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Abstract

In a thermo-dynamical system loss of energy takes the centre of attention. Laws of thermodynamics stated that energies 
of the system cannot be lost, but this energy could be engaged to perform useful work, or wastefully lost in form of rises in 
temperature of the system. It is eminent to control the factors which act in rising values of loss in energy. Nanofluids uses 
nanosized particles with very high thermal conductivity uniformly distributed in base fluids which increases the conductivity 
of the base fluid ridiculously. Nanofluid play a vital role in reducing the loss of energy and improve heat conduction. An effort 
has been made in this paper is to carry out an extensive review of the literature regarding Nanofluid in recent years. Some 
basic components and properties of nanofluids are deeply elaborated in this article. Preparation of nanofluids perform a very 
significant role in recent decades. The new advanced results in nanofluids helps the reader to clarify their concepts are argued 
using two major dynamical models. 
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Introduction

Water and oil are most commonly used for heat 
transportation due to their fluidity, but low heat transfer 
character is an area of concern for such fluids. Whereas, the 
heat conductivity of the metals are much higher as compared 
to fluids, so it is of common interest to produce a class of 
fluid which can conduct heat or electricity like metals or 
their oxides. Nanofluids are by added nanosized particle 
with very high thermal conductivity in some base fluid 
[1-11]. Nowadays the technique involving both nanofluid 
and porous media finds considerable attention from many 
researchers and great demand from industry-based thermal 
systems. The logic behind it is that the surface area in 
contact with fluid in porous medium increases [12-16], while 
nanoparticles dispersed in nanofluid upsurge the effective 
thermal conductivity leading to the dramatic enhancement 

of the efficiency of typical industrial thermal systems. It is 
of vital importance to know the factor which reduces the 
thermal efficiency. According to laws of thermodynamics 
energy of the system remains to conserve, but can be 
converted into other forms for the utility [17-20]. More 
commonly we say all the energies of the system are spent in 
doing work or to augment the temperature of the body. Rise 
in use of nanofluids is one way to reduce the loss of energy. 
Increasing the heat transfer rate of heat transfer equipment 
is an ever-lasting topic in thermal engineering. 

The motivation of this review paper is to emphasize on 
the researchers to pay attention to the basic understanding 
of heat transfer enhancement due to nanofluids and its 
components. The knowledge presented in this paper is of 
signifies in the engineering appliances which needs the 
efficient heat transfer heat transfer mediums.
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Nanofluids

Industrial advancement in recent years boosted a need 
for efficient heat transfer and cooling process both at the 
micro or larger scale. Conventional fluids like air, water, or 
oils have smaller heat conductivity when compared with 
metallic solids.

The idea of adding solid particles in the liquid to 
enhancement the conductivity of liquids has been floated 
about a century ago when Maxwell established mathematical 
relations of the electrical conductivity of solid particles. 
But, these experiments and theoretical studies have been 
conducted with particles of size millimeter or micrometer. 
These particles tend to settle down quickly or form an 
aggregation. Also, they resist flow and cause a drop in 
pressure. To add to that a large number of particles are 
needed to improve the thermal conductivity of the fluid. 
Considering the adverse effects and limited advantage of the 
solid-liquid suspension these fluids can’t hit the limelight. 

With the advanced modern technology particles of a size, 
less than 100 nm are prepared of the metals and their oxides 
with better thermal conductivity, mechanical and magnetic 
performance base on the requirement of the system. These 
nanoparticles are uniformly dispersed in in Newtonian and 
non-Newtonian base fluids. These are stable suspend of 
nanoparticles with typical dimensions of the order of 10 nm. 
The term “Nanofluid” was first used by Choi [21]. 

The theme to develop such fluids is to achieve the best 
thermal performance of the material which can be deformed 
or transported like fluids with a very small concentration 
of particles. It is important to learn the mechanism of 
enhancement as to know why a drastic increase in heat 
transfer character of nanofluid is observed. Figure 1 shows 
the increase in literature on nanofluid in last five year. Many 
scientists swiftly mounting nanofluids [22-46] proposed a 
different mechanism behind this adversity. Also, defines new 
mathematical models for the properties and flow behavior 
of nanofluids.

     

Figure 1: Search result on Science direct and Cross-reference metasearch with keyword “Nanofluid” in last five years.

Components of Nanofluid

Nanofluids are composed of Nanosized particles, base 
fluids and surfactants which forms a heterogeneous mixture. 

