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Abstract

This research provides a comprehensive prediction using machine learning to predict vapor-liquid-equilibrium for CO2-
contained binary mixtures for carbon capture and sequestration projects. One of the best practices to lower the CO2 emissions 
in the atmosphere is Carbon Capture and Sequestration including capturing carbon dioxide from atmosphere and injecting 
it into the underground geological formations. One of the key elements in a successful project is to accurately model the 
phase equilibria which provides us on how the fluid or mixtures of the injected fluids will behave in certain pressures and 
temperatures underground. In this regard, different machine learning models have been implemented for the prediction. 
The data set consists experimental results of five different binary mixtures with CO2 presents in all of them. Then the results 
were compared to each other and the one with the highest accuracy was selected for each mixture. Peng Robinson equation of 
state was also used and compared with machine learning results. Finally, both machine learning and thermodynamic models 
were compared to experimental results to determine the accuracy. It was found out that thermodynamic model was unable to 
predict results for many data points while machine learning could predict results for most of the data points. Also, the accuracy 
of machine learning models was greatly better than thermodynamic model. In this research, a large data set including 748 
data points is used on which machine learning models can be trained more accurate. Also, as a single machine learning model 
cannot predict accurate results for all mixtures, several models have been run on each mixture, and the one with the highest 
accuracy was selected for each CO2-contained binary mixture which to our knowledge, has been never implemented.  

Keywords: Carbon Capture and Sequestration; Vapor Liquid Equilibrium; Machine Learning; Thermodynamic; Carbon 
Dioxide; Peng Robinson

Abbrevations: CCS: Carbon Capture and Sequestration; 
VLE: Vapor Liquid Equilibrium; AI: Artificial Intelligence; 
Anns: Artificial Neural Networks; ML: Machine Learning; 
RMSE: Root Mean Squared Error; DT: Decision Trees; RF: 
Random Forest; ET: Extra Trees; LR: Lasso Regression.

Introduction

Carbon capture and sequestration (CCS) is an efficient 
method for reducing Carbon Dioxide (CO2) emissions into 
the atmosphere. CO2 emissions account for a great portion 
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of global warming, and CCS provides a viable strategy for 
reducing this massive environmental crisis [1-3]. During 
every CO2 capture and sequestration project, determination 
of vapor liquid equilibrium (VLE) which is a state in which a 
liquid mixture and its vapor coexist in thermodynamic and 
chemical equilibrium is very challenging and important. VLE 
is also vital for many applications in chemical engineering, 
such as distillation, extraction, and absorption. VLE can be 
used to determine the optimal operating conditions and 
design parameters for these processes. One of the main 
factors that affect VLE is the composition of the liquid and 
vapor phases. The composition of each phase depends on 
the temperature, pressure, and the nature of the components 
in the mixture. VLE is important in carbon sequestration 
because it affects the thermophysical properties of the fluid 
mixture involved in the capture, transport, and storage of 
carbon dioxide. For example, VLE determines the solubility 
of CO2 in water or other solvents, the density and viscosity 
of the fluid, the energy consumption of the process, and 
the safety and environmental risks of CO2 leakage. Another 
challenge associated with carbon sequestration is to model 
VLE of CO2 and other substances in porous rock formations, 
where CO2 can be injected and stored. The common-used 
method for predicting VLE is Thermodynamic models. 
However, traditional simulators for VLE are computationally 
expensive and time-consuming, and may not be accurate 
enough for complex systems. Also, thermodynamic models 
usually fail in high pressure and temperature which always 
present during CO2 sequestration projects. To overcome 
this, artificial intelligence (AI) by using machine learning 
techniques, such as artificial neural networks (ANNs) can 
be helpful. AI can also handle complex systems that involve 
multiple components or phases, which may not be feasible 
with conventional methods. Vaferi B, et al. [4] used AI to 
predict VLE for carbon dioxide and refrigerant. Gokulakannan 
S [5] used AI based model for VLE of CO2 and amines. Aminian 
A, et al. [6] implemented AI during supercritical conditions 
for mixtures of CO2 and fatty oils. Also, implementation of 
machine learning for VLE can be found in Yan Y, et al. [7-12]. 
Additionally, Mohanty S [13] used Artificial Neural Network 
(ANN) for VLE of binary systems. Mesbah M, et al. [14] used 
LSSVM to predict VLE of CO2 cyclic compounds. Azari A, et al. 
[15] implemented AI to predict VLE for CO2 binary refrigerant 
mixtures. Bahmaninia H, et al. [16] used deep learning to 
predict equilibrium solubility of CO2 in alcohols, and Mehtab 
V, et al. [17] used machine learning to predict CO2 capture 
in physical solvents. Also, Liu H, et al. [18] used machine 
learning to correlate CO2 solubility in tertiary amines. Here, a 
range of ML models have been used to predict VLE of binary 
CO2-contained mixtures. In this study, experimental results 
Hwu WH, et al. [19-46] collected from literature were used to 
compare the accuracy of our results. Peng Robinson equation 
of state is used to calculate thermodynamic data for the 
corresponding experimental data points. Results showed that 

