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Abstract

Mathematical models and machine learning applications such as Artificial Neural Networks (ANN) have been adopted in 
hydrocarbon exploration, drilling, production, and reservoir engineering. Thanks to ample data sets and computing power, 
statistical analysis, analytics, and model prediction replace time-consuming and expensive laboratory measurements. This 
study used ANN to create two models for predicting water (krw) and oil (kro) relative permeability profiles for predominantly 
North American water-wet sandstone reservoirs. The developed model was compared to the Modified Corey and Ibrahim 
and Koederitz’s equations. The coefficient of multiple determination (R2) and Root-Mean-Square Error (RMSE) were used to 
evaluate the accuracy of the new model. The developed model showed a superior fit and can, therefore, be utilized to generate 
krw and kro profiles for North American water-wet sandstone reservoirs.
   
Keywords: Relative Permeability; North American; Water-Wet; Sandstone; ANN; Empirical Models

Abbreviations: ANN: Artificial Neural Networks; RMSE: 
Root-Mean-Square Error; AI: Artificial Intelligence; ANFIS: 
Adaptive Neuro-Fuzzy Inference System.

Introduction

The petrophysical properties of a reservoir rock are the 
characteristics that depict how these rocks hold or allow the 
transmissibility of reservoir fluids. These properties include 
porosity, relative permeability, and water saturation. The 
accurate determination of these properties helps petroleum 
engineers make accurate and precise reservoir deliverability 
predictions, production performance, and recovery factors 
[1].

Absolute permeability is the ability of a fluid to flow 
through a permeable rock when only one fluid saturates 
the pore spaces. For multiphase flow, effective permeability 
describes the ability of each fluid to flow in the porous 
medium. Relative permeability is the ratio of the effective 
to the absolute permeability and is one of the critical 
parameters in predicting two-phase flow and oil recovery. 
This multiphase flow in porous media has been a common 
phenomenon in the oil and gas industry [2].
 

Petroleum engineers use relative permeability, a non-
linear fluid and rock property function, to predict fractional 
flow in reservoirs [3]. Zhang J, et al. [1] used experimental 
laboratory procedures and mathematical models to 
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determine relative permeability. Guler B, et al. [3] cited four 
mathematical models, namely capillary, statistical, empirical, 
and artificial intelligence (AI).

Nowadays, Artificial Intelligence (AI) is gaining more 
popularity in developing predictive correlations because 
the prediction of petrophysical properties requires high 
accuracy and precision since variations in prediction may 
lead to loss of capital and time [4]. Most AI methodologies 
deploy the application of two algorithms: ANN and Adaptive 
Neuro-Fuzzy Inference System (ANFIS) [5]. In as much as 
these algorithms can be advantageous, their functionality 
may be limited since the source of wellbore data is sparse 
[6], and this, together with missing data, could lead to 
underfitting or overfitting in most scenarios. An ANN is 
a computational network that mimics the human brain 
neurons using similar pattern recognition [7]. The networks 
contain interconnected neurons composed of input, hidden, 
and output layers. About 70% of the data set is usually used 
in a ‘training phase’; the remaining 30% is used for validation 
and testing purposes to accurately predict the model output 
[8]. Artificial neural networks have shown promising results 
in predicting relative permeability [5,9]. 

Literature Review

Corey AT, et al. [10] developed a correlation for 
determining relative permeability based on the works of 
Purcell and Burdine. Generalized models were later created 
from Corey’s equations to calculate the relative permeabilities 
of water and oil. These water and oil relative permeabilities 
(Equations 1 and 2) are applicable for water-wet sandstone 
reservoirs and will be used for comparison.
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where: wS = water saturation, fraction and wcS = connate 
water saturation, fraction.

 Oil-Gas Relative Permeabilities 
(for drainage relative to oil)

Water-Oil Relative Permeabilities (for drainage 
relative to water)
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Table 1: Oil-Gas and Water-Oil Relative Permeabilities [11,12].

Table 1 shows a set of equations by Ibrahim, et al. [11] 
and Kalam, et al. [12] for Oil-Gas and Water-Oil Relative 
Permeabilities. Wyllie suggested an empirical relative 
permeability model that was accurate for drainage flow 
in oolitic limestone, consolidated and unconsolidated 
sandstone [13] & Honarpour M, et al. [11]. These equations 
are shown in Table 1 and will be compared to our results.