Nanoparticles: Many metals and there oxides, Nitrides and 
carbides are used as nanoparticles. All possess properties 
to enhance thermal conductivity. Materials used for 
nanoparticles can be 
•	 Metal (Al, Cu, Ag, Au etc).
•	 Metal carbides/Nitrides/oxides (SiC, SiN, AlN, Al2O3, CuO 

etc)
•	 Nonmetals (carbon nanotubes)
•	 Hybrid Nanofluid(includes multiple nanoparticles used 

in fixed proportions)

Base Fluids: Usually, the base fluid used for these 
nanoparticles as a carrier are fluids with low heat transfer 
rate or non-conductor of electricity (also called ferrofluids) 
in their pure form. Ideally, it is required to enhance such 
properties of the fluid. To generator a smart coolant or smart 
fuel in a weightless environment. Some example of base 
fluids are 
•	 Water
•	 Ethylene
•	 Oils
•	 Biofluids
•	 Polymer solutions

Surfactants: Again comes the problem of stability of 
nanofluids i.e. agglomeration and clogging of nanofluids in 
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microchannels. Here, surfactant comes in play also known as 
dispersants. The surfactant is an economical way to increase 
the stability of nanofluid. The selection of the proper 
surfactant for given nanofluids is a key issue. Surfactant 
depends on the base fluids and nanoparticles used to 
prepare a nanofluid. Materials like can sometimes be used 
as the surfactant. Additionally, it is observed that with the 
inclusion of surfactants
•	 Sodium dodecyl benzoic sulfate
•	 Silica

Preparation of Nanofluids

Nanofluids are prepared using two processes known as 
Two-step method and single step method. 

Two-step process: In a two-step, process nanoparticles 
are fabricated as dry powders using different chemical or 
physical processes. Then, the powder is uniformly dispersed 
in the base fluid and finally, high power magnetic field or 
shear mixing is applied to get a homogenous nanofluid. As 
powder manufacturing of these metallic particles is already 
a developed process and its techniques and manufacturing 
at commercial scale are already continuing in the industry 
this process is considered to be a cheaper process to get 
nanofluids at a commercial level. But, particles due to the 
sheer number and large surface area, they have a tendency 
to aggregate and provides unstable behaviour.

Single step process: Considering the difficulties, many 
techniques are employed to simultaneously make and 
disperse nanosized particles in base fluids in a so-called 
single step process. This process reduces the chances of 
agglomeration of nanoparticles by dispersing the particles as 
soon as developed and avoids process like dying and storing 
etc. But on the hand these methods cannot synthesize 
nanofluids for commercial scale and lifted the cost of such 
fluid to a very high level, alternative chemical processes are 
deployed for one step processes which are improving rapidly.

Physical Properties of Nanofluids

Almost a decades of extensive experimental and 
theoretical research on nanofluid couldn’t still unveil all 
the hidden wonders of nanofluids. Also, a lack of agreement 
on mathematical and theoretical aspects of nanofluids 
and many possibilities of preparing nanofluids results in 
existence of a huge number of correlations defining physical 
and chemical properties of nanofluids. Factor like size, the 
shape of nanoparticles, base fluid, its pH value, surfactants, 
the thickness of the layer of surfactant and method for the 
production of nanofluids etc are the factor which affects the 
results and consequently make it hard to model the exact 
behaviour of any nanofluid. 

Shape and size of Nanofluid: Many shapes and sizes of 
nanoparticles can be prepared using different techniques. 
The shapes and sizes affect the Nanofluid’s thermal ability. 
Shapes like needle, platelets, brick, cylinder, rod and wire 
are more commonly used in literature other than traditional 
spherical particles. Yu and Choi [47] assumed ellipsoidal 
particles suspended in liquid with semi-axes of α, β and σ. 
The equation satisfying the solid ellipsoidal is

2 2 2
12 2 2

x y z

α β σ
+ + =  (1)

For a needle shapeα β σ>> = , for disc α β σ= >> and 
for sphereα β σ= = . The Maxwell’s macroscopic effective 
medium theory (EMT) [48] was extended by Hamilton 
and Crosser [49]. Some of the studies on the shape of the 
nanoparticles are described in Table 1. Size of nanoparticles 
an interesting relationship also. with increase an of size 
nanofluids conductivity decrease as the problems like 
clogging, aggerloments resurfaces. Many experimental 
studies show this results (See table [1]). Empirical shape 
factor n was introduces as n=3/ψ, here ψ is the sphericity 
which can be calculated by dividing surface of the sphere and 
other surfaces.