the ML models have more accuracy than the thermodynamic 
models even in high pressures and temperatures which are 
common during CO2 sequestration operations. Also, the run 
time is extremely reduced comparing AI to thermodynamic. 
748 data points were used during this study. The data base 
consists of 4 different mixtures including some of the most 
common components present during carbon capture and 
sequestration processes including CH4, O2, N2, and H2S. 
Experimental results comparing the mole fraction of liquid 
(xi) and mole fraction of vapor (yi) phase when the binary 
mixture is in equilibrium for all the data points were collected 
from literature [19-46]. Then, thermodynamic models were 
used to predict xi and yi. Finally, 4 Machine Learning (ML) 
models were used to predict xi and yi. Models have been 
trained on 70 percent of the data set and tested on the 
remaining 30 percent. Then, the model with most accuracy 
for each mixture was selected. We observed that the machine 
learning models outperform thermodynamic models by 50% 
in terms of Root Mean Squared Error (RMSE).

Machine Learning Models

Four ML models were used for modeling the VLE, 
including Decision Trees (DT), Random Forest (RF), Extra 
Trees (ET), and Lasso Regression (LR).

Decision Trees

 DTs are a non-parametric supervised learning methods 
used for classification and regression by creating a model 
that predicts the value of a target variable by learning simple 
decision rules inferred from the data features. A tree can be 
seen as a piecewise constant approximation. decision trees 
are consisted of root node, branches, internal nodes and leaf 
nodes [47]. Figure 1 shows a decision tree structure. In each 
step the decision tree decides how to split the data using 
Entropy and information gain as below: 

     2log
c C

Entropy S p c p c 
ò

 (1)
 

Where S represents the data set that entropy is 
calculated, c represents classes in set S, p(c) represents the 
proportion of data points that belong to class c to the number 
of total data points in set, S, and C represents the class which 
is a subset of all classes. Also,
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v

v vcalues a

S
InformationGain S a Entropy S Entropy S

S
  

ò

 

(2)

In equation 2, a represents a specific attribute or 
class label, Entropy(S) is the entropy of dataset, S, |Sv|/ |S| 
represents the proportion of the values in Sv to the number of 
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values in dataset, S, and Entropy(Sv) is the entropy of dataset, 
Sv.

Figure 1: Decision Tree structure.

Random Forest

The random forest model is a machine learning 
ensemble model that combines several decision tree models 
and makes decisions using the average decision tree results. 
In this model, each tree consumes a bootstrap sample of the 
original data. Like decision trees, the model splits the data 
using information-gain of the feature. Equation 3 predicts 
the results of random forest regressor with N trees:

 1/ iy NSum y  (3)

Where yi is the prediction of the i-th tree. The equation 
for the prediction of a single decision tree is:

y = f(x) (4)

where f(x) is a piecewise constant function that assigns a 
value to each leaf node of the tree, and x is the input feature 
vector.

Extra Trees Model

Extra Trees regression like random forest is an ensemble 
model that uses several decision trees. Extra trees use the 
best split among all features of the data which makes it more 
robust in the presence of noise in the data over decision tree 
and random forest model. A disadvantage of the ET model 
is more randomness in the model by using the best split 
over features at each step. The following flowchart shoes the 
Extra trees.
Draw a bootstrap sample Xt,yt from X,y with replacement.
•	 Grow a decision tree on Xt,yt using the following 

procedure:
•	 For each node,randomly select F features without 

replacement.
•	 For each feature,randomly select a split point among all 

possible values.
•	 Choose the feature and the split point that minimize 

the chosen criterion(squared error,absolute error,etc.) 
among the F candidates.

•	 Split the node into two child nodes using the chosen 
feature and split point.

•	 Repeat until the maximum depth is reached or the 
minimum number of samples at each node is satisfied.

Where,
  

1 tˆ 1/ * yT
ty T sum   (6)

where ty is the prediction of the tth tree for x.

Lasso Regression (LR) is a type of linear regression 
that performs both variable selection and regularization 
by adding a penalty term to the ordinary least squares 
(OLS) objective function. The penalty term is the sum of the 
absolute values of the regression coefficients, multiplied by a 
tuning parameter λ. The LR objective function can be written 
as:

  0  1 1  2 2      Y X X pXpβ β β β ε      (7)
Where,

:   Y Theresponsevariable
:    Xj The jth predictor variable

:            ,     j Theaverageeffect onY of aoneunit increasein Xj holding all other predictors fixedβ
:   Theerror termε

The LR method removes the effect of the less important 
predictors toward zero by reducing their coefficients which 
reduces the model complexity.

Thermodynamic Model

To generate thermodynamic results, the Peng Robinson 
(PR) equation of state (EoS) was used through “pypi” in 
PYTHON. The following form of PR EoS has been implemented 
(Equation 8 & 9) [48].
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In “pypi” all critical properties of different mixtures and 
components are defined, making it efficient to calculate VLE 
properties.

