 wells/lab 
measurements as True Loaded (28) or True Unloaded 
(9); the model of Shekhar also presented better results by 
correctly classifying 32 wells/lab measurements which is 
similar to the results of the liquid film model which takes the 
entrainment into consideration, developed by Chemmakh, et 
al [30]. The three models representing the liquid film model 
theory with various modifications, performed better than 
the droplet entrainment but still underpredicting the results 
by misclassifying at least 9 wells/lab measurements as False 
Unloaded which recommends late alert to intervene in the 
well to reduce liquid loading by considering it as flowing 
normally while the liquid loading has already started.
 

Contrary, the results obtained from the XGBoost model 
were reasonably satisfying. The model correctly classified 46 
wells/lab measurements from a total of 50 measurements. 
36 True loaded and 10 True Unloaded wells show how 
good the model predictions are by correctly predicting the 
status of the wells from the supplied inputs. 3 False Loaded 
cases show that the model overpredicted the results only 
3 times. Only 1 False Unloaded case means that the model 
underpredicted the status of the well only 1 time which 
reduces the cost of the model predictions by avoiding wrong 
alerts and missing wells that are loaded and delaying the 
necessary interventions, making the decisions recommended 
by XGBoost classifier right on time in most cases in the 
collected dataset (Table 3). 

To further compare the results, the following table 
presents the metrics often used for classification problems 
[39,40]: 
•	 Precision: TL

TL FL+
which is used when the main goal is 

to be very sure of the prediction. Also, it gives an insight 
into how many predicted loaded wells are in fact loaded.

•	 Recall: TL
TL FU+

is used when predicting loaded wells is 

a priority as it gives the portion of correctly classified 
wells among the loaded wells in the field.

•	 Accuracy:  TL TU
TL FL TU FU

+
+ + +

is the ratio of the correct 

predictions to the total number of wells. The accuracy 
may not be the best metric to use when the data is 
imbalanced (the number of loaded vs. unloaded wells is 
not even), which is the case for the current data set (37 
loaded and 17 unloaded cases). An example would be if a 
model predicts that all wells are loaded, then it would 
have an accuracy of 0.74, which is not helpful in the field 
even though it seems high.

•	 To overcome the drawbacks of accuracy and to get 
a balance between precision and recall F1-score is 
introduced, which takes the harmonic mean of precision 
and recall.

      1 2F score  Precision Recall
Precision Recall

×
= ×

+

or ( )( )
1

0.5
TLF score

TL FL FU
=

+ +

Since the F1-score takes both precision and recall into 
consideration, then any model with a low value of each of 
them would have as well a low value of F1-score keeping the 
highest value of F1-score as a reference of which model is the 
best.

Names False 
Unloaded

False 
Loaded

True 
Unloaded

True 
Loaded Precision Recall Accuracy F1_Score

Turner 34 1 12 3 0.75 0.081081 0.3 0.146341
Belfroid 35 0 13 2 1 0.054054 0.3 0.102564
Barnea 9 4 9 28 0.875 0.756757 0.74 0.811594

Shekhar 16 2 11 21 0.913043 0.567568 0.64 0.7
Olimans 15 3 10 22 0.88 0.594595 0.64 0.709677

XGB-
Classifier 1 3 36 10 0.923 0.972 0.92 0.947

Table 3: Model’s performance metrics.

To assess the results, comparing each metric individually 
may lead to erroneous results. For instance, looking at the 
precision alone would choose the model of Belfroid as the 
best model having a precision of 1, but in fact it could predict 

only 2 loaded wells from a total of 37. On the other hand, 
the XGBoost model has a precision of 0.91 but correctly 
predicted 36 loaded wells from 37. Looking at the recall, the 
XGBoost has the highest score of 0.972, outperforming the 
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other models clearly. As mentioned before, Recall is used 
when capturing the loaded wells is a priority. However, it 
is still not very useful when used alone since a model that 
predicts all wells are loaded would have a recall of 1 and still 
not functional. The accuracy metric indicates that XGBoost 
is the best model, but the result may not be very insightful 
since the dataset is not symmetric. When using the F1-
score, the metric that takes both Precision and Recall into 
consideration, XGBoost model outperforms all the models 
with a score of 0.947, followed by the Barnea’s model with 
a score of 0.81 and the two models derived from the liquid 
film reversal theory, then comes the models of Turner and 
Belfroid presenting the droplet fallback theory which again 
aligns with the results found in Luo, et al. [14]; Shekhar, et 
al. [29] with only one difference is that the Machine Learning 
algorithm performed better than all models.