Numerous investigators have since reported remarkable 
physical and mechanical properties of carbon. Carbon 
nanotubes illustrates a growing number of applications 
of carbon nanotubes (CNTs) in analytical chemistry. The 
structure of carbon nanotubes is first briefly summarized 
followed by a description of the characterization methods 
such as STM, TEM, neutron diffraction, X-ray diffraction, 
X-ray photoelectron spectroscopy, infrared and Raman 
spectroscopy. Carbon nanotubes due to their specific 
atomic structure have interesting chemical and physical 
properties according to those of graphite and diamond. The 
characterization methods of carbon nanotubes which are 
most employed today.

From unique electronic properties and a thermal 
conductivity higher than diamond to mechanical properties 
where the stiffness, strength and resilience exceeds any 
current material, carbon nanotubes offer tremendous 
opportunities for the development of fundamentally new 
material systems. The mechanical properties of carbon 
nanotubes, combined with their low density, offer scope 
for the development of nanotube-reinforced composite 
materials. The natural convection boundary layer flow 
along a vertical cone with variable wall temperature under 
the presence of magneto-hydrodynamics is investigated. 
Vibration analysis of single-walled carbon nanotubes 
(SWCNTs) based on Love’s thin shell theory has been 
investigated along with five sort of boundary conditions with 
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three different shapes. 

The unique relationship between SWNT atomic 
structure and electronic properties, and the richness of 
structures observed in both purified and chemically etched 
nanotube samples are discussed. A more detailed picture of 
SWNT electronic band structure is developed and compared 
with experimental tunneling spectroscopy measurements. 
The experimental and theoretical investigations of localized 

structures, such as bends and ends in nanotubes, are 
presented. Last, quantum size effects in nanotubes with 
lengths approaching large molecules are discussed. The 
implications of these studies and important future directions 
are considered. Carbon nanotubes improved the ammonium 
biosensor response, linearity range of biosensor, detection 
limit of sensor, Multiwalled carbonnanotubes increased the 
response signal [50-60].

Ef
fe

ct
s

Reference Particle 
type Particle sizes Base fluid Relevant information

Si
ze

 e
ffe

ct
s

Masuda, et al. [61] Al2O3 13 nm Water Enhancement(Volume fraction): 4.3%
Enhancement(Thermal conductivity): 33%

Eastman, et al. [62] Al2O3 33 nm Water Enhancement(Volume fraction): 4.3%
Enhancement(Thermal conductivity): 9%

Lee, et al. [63] Al2O3 38 nm EG/Water

Enhancement(Volume fraction): 5.0%(EG/
water),

Enhancement(Thermal conductivity): 
18%(EG) and 12%(Water)

Wang, et al. [64] Al2O3 28 nm
EG

Water

Enhancement(Volume fraction): 5%
Enhancement(Thermal conductivity): 

17%(EG)
and 14%(Water)

Xie, et al. [65,66] Al2O3 60.4 nm
Water

EG

Enhancement(Volume fraction): 5%(EG/
Water)

Enhancement(Thermal conductivity): 
22%(Water)
and 29%(EG)

Das, et al. [67] Al2O3 38 nm Water Enhancement(Volume fraction): 4%
Enhancement(Thermal conductivity): 8%

Putra, et al. [68] Al2O3 131 nm Water Enhancement(Volume fraction): 4%
Enhancement(Thermal conductivity): 25%

Wen and Ding [69] Al2O3 37-56 nm Water Enhancement(Volume fraction): 1.6%
Enhancement(Thermal conductivity): 10%

Nara, et al. [70] Al2O3 40 nm Water
EG

Enhancement(Volume fraction): 
0.5%(Water/EG)

Enhancement(Thermal conductivity): 
34%(Water), 5%(EG)

Chon, et al. [71] Al2O3 11, 47, 150 nm Water 150nm 47nm 11nmµ µ µ≤ ≤

https://medwinpublishers.com/PPEJ/
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ct

s

Li and Peterson [72] Al2O3 36, 47 nm Water Enhancement(Volume fraction): 6%
Enhancement(Thermal conductivity): 28%

Krishnamurthy, et al. [73] Al2O3 20 nm Water Enhancement(Volume fraction): 1%
Enhancement(Thermal conductivity): 16%

Zhang, et al. [74] Al2O3 20 nm Water Enhancement(Volume fraction):5%
Enhancement(Thermal conductivity): 15%