Results

We trained the models on 70 percent of the data and 
tested the model on the 30 percent remainder and compared 
the predictions with the experimental results. Table 3 to 
Table 6 Show the performance of the models compared 
to thermodynamics models. ET outperforms other ML 

models for N2, O2, H2S reducing the error compared to 
PR thermodynamic model. However, RF showed better 
performance in predicting the mole fractions of VLE mixture 
of CH4 and CO2. Furthermore, we observed the ML models 
do not function while the data is not sufficient. The codes 
are publicly available at Hosseini M, et al. [49]. Also, in this 
paper we used hyper parameter tuning to avoid overfitting 
the ET and RF models. Table 1-6 Hyperparameters of Et and 
RF models.

Bootstrap False
ccp_alpha 0
criterion squared_error

max_depth None
max_features 1

max_leaf_nodes None
max_samples None

min_impurity_decrease 0
min_samples_leaf 1
min_samples_split 2

min_weight_fraction_leaf 0
n_estimators 100

n_jobs -1
oob_score FALSE

random_state 4798
verbose 0

warm_start FALSE

Table 1: Extra-Trees model Hyper-parameters.

Min_sample_leaf 5
Max_depth 15

No_estimators 500
Min_depth 5

Max_features Auto
bootstrap True
criterion mse

Min_impurity_decrease None
Random_state 42

Min_sample_split 2

Table 2: Random Forest model Hyper-parameters.
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Press 
(Mpa) Temp (oF) Xi 

(exp)
Yi 

(exp) Xi (ther) Yi (ther) Xi 
(ML)

Yi 
(ML)

Accur. (Xi-
ML), %

Accur. (Yi-
ML), %

Accur. (Xi-
ML), %

Accur. 
(Yi-ML), %

7.8 250 0.6 0.395 0.63 0.405 0.618 0.395 95.2 97.43 97.08 100
8.0938 250 0.554 0.442 0.592 0.414 0.554 0.553 93.56 93.3 100 79.92
3.194 270 1 1 1 1 100 100 100 100
4.214 270 0.968 0.838 0.968 0.837 100 99.88
7.02 270 0.887 0.647 0.886 0.647 99.88 100

8.063 270 0.834 0.595 0.839 0.595 99.4 100
0.89166 230 1 1 1 1 100 100 100 100

4.053 230 0.83 0.277 0.833 0.292 0.837 0.277 99.54 94.85 99.16 100
4.8636 230 0.765 0.249 0.773 0.265 0.765 0.241 98.93 93.71 100 96.68

6.190958 230 0.603 0.248 0.631 0.25 0.607 0.248 95.48 99.06 99.34 100
6.934683 230 0.474 0.268 0.47 0.268 99.14 100
6.999531 230 0.457 0.27 0.457 0.275 100 98.18
7.073498 230 0.439 0.275 0.431 0.275 98.14 100
7.140373 230 0.416 0.284 0.416 0.287 100 98.95

2.0265 250 0.99 0.896 0.95 0.475 95.78 11.36
2.362899 250 0.977 0.777 0.971 0.777 99.38 100

4.053 250 0.895 0.509 0.895 0.504 100 99
5.515808 219.26 0.436 0.811 0.596 0.185 0.432 0.811 73.19 0 98.88 100
6.205284 219.26 0.62 0.802 0.62 0.802 100 100
4.481594 210.15 0.3604 0.858 0.667 0.141 0.927 0.959 53.96 0 38.86 89.53
4.826332 210.15 0.455 0.86 0.579 0.139 0.73 0.456 78.62 0 62.33 11.35
5.17107 210.15 0.588 0.861 0.588 0.865 100 99.53

5.343439 210.15 0.648 0.86 0.648 0.861 100 99.97
5.688177 210.15 0.754 0.853 0.754 0.853 100 100
4.826332 203.15 0.73 0.891 0.735 0.891 99.41 100
4.89528 203.15 0.749 0.895 0.741 0.895 98.9 100

4.964227 203.15 0.768 0.896 0.76 0.896 98.9 100
5.033175 203.15 0.787 0.897 0.781 0.897 99.11 100
5.102122 203.15 0.805 0.897 0.805 0.895 100 99.7
5.240018 203.15 0.838 0.896 0.838 0.897 100 99.96
5.308965 203.15 0.856 0.893 0.858 0.891 100 99.74
5.336544 203.15 0.878 0.878 0.879 0.878 99.93 100
4.412646 193.15 0.913 0.955 0.913 0.95 100 99.43

4.7367 193.15 0.973 0.973 0.971 0.973 99.73 100
3.378432 183.15 0.939 0.978 0.939 0.977 100 99.84
3.44738 183.15 0.955 0.984 0.955 0.985 100 99.91

3.640433 183.15 1 1 1 1 100 100 100 100
2.482114 173.15 0.956 0.99 0.956 0.9907 100 100
2.516587 173.15 0.968 0.993 0.968 0.991 100 99.76
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2.551061 173.15 0.98 0.995 0.98 0.997 100 99.89
1.172109 153.15 0.994 0.999 0.998 0.999 99.66 100
1.175557 153.15 0.997 0.999 0.997 0.992 100 99.24
1.17928 153.15 1 1 1 1 100 100 100 100

Table 3: The predicted xi and yi when the binary mixture is in equilibrium for H2S using thermodynamic and ML model for the 
five mixtures. Also, the accuracies comparing to experimental data is also indicated.