Honarpour M, et al. [14] also developed empirical 
relative permeability correlations (Equations 3 and 4) that 
predicted accurate results. The authors used data from North 
American oilfields and oilfields from Libya, Iran, Argentina, 
and the United Arab Emirates. These equations were devised 
for carbonate and non-carbonate formations. Equations 3 
and 4 will also be utilized for comparison purposes.
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Where 
oS : = oil saturation, fraction and orS = residual oil saturation, fraction

Ibrahim MNM, et al. [15] developed a comprehensive 
collection of models for relative permeability, utilizing 
normalized data that spans across various wettability 
conditions, as well as sandstone and carbonate reservoirs 
containing gas-condensate, gas-oil, gas-water, and oil-
water systems. They deployed linear regression techniques 

to determine goodness of fit using the coefficient of 
determination (R2) values. R2 exceeded 0.6 for all the 
developed models. Their relative permeability equations 
(Equations 5 & 6) for water and oil will be used to compare 
the accuracy of the developed model. 
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 and  φ  = porosity, fraction

 ak = absolute permeability, mD

Zhang J, et al. [1] used experimental laboratory 
procedures and mathematical models to successfully predict 
gas-water relative permeability using five core samples 
from a tight sandstone gas reservoir and observed that the 
relative permeability of gas decreased with increased pore 
pressure at constant water saturation. They also established 
that when the pore pressure remains the same, a decrease in 
the absolute permeability results in a decrease in gas-water 
relative permeability.

Artificial Neural Networks

ANNs are structured with an input layer, one or more 
hidden layers, and an output layer. As depicted in Figure 
1, a multi-layer perceptron is made up of processing 
units (nodes) that either provide a variable or execute 
mathematical functions. Nodes are interconnected across 
adjacent layers through links that embody weights. These 
weights undergo adjustments to refine the accuracy of the 
output predictions. The effectiveness of an ANN hinges on 
the optimization algorithms deployed during its training 
phase. Initially, connection weights start as random numbers 

and are methodically tweaked until the outputs generated by 
the model align with the actual dataset of outputs.

Figure 1: Example an ANN Structure.

Data was separated into three sets: a training set, a 
validation set, and a testing set. Each model was trained on 

https://medwinpublishers.com/PPEJ/


Petroleum & Petrochemical Engineering Journal 
4

Edusah E, et al. New Relative Permeability Models for North American Sandstone Utilizing Artificial 
Neural Networks. Pet Petro Chem Eng J 2024, 8(2): 000386.

Copyright© Edusah E, et al.

a randomly chosen training dataset. Each trained model’s 
performance was later evaluated on a randomly chosen 
validation set. The model with the best validation set’s 
performance was then selected and tested.

ANNs have been used to predict reservoir flow units and 
permeability, characterize reservoirs, evaluate increased oil 
recovery, and conduct downhole fluid analysis. Using the 
Lattice Boltzmann equation, Kamel E, et al. [16] developed 
an ANN model to predict the permeability reduction in rocks 
when polymer gel is injected. Guler B, et al. [3] proposed 
an ANN model that uses core data as inputs to predict oil-
water relative permeability. Recent data-driven models [17] 
that predicted relative gas and water flow permeability with 
laboratory and field applications have also been published. 
This research, however, is similar to that of Guler B, et al. [3], 
with a primary focus on data from water-wet North American 
sandstone utilized to construct the ANN model.

Modeling Approach

Theory

This work uses two data sets to develop an ANN model using 
MATLAB. One set comprised core data from North American 
water-wet sandstone, and the second used published data 
from sandstone reservoirs. Each data set was regressed 
using three neurons. The following workflow was adopted:
•	 Transform the input variables based on their respective 

distributions.
•	 Randomly separate the training data set from data used 

for validation and testing.
•	 Initialize the analysis on the test data by assigning 

different neuron sizes (weights) that connect the input 
layer to the hidden layer and the hidden layer to the 
output layer.

•	 Perform a predetermined mathematical function (linear, 
hyperbolic tangent, or Gaussian) on each hidden node.

•	 Receive the output layer signal, which is relative 
permeability (predicted).

•	 Compare the predicted relative permeability to the 
actual known values.