He, et al. [75] TiO3 95, 145, 210 nm Water 210nm 145nm 95nmµ µ µ≤ ≤

Li and Peterson [76] Al2O3 36, 47 nm Water 47nm 36nmµ µ≤

Anoop, et al. [77] Al2O3 45, 150 nm Water 150nm 45nmµ µ≤

Vajjha and Das [78] ZnO 29, 77 nm EG-Water 77nm 29nmµ µ≤

Patel, et al. [79] Al2O3 11, 45, 150 nm EG, oil, 
water, 150nm 45nm 11nmµ µ µ≤ ≤

Teng, et al. [80] Al2O3 20, 50, 100 nm Water 100nm 50nm 20nmµ µ µ≤ ≤

Akbulut, et al. [81] ZnS Sphere, rod, and 
wires

The increased steric contribution of the
nanostructures to the overall surface

interaction

Timofeeva,
et al. [82] Al2O3

Platelet, blade, 
cylinder,
and brick

EG/water

Elongated particles and agglomerates
resulted in higher viscosity at the

same volume fraction due to
structural limitation of rotational

and transitional Brownian motions

Cui, et al. [83] Cu Sphere and 
cylinder

Enhancement of
Sphere(Viscosity): 14.8%

Enhancement of
Cylinder(Thermal conductivity): 20.31%

Enhanced micro-convection of the
cylindrical shape from rotational
motion, which increased thermal

conductivity

Ghosh and Pabi [84] Cu Cylinder

Increased contact area with increase
of aspect ratio of nanoparticle

induced higher rate of heat transfer
during the collision

Pilkington and
Briscoe [85] N/A N/A N/A

Aspect ratio of the nanostructures
has an effect on the equilibrium

forces mediated by nanofluids that
can affect the viscosity of nanofluids

https://medwinpublishers.com/PPEJ/
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Ooi and Popov [86] Cu Sphere and 
spheroid

Enhancement(Viscosity):
40-603%

Enhancement(Thermal conductivity):
32-151%

Estimated by the HeC model and the
Mueller et al.’s model

Ferrouillat, et al. [87]

SiO2

ZnO

Sphere and 
banana

Polygonal and 
rod

Water

Following the Timofeeva et al.’s
analysis (2009).

Enhancement is lower than predicted
by the HeC model.

Banana shape nanoparticles have
larger surface area in contact with
stabilizing chemicals than that of

spherical ones

Table 1: Size and Shape effects of nanoparticles in nanofluids.

Density of Nanofluid: Density is defined as mass per 
unit volume. Vajjaha and Das [88] perform a number of 
experiments with ethylene glycol and water base fluids. The 
relationship is defined as

( )1pnf fρ ϕρ ϕ ρ= + −  (2)

The mathematical equation for the density of the two-
phase mixture of solid in a liquid is adopted by Pak and Cho 
[89] and verify the result for Al2O3. 

Specific Heat capacity: Mathematically, specific heat 
capacity at constant pressure is the amount of heat required 
to raise the temperature of the 1 Kg fluid through 1 K. A 
correlation for the specific of nanofluid is calculated by Pak 
and Cho [89] for Al2O3-water nanofluid is

( )1c c cpnf fϕ ϕ= + − (3)

Here, cf is calculated ASHRAE Handbook [90] as

4.2483 1882.4fc T= +  for 293K≤T≤363K (4)

The results were improved by Buongiorno [91] by 
including density in it. The expression becomes 

( ) ( ) ( )( )1c c cnf s fρ ϕ ρ ϕ ρ= + −  (5)

Viscosity: The viscosity of the fluid with the spherical 
particle is calculated by Einstein [92] as

1 2.5eff

f

µ
φ

µ
= +  (6)

It is established that no theoretical model as yet can 
explain the viscosity of nanofluid completely but there are 
numerous correlations available defining the viscosity for 
some restricted conditions. The viscosity of Nanofluids 
depends mainly on the concentration of nanoparticles, but 
also, the temperature of the fluid, shape, size and density of the 
particles. Many theoretical and experimental investigations 
lead to different viscosities in different scenarios and 
improvement is overseen in the current models. Many review 
papers show a comprehensive review of effective viscosity 
of nanofluids [93-97]. Table 2 shows some of the theoretical 
and experimental models for the viscosity of nanofluids.

M
od

el

Reference Ye
ar Correlation Relevant information

Saito [98]

19
50

( )
2.51

1
eff

f

µ
φ

µ φ
= +

−

Spherical rigid particles

Brinkman [99]

19
52

( )2.5
1

1
eff

f

µ
µ φ

=
−

Brownian motion
Very small particles
Spherical particles
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Th
eo

re
tic

al

Lundgren [100]

19
72 1

1 2.5
eff

f

µ
µ φ

=
−

Valid for high moderate 
particle concentrations 
Dilute concentration of 

spheres

Batchelor [101]

19
77

21 2.5 6.2eff

f

µ
φ φ

µ
= + +

Rigid and spherical 
particles

Drew and Passman 
[102] 19

99

1 2.5eff

f

µ
φ

µ
= +

Brownian motion
Isotropic structure

5.0 vol%φ <

Wang, et al. [64]