Press 
(Mpa) Tem, oF Xi (exp) Yi 

(exp) Xi (ther) Yi (ther) Xi (ML) Yi (ML) Accur. (Xi-
ML), %

Accur. (Yi-
ML), %

Accur. 
(Xi-ML), 

%

Accur. (Yi-
ML), %

6.7764 293.08 0.028 0.082 0.026 0.082 92.83 99.99
6.3196 293.08 0.016 0.052 0.015 0.052 94.77 99.99
7.9718 293.08 0.063 0.136 0.063 0.138 99.99 98.26
8.7359 293.08 0.096 0.145 0.096 0.143 99.99 98.11
8.8928 293.08 0.106 0.144 0.106 0.144 99.99 99.99
4.0872 273.09 0.01 0.102 0.01 0.102 98.05 99.99
9.9653 273.09 0.181 0.397 0.185 0.397 97.73 99.99

10.5708 273.09 0.206 0.391 0.206 0.396 99.99 98.73
10.9443 273.09 0.227 0.383 0.226 0.383 99.38 99.99
11.1974 273.09 0.244 0.371 0.244 0.371 99.95 99.99
11.2488 273.09 0.248 0.368 0.247 0.368 99.23 99.99
11.2967 273.09 0.253 0.364 0.252 0.364 99.56 99.99
11.4268 273.09 0.268 0.347 0.268 0.346 99.99 99.56
11.4992 273.09 0.286 0.331 0.286 0.332 99.99 99.84
7.6582 273.09 0.102 0.36 0.103 0.36 99.51 99.99
6.6602 273.09 0.075 0.32 0.075 0.321 99.99 99.71
2.6882 253.12 0.013 0.213 0.012 0.213 89.43 99.99
3.204 253.12 0.025 0.304 0.02 0.308 74.5 98.67
5.208 253.12 0.707 0.489 0.886 0.483 0.707 0.489 79.73 98.72 99.99 99.95

7.3726 253.12 0.127 0.569 0.806 0.405 0.127 0.405 15.82 59.51 99.99 59.28
10.4707 253.12 0.225 0.591 0.674 0.382 0.253 0.383 33.38 45.39 89.01 45.63
11.433 253.12 0.265 0.58 0.624 0.392 0.265 0.58 42.47 52.04 99.99 99.99

12.7827 253.12 0.344 0.535 0.344 0.534 99.99 99.75
1.205 238.11 0 0 0 0 100 100

2.4946 238.11 0.02 0.447 0.021 0.447 97.14 99.99
3.004 238.11 0.308 0.519 0.934 0.462 0.308 0.519 32.96 87.83 100 99.99

3.9717 238.11 0.549 0.602 0.898 0.378 0.549 0.602 61.1 40.99 99.99 99.99
5.9394 238.11 0.1 0.679 0.823 0.299 0.122 0.679 12.2 0 82.37 99.99
8.9349 238.11 0.189 0.715 0.7 0.266 0.189 0.765 27.08 0 99.99 93.51

11.9705 238.11 0.305 0.69 0.305 0.69 99.86 99.99
Table 4: The predicted xi and yi when the binary mixture is in equilibrium for O2 using thermodynamic and ML model for the 
five mixtures. Also, the accuracies comparing to experimental data is also indicated.
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Press 
(Mpa) Temp, oF Xi 

(exp)
Yⁱ 

(exp) Xi (ther) Yi (ther) Xi (ML) Yi 
(ML)

Accur.
 (Xi-ther), %

Accur.
 (Yi-ther), %

Accur.
 (Xi-ML), %

Accur.
 (Yi-ther), %

5.731 293.1 0 0 0 0 100 100
6.4864 293.1 0.018 0.066 0.018 0.067 99.99 99.1
6.9772 293.1 0.029 0.097 0.028 0.097 93.57 99.97
8.5942 293.1 0.077 0.146 0.076 0.144 97.63 98.36
8.5868 293.1 0.077 0.146 0.077 0.147 100 99.72
4.2667 273.08 0.015 0.137 0.014 0.135 86.42 98.48
4.9547 273.08 0.029 0.214 0.028 0.209 93.92 97.69
7.3395 273.08 0.078 0.355 0.077 0.351 97.92 99
8.1061 273.08 0.097 0.375 0.096 0.371 98.12 98.79
9.0706 273.08 0.119 0.39 0.119 0.387 100 99.39
11.802 273.08 0.253 0.272 0.253 0.271 100 99.37
2.5754 253.05 0.01 0.204 0.01 0.196 100 95.97
3.0479 253.05 0.021 0.301 0.022 0.311 98.63 96.95
4.5352 253.05 0.043 0.463 0.043 0.469 100 98.79
5.8188 253.05 0.064 0.531 0.928 0.475 0.063 0.528 6.96 88.06 97.3 99.44
7.8315 253.05 0.107 0.585 0.888 0.421 0.106 0.586 12.12 61.19 98.39 99.85
9.8276 253.05 0.149 0.597 0.844 0.403 0.148 0.591 17.72 51.71 98.85 98.95
5.1343 253.05 0.057 0.504 0.057 0.503 100 99.76
6.7594 253.05 0.086 0.564 0.91 0.444 0.086 0.568 9.45 72.95 100 99.28