Regression Problem: Predicting the status of the well is 
crucial but predicting when the well will start loading is 
equally vital, if not more. For this reason, a model of XGBoost 
was developed to predict the critical gas velocity. The first 
step in modeling a regression problem is similar to the 
classification problem, where the inputs need to be specified. 
As was done in the previous section, the same inputs were 

selected based on the observation from previous analytical 
models and correlations.

 
Since the model being developed is an XGBoost model, 

a similar process of optimizing the hyperparameters 
is integrated into the model. After trying all different 
combinations, the following parameters were selected and 
presented the highest performance (Table 4):

Parameter Value selected
Number-of-estimators 130

Lambda 1
Max-depth 50

Gamma 1
Learning rate 0.5

Table 4: Hyperparameters selected for the XGBoost 
regressor.

The model with the best performance was chosen and 
compared with the different correlations.

Figure 4: models’ predictions VS real field velocity measurements.

Figure 4 presents the critical gas velocity predicted by 
the different models compared to the observed critical gas 

velocity both in field and lab experiments. The results are 
best when the predictions are on 45 degrees line with the 
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observed critical velocities. The graph showing the models 
of Turner and Belfroid confirms the previous section’s 
observation that the models tend to underpredict the critical 
gas velocity by placing the wells in the unloaded region 
while they are already loaded. The graph showing the results 
of XGBoost model predictions demonstrates how close 
the prediction could be compared to the observed results 
since most points are either on the 45 degrees line or very 
close to it. Further comparison of the results requires the 
introduction of the metrics suitable for regression problems 
naming: 
Coefficient of determination R2:

2
1

2
1

( )
 

( )
2R

n
predicted truei

n
predicted averagei

y y

y y
=

=

−
=

−

∑
∑

 Normalized Root Mean Squared Error NRMSE:

( ) ( )

2
1

  

( ) 1  
  min

n
predicted truei

true max true

y y
NRMSE

n y y
=

−
=

−
∑

Normalized Mean Absolute Error MAE:

( ) ( )

1

  

1  
  min

n
predicted truei

true max true

y y
NMAE

n y y
=

−
=

−
∑

The following table sums all the results obtained (Table 5):

Names R2 NMAE NRMSE
XGB 0.959851 1.203637 1.617146

Turner 0.603237 3.766203 5.083678
Belfroid 0.629135 3.744506 4.914962
Olimans 0.423974 4.056983 6.125383
Barnea 0.733511 3.201529 4.166311

Shekhar 0.845328 2.433582 3.174083

Table 5: Metrics of model’s performance.

Comparing R2, XGBoost has the highest score with 0.959, 
followed by Barnea’s model. Comparing NMAE XGBoost has 
the lowest value with 0.037, followed by Shekhar’s model 
with 0.076. Comparing the RMSE, XGBoost has the lowest 
score with 0.050 confirming the outperformance of the 
model over all models compared with. The results also prove 
the previous findings that the liquid film models outperform 
the droplet fallback models. The model of liquid film model 
including the entrainment fraction performed the worse 
and this is also aligning with the conclusions of the work 
by Chemmakh, et al. [30] that recommended including the 

entrainment in the Barnea’s liquid film model may not be the 
best practice.

Results and Discussion

In this research, a Machine Learning method has been 
utilized to model the problem of the onset of liquid loading in 
gas wells. The process was divided on two parts: 
•	 A classification problem: here the main goal was to predict 

the status of the well weather ‘Loaded’ or ‘Unloaded’. 
In this section the discussion above highlights how the 
XGBoost could be used as a tool to better predict the 
status of the wells learning from previous experience and 
data. The results revealed that XGBoost outperformed all 
other models and correlations compared with.

•	 A regression problem: here the goal was to predict when 
the well will start to load by predicting the critical gas 
velocity at which the liquids will start to accumulate in 
the well. The XGBoost model performed better than all 
other models here as well by predicting the results as 
close as possible to the field observations with an R2 
score of 0.96. 

•	 The only shortcoming of this model is the fact that it is an 
implicit model that is not quite clear for engineers how 
to use it. However, with the advancement in the coding 
skills among engineers, the huge amount of open access 
resources, and the procedure descried in this paper will 
give a full roadmap on how to use such an algorithm and 
predict the onset of liquid loading in gas wells and plan 
early for the necessary interventions.
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