19
99

21 7.3 123eff

f

µ
φ φ

µ
= + +

Cu/water, Au, CNT, 
graphene

Al2O3/water

Tseng and Lin [103]

20
03

( )13.47exp 35.98eff

f

µ
φ

µ
=

Al2O3/ethylene glycol
TiO2/water nanofluids

Maiga, et al. [104]

20
05

21 7.3 123eff

f

µ
φ φ

µ
= + +

Al2O3/water nanofluids

Maiga, et al. [105]

20
05

21 0.19 306eff

f

µ
φ φ

µ
= − +

Al2O3/ethylene glycol 
nanofluids

Song, et al. [106]

20
05

1 56.5eff

f

µ
φ

µ
= +

SiO2 /water nanofluids

Koo and Kleinstreuer 
[107] 20

05

( )

( )

Brownian

134.63 1722.3
45 10

0.4705 6.042
0

TB Tf rp p T

µ

φ
κ

βρ φ
φρ

=

− + +

×
−

 
 
 
  

CuO/water nanofluids
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Ex
pe

ri
m

en
ta

l

Kulkarni, et al. [108]

20
06

1ln ,eff A B
T

µ  = − 
 

2

2

20587 15857 1078.3
107.12 53.54 2.8715

A
B

φ φ

φ φ

= + +

= − + +

CuO–water
0.05 0.15

29nm
278 T 323 K
Shear rate 100 1/

pd

s

φ≤ ≤
=

≤ ≤
=

Buongiorno [91]

20
06

21 5.45 108.2

21 39.11 533.9

eff

f

eff

f

µ
φ φ

µ

µ
φ φ

µ

= + +

= + +

TiO2/water nanofluids
Al2O3/water nanofluids

Chen, et al. [109]

20
07

21 10.6 112.36eff

f

µ
φ φ

µ
= + +

TiO2 /ethylene glycol 
nanofluids

Nguyen, et al. [110]

20
07

( )0.904 exp 0.1483   d 47nm

21 0.025 0.015   d 36nm

2 31.475 0.319 0.051 0.009

d 26nm

eff
p

f

eff
p

f

eff

f

p

µ
φ

µ

µ
φ φ

µ

µ
φ φ φ

µ

= =

= + + =

= − + +

=

Al2O3/water nanofluids

CuO/water nanofluids
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Namburu, et al. [111]

20
07 ( ) ( )Log exp

21.8375 29.643 165.56
6 24 10 0.001 0.0186

A BTeff

A

B

µ

φ φ

φ φ

= −

= − +

−= × − +

CuO/(60:40)

Grag, et al. [112]

20
08

1 11eff

f

µ
φ

µ
= +

EG/water nanofluids
Cu/ethylene glycol 

nanofluids

Masoumi, et al. [113]

20
09 2

3,
72 6

p B p
eff f p

d
d

C
ρ ν πµ µ δ

δ φ
= + =

Al2O3/water nanofluids

Duangthongsuand 
Wongwises [114] 20

09

o

o

o

1.0226, 0.0477, 0.0112 for 15 C
1.0130, 0.0920, 0.0177 for 25 C
1.0180, 0.1120, 0.0177 for 35 C

a b c T
a b c T
a b c T

= = = − =

= = = − =

= = = − =

TiO2 /water nanofluids

Chandrasekar, et al. 
[115] 20

10 1
1

1631, 2.8

n
eff

f

b

b n

µ φ
µ φ

 
= +  + 

= =

Al2O3/water nanofluids

2eff

f

a b c
µ

φ φ
µ

= + +
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Vajjha, et al. [78]

20
10

( )

( )

exp

0.9197, 22.8539

exp /

30.555 10 , 2664

eff A C
f

A C

A B Tb

A B

µ
φ

µ

µ

=

= =

=

−= × =

CuO/(60:40)

Corcione [116]

20
11

( ) 0.3 1.03

1/3

,0

1

1 34.87 /

60.1

eff

f p f

f
f

d d

Md
N

µ
µ φ

πρ

− −
=

−

 
= +   

 

EG/water nanofluids
SiO2/ethanol nanofluids

Table 2: Summary of the studies on the theoretical and experimental models effective viscosity of nanofluids.