11.6614 253.05 0.201 0.582 0.8 0.404 0.201 0.581 25.17 56.09 100 99.72
12.9873 253.05 0.243 0.553 0.244 0.545 99.63 98.58
13.9261 253.05 0.297 0.497 0.297 0.496 99.96 99.77

1.204 238.06 0 0 0 0 100 100 100 100
2.9499 238.06 0.024 0.518 0.97 0.482 0.0246 0.519 2.53 92.6 100 99.82
4.971 238.06 0.058 0.653 0.934 0.347 0.059 0.654 6.2 12.02 98.3 99.81

5.8835 238.06 0.077 0.679 0.918 0.32 0.077 0.678 8.38 0 100 99.808
6.9027 238.06 0.093 0.699 0.899 0.302 0.094 0.698 10.33 0 98.93 99.86
8.537 238.06 0.126 0.708 0.869 0.287 0.127 0.708 14.58 0 99.842 99.91

9.9593 238.06 0.157 0.711 0.84 0.284 0.157 0.712 18.72 0 100 99.9
Table 5: The predicted Xi and Yi when the binary mixture is in equilibrium for N2 using thermodynamic and ML model for the five 
mixtures. Also, the accuracies comparing to experimental data is also indicated.

Press 
(Mpa) Temp, oF Xi 

(exp)
Yⁱ 

(exp) Xi (ther) Yi (ther) Xi (ML) Yi (ML) Accur. 
(Xi-ther), %

Accur.
 (Yi-ther), %

Accur. 
(Xi-ML), %

Accur. 
(Yi-ther), %

5.731 293.1 0 0 0 0 100 100
6.4864 293.1 0.018 0.066 0.018 0.067 99.99 99.1
6.9772 293.1 0.029 0.097 0.028 0.097 93.57 99.97
8.5942 293.1 0.077 0.146 0.076 0.144 97.63 98.36
8.5868 293.1 0.077 0.146 0.077 0.147 100 99.72
4.2667 273.08 0.015 0.137 0.014 0.135 86.42 98.48
4.9547 273.08 0.029 0.214 0.028 0.209 93.92 97.69
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7.3395 273.08 0.078 0.355 0.077 0.351 97.92 99
8.1061 273.08 0.097 0.375 0.096 0.371 98.12 98.79
9.0706 273.08 0.119 0.39 0.119 0.387 100 99.39
11.802 273.08 0.253 0.272 0.253 0.271 100 99.37
2.5754 253.05 0.01 0.204 0.01 0.196 100 95.97
3.0479 253.05 0.021 0.301 0.022 0.311 98.63 96.95
4.5352 253.05 0.043 0.463 0.043 0.469 100 98.79
5.8188 253.05 0.064 0.531 0.928 0.475 0.063 0.528 6.96 88.06 97.3 99.44
7.8315 253.05 0.107 0.585 0.888 0.421 0.106 0.586 12.12 61.19 98.39 99.85
9.8276 253.05 0.149 0.597 0.844 0.403 0.148 0.591 17.72 51.71 98.85 98.95
5.1343 253.05 0.057 0.504 0.057 0.503 100 99.76
6.7594 253.05 0.086 0.564 0.91 0.444 0.086 0.568 9.45 72.95 100 99.28

11.6614 253.05 0.201 0.582 0.8 0.404 0.201 0.581 25.17 56.09 100 99.72
12.9873 253.05 0.243 0.553 0.244 0.545 99.63 98.58
13.9261 253.05 0.297 0.497 0.297 0.496 99.96 99.77

1.204 238.06 0 0 0 0 100 100 100 100
2.9499 238.06 0.024 0.518 0.97 0.482 0.0246 0.519 2.53 92.6 100 99.82
4.971 238.06 0.058 0.653 0.934 0.347 0.059 0.654 6.2 12.02 98.3 99.81

5.8835 238.06 0.077 0.679 0.918 0.32 0.077 0.678 8.38 0 100 99.808
6.9027 238.06 0.093 0.699 0.899 0.302 0.094 0.698 10.33 0 98.93 99.86
8.537 238.06 0.126 0.708 0.869 0.287 0.127 0.708 14.58 0 99.842 99.91

9.9593 238.06 0.157 0.711 0.84 0.284 0.157 0.712 18.72 0 100 99.9
Table 6: The predicted Xi and Yi when the binary mixture is in equilibrium for CH4 using thermodynamic and ML model for the 
five mixtures. Also, the accuracies comparing to experimental data is also indicated.