•	 Adjust the neuron sizes.
•	 Use the validation and testing data sets to test the 

predictive capability of the ANN.
•	 Repeat steps 3-8 for a predetermined number of 

iterations.
•	 Output records results of the developed ANN models.

The number of iterations had to be adjusted manually to 
produce consistent results. The developed ANN models were 
later evaluated based on two performance indicators: R2 and 
Root Mean Square Error (RMSE). R2 is used to measure how 
close the data are to the fitted regression line, while RMSE 
is a good measure of how accurately the model predicts 
the response. It is the most important criterion for fit if the 
model’s primary purpose is prediction.

Experimental Data

MATLAB ANN fitting uses the two-layer feed forward 
fitting networking. The algorithm used for data training is 
the Levenberg-Marquradt algorithm. The data utilized in this 
study was extracted from Koederitz’s Relative Permeability 
Software Suite [18] and another published source [19]. To 
develop model 1, 18 data points for relative permeability 
to water and 18 for relative permeability to oil for North 
American water-wet sandstone reservoirs were used. Sixty-
four data points from Feigl A, et al. [19] work were also 
utilized to develop Model 2. A total of 82 data points was then 
used to produce a global model. Each data set was regressed 
using 2,3,4, and 5 neurons.

Three neurons were enough to get a good fit. The two 
data sets were combined to find the regression results and 
the output. As shown in Tables 2 & 3, data set one and two 
contained information about Swc, Sor, ka, φ, Sw, So, Sw

*, So
*
, krow 

and krw respectively. 

Sample # Swc Sor ka φ Sw So So
* Sw

* krow krw

3 0.115 0.363 148 0.213 0.115 0.885 0.819 0 1 0
3 0.115 0.363 148 0.213 0.327 0.673 0.487 0.24 0.5 0.013
3 0.115 0.363 148 0.213 0.469 0.531 0.264 0.4 0.135 0.028
3 0.115 0.363 148 0.213 0.593 0.407 0.069 0.54 0.043 0.043
3 0.115 0.363 148 0.213 0.628 0.372 0.014 0.58 0.002 0.07
3 0.115 0.363 148 0.213 0.637 0.363 0 0.59 0 0.085
6 0.178 0.337 80 0.189 0.178 0.822 0.732 0 1 0
6 0.178 0.337 80 0.189 0.285 0.715 0.57 0.13 0.64 0.015
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6 0.178 0.337 80 0.189 0.425 0.575 0.359 0.3 0.36 0.04
6 0.178 0.337 80 0.189 0.581 0.419 0.124 0.49 0.09 0.09
6 0.178 0.337 80 0.189 0.638 0.362 0.038 0.56 0.011 0.13
6 0.178 0.337 80 0.189 0.663 0.337 0 0.59 0 0.15
9 0.164 0.309 4.4 0.099 0.164 0.836 0.763 0 1 0
9 0.164 0.309 4.4 0.099 0.331 0.669 0.521 0.2 0.56 0.001
9 0.164 0.309 4.4 0.099 0.415 0.585 0.399 0.3 0.27 0.0054
9 0.164 0.309 4.4 0.099 0.498 0.502 0.279 0.4 0.086 0.01
9 0.164 0.309 4.4 0.099 0.574 0.426 0.169 0.49 0.018 0.018
9 0.164 0.309 4.4 0.099 0.615 0.385 0.11 0.54 0.003 0.022
9 0.164 0.309 4.4 0.099 0.691 0.309 0 0.63 0 0.037

Table 2: Relative permeability data for data set 1 (19 data points).