Thermal conductivity: Like viscosity, thermal conductivity 
also has no reliable model that effectively define all fluids 
in all conditions many correlations both theoretical and 
experimental are available in literature defining thermal 
conductivity (table 3). It is seen through experiments that 
thermal conductivity enhances the presence of nano-sized 
particles in fluid drastically hence an increase in thermal 
conductivity of the fluid is evident. Thermal conductivity 
shows its variation with change in the density of both fluid 
and particles, shape, size, concentration, heat conductivity 
etc. Maxwell [48] defined conductivity base on EMT for 
spherical particles as

( ) ( )
( ) ( )

2 2
2

kp kf kp kf
keff kp kf kp kf

ϕ
ϕ

+ + −
=

+ − −
 (7)

Hamilton and cross [49] incorporated shape factor and 
defines thermal conductivity as

( )( ) ( )( )
( )( ) ( )
1 1

1
kp n kf n kp kf

keff kp n kf kp kf
ϕ

ϕ
+ − + − −

=
+ − − −

 (8)

Vajjha, et al. [78] displays effects of density

( )
( ) ( )

2 2
45 10 ,

2

k k k kk p p Tf feff Bc f Tp pk Dk k k k pf p pf f

φ κ
βρ φ

ρφ

+ − −
= + ×

+ + −
 

(9)

Corcione [116] defined the dependence of thermal 
conductivity on the fluid temperature. 

10 0.03
0.4 0.66 0.661 4.4 Re Pr

k kTeff p
k T kf fr f

φ= +
   
   
   
   

 (10)

Some review papers display effective viscosity and thermal 
conductivity recently [93-97].
Experimental and theoretical models are developed some of 
such models are shown in Table 3.
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Reference Correlation Relevant information

Bruggemann [117]
( ) ( )

( ) ( )

( )

2
2 2

2

1 3 1 2 3
4 4

3 1 2 3

2 2 9 9

eff p f

f f

p

f

p

f

k k k
k k

k
k

k
k

φ φ

φ φ

φ φ

 
= − + − + ∆ 

  
  
 − + − +    ∆ =  
 + − 
 

Spherical particle Spherical 
particles

Applicable to high concentrations

Wasp [118] ( )
( )

2 2

2
p f f peff

f p f f p

k k k kk
k k k k k

φ

φ

+ − −
=

+ + −

Spherical and non-spherical 
particles,

Micro-dimensions
Various particle shapes,

Hamilton and Crosser’s model 
with 3n = .

Shape factor is unity.

Davis [119] ( )
( ) ( ) ( ) 2 33 1

1
2 1

eff

f

k k
f k O

k k k
φ φ φ

φ
−

 = + + + − − −

( ) 2.5f k = for 10k =

( ) 0.5f k = for k = ∞

Lu and Lin [120]
21eff

f

k
a b

k
φ φ= + +

Spherical and non-spherical 
particles For 10 :

2.25, 2.27
:

3.00, 4.51

k
a b
k
a b

=
= =
= ∞
= =
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Xue [121]

( )

( )( )

,

2, ,

,

2, ,

9 1
2

4 0
2 1

p eff f p eff c x

eff f eff x c x eff

p eff c y

eff x c y eff

k k k k
k k k B k k

k k
k B k k

φ φ
λ λ

φ
λ

− − 
− + +  + + − 

−
=

+ − −

Spherical particles
Nano-layer

Bhattacharya, et al. 
[122] ( )

( ) ( )2
0

1

1 0

eff p

f f

n

p
jB

k k
k k

k Q Q j T T
T V

φ φ

κ =

= + −

= ∆ ∆∑

Brownian dynamics

Koo and 
Kleinstreuer [123],

[124]
( )
( )

( )4

2 2

2

5 10 ,

p f f peff

f p f f p

B
p p

p p

k k k kk
k k k k k

Tc f T
c

φ

φ

κβρ φ
ρ

+ − −
= +

+ + −

×

CuO/ethylene glycol
CuO/oil

Considered surrounding liquid 
traveling with randomly moving 

nanoparticles

Prasher, et al. [125]

( ) ( )
( )

0.333
2 2

1 Re Pr
2

p f f peff

f p f f p

k k k kk
A

k k k k k

φ
φ

φ

 + − −
 = +
 + + − 

Effect of convection of the liquid 
near the particle included A  is 

constant Nanospheres

Xue [126]
1 2 ln

2

1 2 ln
2

p p f

p f feff

f f p f

p f f

k k k
k k kk

k k k k
k k k

φ φ

φ φ

    +
− +       +    =     + − +        +    

Nanospheres with interfacial shell
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Xue and Xu [127]

( )( )
( )( )

( )( )
( )( )