As it can be seen, ML is able to predict accurate results 
for most of the data points while thermodynamic is not. 
Thermodynamic model failed to predict results for many 
data points. Also, for the points that thermodynamic data is 
available, it cannot reach the accuracy of ML. the blank cells 
show that the thermodynamic was unable to predict or the 
results had a great error comparing to experimental results. 
If vast and accurate experimental data sets are available, ML 
can lead to accurate predictions without the need for critical 
properties and thermodynamic formulas.

Discussion

As can be seen in the result tables, the accuracy of ML 
models is greatly better than thermodynamic, and this is 
because of the fact the ML relies on the relation in between 

the data while thermodynamic relies on the formula and 
other effecting factors like critical properties. The ML 
models have high accuracy predicting the VLE of different 
mixtures. During the prediction, it was observed that the 
number of data points is critical for achieving accurate 
results as more data points available, the better the quality of 
regression. Also, it was noticed that the relation in between 
the results is also critical. Predictions that had closer data 
points reached better results. For example, closer range 
of availability of pressure and temperature would lead to 
more accuracy than the data with discrete ranges. Figure 
2 Shows the learning curves of the ET model for predicting 
the Xi, mole fraction of N2, O2 components after 10 iterations 
respectively. The codes used for this research are available 
as other figures and information can be found in Hosseini 
M, et al. [49].

https://medwinpublishers.com/PPEJ/
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Figure 2: The learning curves of the ET model for predicting the Xi, mole fraction of N2, O2 components after 10 iterations 
respectively.

The learning curve provides a good insight about how 
the models converged for training and test samples. The 
small distance between train and test results in the learning 
curve values are another witness of avoiding overfitting in 
the ML models.

Conclusion

VLE of four CO2-contained binary mixtures was 
identified and predicted for CCS projects. ML models were 
trained on 70 percent of experimental data base collecting 
from literature and tested on the remaining 30 percent. Then 
PR EoS was used for prediction on the remaining 30 percent. 
ML produced reliable results for most of the data points with 
high accuracy while thermodynamic model was unable to 
produce results for many points with accuracy lower than ML 
models. It was also found out that unlike the thermodynamic 
model that relies on formula and critical properties of 
the mixture, ML relies only on pressure, temperature and 
relations in between the data points that makes ML faster 
and simpler to accommodate.

References

1. Hameli AF, Belhaj H, Dhuhoori AL (2022) CO2 sequestration 
overview in geological formations Trapping mechanisms 
matrix assessment. Energies 15(20): 7805.

2. Temitope A, Gomes JS, Bera A (2019) A review of 
CO2 storage in geological formations emphasizing 
modeling monitoring and capacity estimation 
approaches. Petroleum Science 16: 1028-1063.

3. Hematpur H, Abdollahi R, Rostami S, Haghighi M, Blunt 
MJ (2023) Review of underground hydrogen storage 
Concepts and challenges. Advances in Geo Energy 
Research 7(2): 111-131.

4. Vaferi B, Lashkarbolooki M, Esmaeili H, Shariati A (2018) 
Toward artificial intelligence based modeling of vapor 

liquid equilibria of carbon dioxide and refrigerant binary 
systems. Journal of the Serbian Chemical Society 83(2): 
199-211.

5. Gokulakannan S (2022) Machine Learning And Deep 
Learning On Vapour Liquid Equilibrium Prediction 
Of Carbon Dioxide Over Amines. National Institute of 
Technology Rourkela.

6. Aminian A, ZareNezhad B (2020) A generalized neural 
network model for the VLE of supercritical carbon 
dioxide fluid extraction of fatty oils. Fuel 282(5): 118823.

7. Yan Y, Borhani TN, Subraveti SG, Prasad V, Rajendran A, et 
al. (2021) Harnessing the power of machine learning for 
carbon capture utilisation and storage (CCUS) a state of 
the art review. Energy & Environmental Science 14(12): 
6122-6157.

8. Rahimi M, Moosavi SM, Smit B, Hatton TA (2021) Toward 
smart carbon capture with machine learning. Cell reports 
physical science 2(4): 100396.

9. Shih CY, Wu X (2020) A CNN-RNN based machine 
learning model for carbon storage management. AGU 
Fall Meeting Abstracts.

10. Truc G, Rahmanian N, Pishnamazi M (2021) Assessment 
of cubic equations of state machine learning for rich 
carbon dioxide systems. Sustainability 13(5): 2527.

11. Abaid AC, Svendsen HF, Jakobsen JP (2020) Surrogate 
modelling of VLE: integrating machine learning with 
thermodynamic constraints. Chemical Engineering 
Science X 8: 100080.