Sample # Swir Sorw 	φ kair Sw So Sw
* So

* krow krw

1 0.153 0.371 0.212 194 0.153 0.847 0 1 1.000 0 0.000 0 
1 0.153 0.371 0.212 194 0.233 0.767 0.168 0.831933 0.425 0 0.088 0 
1 0.153 0.371 0.212 194 0.291 0.709 0.29 0.710084 0.231 0 0.130 0 
1 0.153 0.371 0.212 194 0.364 0.636 0.443 0.556723 0.095 0 0.227 0 
1 0.153 0.371 0.212 194 0.386 0.614 0.489 0.510504 0.065 0 0.270 0 
1 0.153 0.371 0.212 194 0.406 0.594 0.532 0.468487 0.049 0 0.305 0 
1 0.153 0.371 0.212 194 0.434 0.566 0.59 0.409664 0.032 0 0.351 0 
1 0.153 0.371 0.212 194 0.466 0.534 0.658 0.342437 0.022 0 0.410 0 
1 0.153 0.371 0.212 194 0.527 0.473 0.786 0.214286 0.008 2 0.491 0 
1 0.153 0.371 0.212 194 0.552 0.448 0.838 0.161765 0.005 0 0.518 0 
1 0.153 0.371 0.212 194 0.578 0.422 0.893 0.107143 0.003 1 0.540 0 
1 0.153 0.371 0.212 194 0.629 0.371 1 0 0.000 0 0.541 0 
2 0.178 0.489 0.119 3.9 0.069 0.931 0 1.327327 1.000 0 0.000 0 
2 0.178 0.489 0.119 3.9 0.236 0.764 0.3 0.825826 0.184 0 0.082 0 
2 0.178 0.489 0.119 3.9 0.296 0.704 0.408 0.645646 0.101 0 0.129 0 
2 0.178 0.489 0.119 3.9 0.338 0.662 0.483 0.51952 0.063 0 0.187 0 
2 0.178 0.489 0.119 3.9 0.364 0.636 0.53 0.441441 0.044 0 0.231 0 
2 0.178 0.489 0.119 3.9 0.39 0.61 0.576 0.363363 0.035 0 0.283 0 
2 0.178 0.489 0.119 3.9 0.431 0.569 0.65 0.24024 0.024 0 0.346 0 
2 0.178 0.489 0.119 3.9 0.544 0.456 0.853 -0.0991 0.006 0 0.463 0 
2 0.178 0.489 0.119 3.9 0.579 0.421 0.916 -0.2042 0.003 0 0.507 0 
2 0.178 0.489 0.119 3.9 0.626 0.374 1 -0.34535 0.000 0 0.553 0 
3 0.069 0.374 0.171 787 0.069 0.931 0 1 1.000 0 0.000 0 
3 0.069 0.374 0.171 787 0.236 0.764 0.3 0.70018 0.184 0 0.082 0 
3 0.069 0.374 0.171 787 0.296 0.704 0.408 0.59246 0.101 0 0.129 0 
3 0.069 0.374 0.171 787 0.338 0.662 0.483 0.517056 0.063 0 0.187 0 
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3 0.069 0.374 0.171 787 0.364 0.636 0.53 0.470377 0.044 0 0.231 0 
Sample # Swir Sorw 	φ kair Sw So Sw