1
2

2

2
0

2 2

2

p eff f

eff f

eff shell shell p

p shell shell effp

eff shell shell p

p shell shell eff

k k
k k

k k k k

k k k k

k k k k

k k k k

φ
α

αφ
λ

α

− 
− +  + 

  − + −
  
  − +    =   + + +   
  

− −    

Spherical particles
Nano-layer

Xie, et al. [128] 2 233
1

eff f T
T

f T

k k
k

φφ
φ

− Θ
= Θ +

−Θ

Low particle loadings
Nano-layer

Li and Peterson 
[129] ( )

( )

0.764 0.0187 273.15 0.462

3.761 0.0179 273.15 0.307

k keff f T
k f

k keff f T
k f

φ

φ

−
= + − −

−
= + − −

Al2O3/water nanofluids

CuO/water nanofluids

Buongiorno [92]
1 2.92 11.99eff

f

k
k

φ= + −
TiO2/water nanofluids

Timofeeva, et 
al.[130] ( )1 3NF fk kφ= + Al2O3/water nanofluids

Avsec and Oblak 
[131] ( ) ( )( ) ( )

( ) ( ) ( )

3

3

1 1 1

1 1
p f f peff

f p f f p

k n k n k kk
k k n k k k

β φ

β φ

+ − − − + −
=

+ − + + −

( )3 /n ψ= -
empirical shape factor
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Chandrsekar, et al. 
[132] ( ) ( )( ) ( )

( ) ( ) ( )
( )

3
1 1 1

3
1 1

0
4

k n k n k kk p pf feff
k k n k k kf p pf f

C T T

ka

β φ

β φ

φ

µ

+ − − − + −
=

+ − + + −

−
+

 
 
 
  

Al2O3/ethylene glycol
Cu/ethylene glycol

TiO2 /water
Al2O3 /water

Duangthongs and
Wongwises [109]

o

o

o

1.0225, 0.0272 for 15 C
1.0204, 0.0249 for 25 C
1.0139, 0.0250 for 35 C

eff

f

k
a b

k

a b T
a b T
a b T

φ= +

= = =

= = =

= = =

CuO/water
TiO2 /water

TiO2/ethylene glycol
TiO2/water nanofluid

Patel, et al. [48] 1
0.273 0.2340.547

1000.4670.135
20

keff
k Tpk f k d pf

φ

+

=

 
 

                 

Oxide and metallic nanofluids

Chandrasekar, et al. 
[110] , ;

,

0.023, 1.358, 0.125

a b c
k C Meff p eff eff f
k C Mpf f f eff

a b c

ρ

ρ
=

= − = =

     
     
     
     

Al2O3 /water nanofluids

Godson, et al. [133]
092.9 0.9508eff

f

k
k

φ= +
EG/water nanofluids
Ag/water nanofluids

Table 3: Models for thermal conductivity.
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Nanofluid Dynamical Models

Masuda observed the thermal enhancement due to the 
nanoparticle in 1993 and Choi tossed the term nanofluid in 
1994. But it was not before 2006 that a mathematical model 
for the flow of nanofluids is described. Nanofluids have higher 
thermal conductivity and heat transfer coefficients than their 
base fluids. The change in viscosity and thermal conductivity 
is of the fluid effects its dynamics. Two mathematical models 
are developed to accurately describe the flow patterns and 
heat transfer effects are so-called Buongiorno’s model and 
Tiwari-Das model.

Buongiorno’s model: In 2006, Buongiorno [91] observed 
from the results of that these fluids shows an abnormal 
increase in thermal conductivity, viscosity and heat transfer 
rate coefficient. It is due to the nanofluid property of the 
Thermophoresis and temperature gradient. To validate 
they checked the relative motion of particles for inertial 
slip, Brownian diffusion, thermophoresis, diffusiophoresis, 
Magnus effect, fluid drainage, and gravity. It emerges that 
only Brownian diffusion and thermophoresis affects the flow 
drastically.

To obtain the conservation equations of Nanofluids, 
consider the incompressible flow of nanofluid. It is assumed 
that both nanoparticle and base fluid is chemically inert hence 
no chemical reaction can take place. Also, it is assumed that 
the concentration of the particles is small. Nanoparticles and 
base fluid are assumed to be in equilibrium. Four equations 
describe the flows i.e. two continuity equations (for base 
fluid and for nanoparticles) and the single equation for both 
momentum and heat transfer. 
The continuity equation for fluid can be

.V 0∇ =  (11)

Here, V is the velocity of the fluid. For the particle, if J 
is diffusion mass flux of the nanoparticle w.r.t. fluid velocity, 
then it can be written as the sum of Brownian motion and 
thermophoresis if no external force is applied 

1 . . . TJ V D DB Bt T
ϕ ϕ ϕρ

 
  

∂ ∇− ∇ = + ∇ = ∇ ∇ +
∂  (12)