12. Desgranges C, Delhommelle J (2018) A new approach 
for the prediction of partition functions using 
machine learning techniques. The Journal of Chemical 
Physics 149(4): 044118.

https://medwinpublishers.com/PPEJ/
https://www.mdpi.com/1996-1073/15/20/7805
https://www.mdpi.com/1996-1073/15/20/7805
https://www.mdpi.com/1996-1073/15/20/7805
https://link.springer.com/article/10.1007/s12182-019-0340-8
https://link.springer.com/article/10.1007/s12182-019-0340-8
https://link.springer.com/article/10.1007/s12182-019-0340-8
https://link.springer.com/article/10.1007/s12182-019-0340-8
https://www.sciopen.com/article/10.46690/ager.2023.02.05
https://www.sciopen.com/article/10.46690/ager.2023.02.05
https://www.sciopen.com/article/10.46690/ager.2023.02.05
https://www.sciopen.com/article/10.46690/ager.2023.02.05
https://www.shd-pub.org.rs/index.php/JSCS/article/view/5209
https://www.shd-pub.org.rs/index.php/JSCS/article/view/5209
https://www.shd-pub.org.rs/index.php/JSCS/article/view/5209
https://www.shd-pub.org.rs/index.php/JSCS/article/view/5209
https://www.shd-pub.org.rs/index.php/JSCS/article/view/5209
https://eapplication.nitrkl.ac.in/nitris/docs/Thesis%20Upload/2021-22/Spring/9309.pdf
https://eapplication.nitrkl.ac.in/nitris/docs/Thesis%20Upload/2021-22/Spring/9309.pdf
https://eapplication.nitrkl.ac.in/nitris/docs/Thesis%20Upload/2021-22/Spring/9309.pdf
https://eapplication.nitrkl.ac.in/nitris/docs/Thesis%20Upload/2021-22/Spring/9309.pdf
https://www.researchgate.net/publication/343380278_A_generalized_neural_network_model_for_the_VLE_of_supercritical_carbon_dioxide_fluid_extraction_of_fatty_oils
https://www.researchgate.net/publication/343380278_A_generalized_neural_network_model_for_the_VLE_of_supercritical_carbon_dioxide_fluid_extraction_of_fatty_oils
https://www.researchgate.net/publication/343380278_A_generalized_neural_network_model_for_the_VLE_of_supercritical_carbon_dioxide_fluid_extraction_of_fatty_oils
https://pubs.rsc.org/en/content/articlehtml/2021/ee/d1ee02395k
https://pubs.rsc.org/en/content/articlehtml/2021/ee/d1ee02395k
https://pubs.rsc.org/en/content/articlehtml/2021/ee/d1ee02395k
https://pubs.rsc.org/en/content/articlehtml/2021/ee/d1ee02395k
https://pubs.rsc.org/en/content/articlehtml/2021/ee/d1ee02395k
https://www.sciencedirect.com/science/article/pii/S2666386421000862
https://www.sciencedirect.com/science/article/pii/S2666386421000862
https://www.sciencedirect.com/science/article/pii/S2666386421000862
https://ui.adsabs.harvard.edu/abs/2020AGUFMH048...07S/abstract
https://ui.adsabs.harvard.edu/abs/2020AGUFMH048...07S/abstract
https://ui.adsabs.harvard.edu/abs/2020AGUFMH048...07S/abstract
https://www.sciencedirect.com/science/article/pii/S2590140020300265
https://www.sciencedirect.com/science/article/pii/S2590140020300265
https://www.sciencedirect.com/science/article/pii/S2590140020300265
https://www.sciencedirect.com/science/article/pii/S2590140020300265
https://pubs.aip.org/aip/jcp/article-abstract/149/4/044118/197902/A-new-approach-for-the-prediction-of-partition
https://pubs.aip.org/aip/jcp/article-abstract/149/4/044118/197902/A-new-approach-for-the-prediction-of-partition
https://pubs.aip.org/aip/jcp/article-abstract/149/4/044118/197902/A-new-approach-for-the-prediction-of-partition
https://pubs.aip.org/aip/jcp/article-abstract/149/4/044118/197902/A-new-approach-for-the-prediction-of-partition


Petroleum & Petrochemical Engineering Journal 
10

Rostami S, et al. Prediction of Vapor Liquid Equilibrium of Binary CO2-Contained Mixtures for Carbon 
Capture and Sequestration using Artificial Intelligence. Pet Petro Chem Eng J 2023, 7(4): 000365.

Copyright© Rostami S, et al.

13. Mohanty S (2006) Estimation of vapour liquid equilibria 
for the system carbon dioxide difluoromethane using 
artificial neural networks. International Journal of 
Refrigeration 29(2): 243-249.

14. Mesbah M, Soroush E, Shokrollahi A, Bahadori A (2014) 
Prediction of phase equilibrium of CO2/cyclic compound 
binary mixtures using a rigorous modeling approach. The 
Journal of Supercritical Fluids 90: 110-125.

15. Azari A, Atashrouz S, Mirshekar H (2013) Prediction 
the vapor liquid equilibria of CO2-containing 
binary refrigerant mixtures using artificial neural 
networks. International Scholarly Research Notices.

16. Bahmaninia H, Shateri M, Atashrouz S, Jabbour K, 
Mohaddespour A, et al. (2023) Predicting the equilibrium 
solubility of CO2 in alcohols, ketones, and glycol ethers 
Application of ensemble learning and deep learning 
approaches. Fluid Phase Equilibria 567: 113712.

17. Mehtab V, Alam S, Povari S, Nakka L, Soujanya Y, et 
al. (2023) Reduced Order Machine Learning Models 
for Accurate Prediction of CO2 Capture in Physical 
Solvents. Environmental Science & Technology.