* So
* krow krw

3 0.069 0.374 0.171 787 0.39 0.61 0.576 0.423698 0.035 0 0.283 0 
3 0.069 0.374 0.171 787 0.431 0.569 0.65 0.35009 0.024 0 0.346 0 
3 0.069 0.374 0.171 787 0.544 0.456 0.853 0.147217 0.006 0 0.463 0 
3 0.069 0.374 0.171 787 0.579 0.421 0.916 0.084381 0.003 0 0.507 0 
3 0.069 0.374 0.171 787 0.626 0.374 1 0 0.000 0 0.553 0 
4 0.122 0.491 0.145 356 0.122 0.878 0 1 1.000 0 0.000 0 
4 0.122 0.491 0.145 356 0.184 0.816 0.16 0.839793 0.211 0 0.244 0 
4 0.122 0.491 0.145 356 0.19 0.81 0.176 0.824289 0.189 0 0.251 0 
4 0.122 0.491 0.145 356 0.252 0.748 0.336 0.664083 0.102 0 0.305 0 
4 0.122 0.491 0.145 356 0.366 0.634 0.63 0.369509 0.026 0 0.419 0 
4 0.122 0.491 0.145 356 0.405 0.595 0.731 0.268734 0.012 0 0.476 0 
4 0.122 0.491 0.145 356 0.437 0.563 0.814 0.186047 0.005 7 0.522 0 
4 0.122 0.491 0.145 356 0.461 0.539 0.876 0.124031 0.002 9 0.569 0 
4 0.122 0.491 0.145 356 0.47 0.53 0.899 0.100775 0.002 3 0.583 0 
4 0.122 0.491 0.145 356 0.509 0.491 1 0 0.000 0 0.665 0 
5 0.112 0.564 0.159 117 0.112 0.888 0 1 1.000 0 0.000 0 
5 0.112 0.564 0.159 117 0.209 0.791 0.299 0.700617 0.221 0 0.157 0 
5 0.112 0.564 0.159 117 0.222 0.778 0.34 0.660494 0.168 0 0.201 0 
5 0.112 0.564 0.159 117 0.246 0.754 0.414 0.58642 0.110 0 0.240 0 
5 0.112 0.564 0.159 117 0.283 0.717 0.528 0.472222 0.062 0 0.322 0 
5 0.112 0.564 0.159 117 0.315 0.685 0.627 0.373457 0.032 0 0.398 0 
5 0.112 0.564 0.159 117 0.333 0.667 0.682 0.317901 0.019 0 0.450 0 
5 0.112 0.564 0.159 117 0.353 0.647 0.744 0.256173 0.011 0 0.502 0 
5 0.112 0.564 0.159 117 0.377 0.623 0.818 0.182099 0.005 6 0.576 0 
5 0.112 0.564 0.159 117 0.402 0.598 0.895 0.104938 0.002 5 0.648 0 
5 0.112 0.564 0.159 117 0.417 0.583 0.941 0.058642 0.001 2 0.683 0 
5 0.112 0.564 0.159 117 0.436 0.564 1 3.43E-16 0.000 0 0.716 0 
6 0.103 0.485 0.143 13 0.103 0.897 0 1 1.000 0 0.000 0 
6 0.103 0.485 0.143 13 0.178 0.822 0.182 0.817961 0.290 0 0.092 0 
6 0.103 0.485 0.143 13 0.198 0.802 0.231 0.769418 0.212 0 0.140 0 
6 0.103 0.485 0.143 13 0.235 0.765 0.32 0.679612 0.125 0 0.171 0 
6 0.103 0.485 0.143 13 0.293 0.707 0.461 0.538835 0.045 0 0.233 0 
6 0.103 0.485 0.143 13 0.367 0.633 0.641 0.359223 0.019 0 0.333 0 
6 0.103 0.485 0.143 13 0.43 0.57 0.794 0.206311 0.007 3 0.430 0 
6 0.103 0.485 0.143 13 0.472 0.528 0.896 0.104369 0.002 9 0.501 0 
6 0.103 0.485 0.143 13 0.495 0.505 0.951 0.048544 0.001 2 0.539 0 
6 0.103 0.485 0.143 13 0.515 0.485 1 0 0.000 0 0.630 0 

Table 3: Relative permeability data for data set 2 (64 data points).
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Model Development and Discussion

In this work, data was divided into three data sets: one 
for training, one for validation, and another for testing. So, 
during the process, about 70% of the data was used for 
training, 15% for validation, and the remaining 15% for 
testing.

Phase 1 – ANN Models for Data Set 1 and Data 
Set 2

Model testing began by attempting to create a single 
(combined) ANN model that would simultaneously predict 
water and oil relative permeabilities. The input data were 
Swc, Sor, ka, φ, Sw, and So. Some of these variables depend on 
each other. The interdependency would reduce the degree of 
error, enhance linearity, produce a better fit, and make the 
ANN model more valuable as a prediction tool. The input and 
output layer structures remained consistent while exhibiting 
satisfactory R2 values for oil. These were between 0.93 and 
0.95. The degree of fit for water was relatively low, with R2 
values of around 0.63. Increasing the R2 for water was the 

primary goal for further testing.
Guler B, et al. [3] found that using normalized fluid 

saturations increased the accuracy of the ANN models. 
Normalizing saturations led to amplified model linearity, 
reduced the degree of error, and enhanced the degree of 
fit. This method was adapted for Phase 1, and Equations 7 
and 8 were included as input parameters. Phase 1 analysis 
using ANN began with the hidden layer structure of ANN in 
MATLAB with eight inputs and ten hidden layers [20,21].

                            *

1
o or

o
or

S SS
S
−

=
−

                                                 (7)

                            *

1
w wc

w
wc

S SS
S
−

=
−

                                                (8)

Using the first data set, the obtained R2 for water was 
high. R2 was 0.9902 for training, 0.9999 for validation, 
and 0.9920 for testing (Table 4). The R2 for oil was also 
satisfactory, with an overall value of 0.9881.