Where ϕ  is the concentration of nanoparticles, DB and 
DT are due to slip velocity of particles cause by Brownian 
motion and thermoprosis. The momentum equation for 
nanofluids with non-external force or diffusion term is 
defined with as

. .V V V P
t

ρ τ 
  
∂ + ∇ = −∇ −∇
∂

 (13)

P is the pressure and  is the stress tensor. 
The energy equations for nanofluids

. . .
T

c V T q h Jpt
ρ

∂
+ ∇ = −∇ + ∇

∂

 
  

 (14)

Neglecting radiative heat transfer, q can be calculated as 
the sum of the conduction heat flux and the heat flux due to 
nanoparticle diffusion

q k T h Jp= − ∇ +  (15)

c is heat capacity, hp is specific enthalpy.

Tiwari and Das’ Model: In this model [134], flow is assumed 
to laminar and incompressible. The model uses continuity, 
momentum and energy equations for a Newtonian fluid. 
If radiation heat transfer and other external forces are 
negligible and assuming constant thermal properties, the 
continuity, momentum and heat equation defined by the law 
of conservation of mass, momentum and energy respectively 
form the full flow model are defined as

For Continuity equation

.V 0∇ =  (16)

For momentum equation

. .V V V Pnf t
ρ τ 

  
∂ + ∇ = −∇ −∇
∂

 (17)

The equation is traditional Navier-stokes equation. 
With  is defined usually for Newtonian base fluid as 

( ). . ' .V Vnf nfτ µ µ= ∇ +∇  varies drastically with the 

concentration of nano particle(see Table. 2).

The energy equations for nanofluids

. . 'TC V T qtnf nfρ ∂ + ∇ = −∇∂    (18)

Neglecting radiative heat transfer, q’ can be calculated 
as 

Req' k Tnf= − ∇  (19)

Conclusion

A number of essential conclusions and recommendations 
can be carried out regarding current knowledge and future 
research
1. Nanofluids shows a big revolution in recent decades that 

are fully elaborated in our literature. Many techniques 
were used in order to enhance the energy gain or loss 
for example in industry, in chemical reactors, in cooling 
of machine’s engine, in refrigerator, in electrical, in solar 
energy, in electronic chips and also in heavy machineries 
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used in defense purpose.
2. Many significant results are introduced in recent decades 

about thermo-dynamical system. Reader can easily 
enhance their concepts of loss of energy in any system 
and then it is further used in various energy sectors.

3. Many advanced theoretical and experimental results 
that are discussed to helps the reader to clarify their 
results with two dynamical models.

4. Models of thermal conductivity, Theoretical and 
experimental models of effective viscosity, Size and Shape 
effects of nanoparticles in nanofluids are increasing 
rapidly in current research work. Which helps the reader 
to easily use these models in their research.

Nomenclature

Cu Copper
Ag Silver 
Au Gold
SiC Silicon Carbide
SiN Silicon Nitride
AIN Aluminum Nitride
AL2O3 Aluminum Oxide
CuO Copper Oxide
TiO3 Titanate
ZnO Zinc Oxide
ZnS Zinc Sulfide
HeC Hydroxyethyl Cellulose
SiO2 Silicon Dioxide
EG Ethylene Glycol
α, β and σ Semi-axes
X, y and z Major axes
n Empirical shape factor
ψ Sphericity
nm Nanometer

 µ Viscosity

 fρ Fluid Density

 ϕ Nanoparticle volume fraction

 nfρ Nanofluid Density

 fc Specific heat of fluid

 pc Specific heat of particle

 nfc Specific heat of nanofluid

 ( )c nfρ Heat capacity of the nanofluid

 ( )c fρ Heat capacity of the fluid

 ( )c pρ Heat capacity of the nanoparticle

 effµ Effective Viscosity 

 fµ Fluid Viscosity

 Bκ
Excess thermal-conductivity enhancement 
coefficient

 pρ Nanoparticle Density

 T , 0T Temperature

 π Pi
 C Specific Heat
A, B, C, a, b, 
c, n Constants
M Molecular weight of the base fluid
N Avogadro number

 effk Effective Thermal Conductivity

k p Thermal conductivity of particle

 k f Thermal conductivity of fluid

 ks Thermal conductivity of solids

 D Einstein diffusion coefficient

 Re Reynolds Number

 Pr Prandtl Number

 frT
Temperature of freezing point of the base 
liquid

 λ Water molecules mean free path

 pφ Total particle volume fraction

 V Velocity

 Tφ Total volume fraction
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P Pressure

 τ Newtonian Base fluid
q Energy flux

 ph Nanoparticle specific enthalpy

 J Mass flux
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