Data Used for No. of Data Points RMSE-Oil R2-Oil RMSE-Water R2-Water
Training 12 8.21 x 10-4 0.9987 1.89 x 10-5 0.9902

Validation 3 3.38 x 10-3 0.9955 1.04 x 10-6 0.9999
Testing 3 1.38 x 10-2 0.9999 6.76 x 10-5 0.992
All data 18  0.9881  0.9939

Table 4: Phase 1 ANN Results for Data set 1.

Number of Neurons R2

2 0.9923

3 0.9881

4 0.9985

5 0.9944

Table 5: Regression Values with Different Number of 
Neurons.

As shown in Table 5, the same data was regressed using 

2, 3, 4, and 5 neurons for comparison purposes. Variability 
of the coefficient of determination, R2, was minimal, ranging 
between 0.9881 to 0.9985.

Three neurons were randomly chosen, and changing the 
number of neurons did not impact the degree of fit. Therefore, 
the second 64 data set was analyzed in ANN MATLAB using 
three neurons. The R2 for oil was satisfactory, with an overall 
value of 0.9832. The R2 for water was 0.9792 for training, 
0.9738 for validation, and 0.9802 for testing as depicted in 
Table 6.

Data Used for No. of Data Points RMSE-Oil R2-Oil RMSE-Water R2-Water
Training 44 1.52 x 10-3 0.9939 1.69 x 10-3 0.9792

Validation 10 1.15 x 10-2 0.9946 2.28 x 10-3 0.9738
Testing 10 5.72 x 10-5 0.9821 2.81 x 10-3 0.9802
All data 64  0.9832  0.9749

Table 6: Phase 1 ANN Results for Data Set 2.

https://medwinpublishers.com/PPEJ/
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Phase 2 – Global ANN Model with Combined 
Data Sets 1 and 2 

The two data sets were combined. This method was 
utilized to widen the range of the data and globalize the 

developed model. The hidden layer structure was maintained 
at ten layers and eight inputs. Combining the data improved 
R2 values of both oil and water, as seen in Table 7. The 
experiment was then concluded.

Data Used for No. of Data Points RMSE-Oil R2 - Oil RMSE-Water R2 - Water
Training 58 5.39 x 10-5 0.9997 1.9 x 10-3 0.9802

Validation 12 1.41 x 10-3 0.9927 1.29 x 10-3 0.9932
Testing 12 2.96 x 10-2 0.9948 4.51 x 10-3 0.9739
All data 82  0.9769  0.9776

Table 7: Phase 2 ANN Results for the Combined Data Set.

Model Comparison

The developed model was compared to Modified Corey’s 

and Ibrahim and Koederitz’s. The following table compares 
RMSE values for the new model and the correlations 
mentioned above. 

 
ANN Oil ANN Water Modified Corey Ibrahim & Koederitz

Training Validation Training Validation Training Validation Training Validation
RMSE 5.39E-05 0.00141 0.0019 0.00129 0.237 0.322 0.143 0.233

Table 8: A Comparison between the Training and Validation RMSE.

As such, the new model showed better results and can 
be used to predict relative permeability to water and oil for 
sandstone formations within the tested data range. 

Conclusions

Model testing was first attempted with six variables, 
namely Swc, Sor, ka, φ, Sw, and So, for data set 1 (18 data 
points). The degree of fit for kro was high, with an R2 that 
ranged between 0.93 and 0.95.

However, the degree of fit for krw was low, with an R2 of 
only 0.63. Eight variables were later used with normalized 
water  and oil saturations  to improve the model’s fit. Using 
the first data set, the overall R2 improved for krw and kro to 
0.9939 and 0.9881, respectively. Using 2, 3, 4, and 5 neurons 
did not affect model’s fit.

Using a different data deck (data set 2 with 64 data 
points), the overall R2 for water and oil with ten hidden 
layers and three neurons was high, with values of 0.9749 and 
0.9832, respectively.

All data (82 data points) has also been used to globalize 
the model. These data sets were enough to accurately predict 
the relative permeability of the North American Sandstone. 

R2 values for water and oil showed an excellent fit with 
values of 0.9776 and 0.9769, respectively. The RMSE values 
for both models were extremely low and came close to zero 
for training and validation compared to the Corey Ibrahim 
and Koederitz models.
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