18. Liu H, Chan VKH, Tantikhajorngosol P, Li T, Dong S, et al. 
(2022) Novel machine learning model correlating CO2 
equilibrium solubility in three tertiary amines. Industrial 
& Engineering Chemistry Research 61(37): 14020-
14032.

19. Hwu WH, Cheng JS, Cheng KW, Chen YP (2004) Vapor 
liquid equilibrium of carbon dioxide with ethyl 
caproate, ethyl caprylate and ethyl caprate at elevated 
pressures. The Journal of supercritical fluids 28(1): 1-9.

20. Mohanty S (2005) Estimation of vapour liquid equilibria 
of binary systems carbon dioxide ethyl caproate, ethyl 
caprylate and ethyl caprate using artificial neural 
networks. Fluid phase equilibria 235(1): 92-98.

21. Roth H, Gerth PP, Lucas K (1992) Experimental vapor 
liquid equilibria in the systems R 22-R 23, R 22-Co2, Cs2-R 
22, R 23-Co2, Cs2-R 23 and their correlation by equations 
of state. Fluid phase equilibria 73(1-2): 147-166.

22. Karimi H, Yousefi F (2007) Correlation of vapour 
liquid equilibria of binary mixtures using artificial 
neural networks. Chinese Journal of Chemical 
Engineering 15(5): 765-771.

23. Karim AMA, Mutlag AK, Hameed MS (2011) Vapor liquid 
equilibrium prediction by PE and ANN for the extraction 
of unsaturated fatty acid esters by supercritical 
CO2. ARPN J Eng Appl Sci 6(9): 122.

24. Holste JC, Hall KR, Eubank PT, Esper G, Watson MQ, 
et al. (1987) Experimental (p, Vm, T) for pure CO2 
between 220 and 450 K. The Journal of Chemical 
Thermodynamics 19(12): 1233-1250.

25. Klimeck J, Kleinrahm R, Wagner W (2001) Measurements 
of the (p, ρ, T) relation of methane and carbon dioxide in 
the temperature range 240 K to 520 K at pressures up to 30 
MPa using a new accurate single-sinker densimeter. The 
Journal of Chemical Thermodynamics 33(3): 251-267.

26. Arai Y, Kaminishi GI, Saito S (1971) The experimental 
determination of the PVTX relations for the carbon 
dioxide-nitrogen and the carbon dioxide methane 
systems. Journal of Chemical Engineering of Japan 4(2): 
113-122.

27. Sarashina E, Arai Y, Sasto S (1971) The PVTX relation for 
the carbon dioxide argon system. Journal of Chemical 
Engineering of Japan 4(4): 379-381.

28. Davalos J, Wayne R, Anderson, Phelps RE, Kinday 
AJ (1976) Liquid vapor equilibria at 250.00. deg. K 
for systems containing methane ethane and carbon 
dioxide. Journal of Chemical and Engineering Data 21(1): 
81-84.

29. Mraw SC, Hwang SC, Kobayashi R (1978) Vapor liquid 
equilibrium of the methane carbon dioxide system at 
low temperatures. Journal of Chemical and Engineering 
Data 23(2): 135-139.

30. Dorau W, Wakeel IMA, Knapp H (1983) VLE data 
for CO2-CF2Cl2, N2-CO2, N2-CF2Cl2 and N2-CO2-
CF2Cl. Cryogenics 23(1): 29-35.

31. Moussa CS, Hanini S, Derriche R, Bouhedda M, Bouzidi 
A (2008) Prediciton of high pressure vapor liquid 
equilibrium of six binary systems carbon dioxide with six 
esters using an artificial neural network model. Brazilian 
Journal of Chemical Engineering 25: 183-199.

32. Cheng CH, Chen YP (2005) Vapor liquid equilibria of 
carbon dioxide with isopropyl acetate, diethyl carbonate 
and ethyl butyrate at elevated pressures. Fluid phase 
equilibria 234(1-2): 77-83.

33. Zarenezhad B, Aminian A (2011) Predicting the vapor 
liquid equilibrium of carbon dioxide+ alkanol systems 
by using an artificial neural network. Korean Journal of 
Chemical Engineering 28: 1286-1292.

34. Lasala S, Chiesa P, Privat R, Jaubert JN (2016) VLE 
properties of CO2 Based binary systems containing N2, 
O2 and Ar Experimental measurements and modelling 
results with advanced cubic equations of state. Fluid 

https://medwinpublishers.com/PPEJ/
https://www.sciencedirect.com/science/article/abs/pii/S0140700705001088
https://www.sciencedirect.com/science/article/abs/pii/S0140700705001088
https://www.sciencedirect.com/science/article/abs/pii/S0140700705001088
https://www.sciencedirect.com/science/article/abs/pii/S0140700705001088
https://www.sciencedirect.com/science/article/abs/pii/S0896844614000709
https://www.sciencedirect.com/science/article/abs/pii/S0896844614000709
https://www.sciencedirect.com/science/article/abs/pii/S0896844614000709
https://www.sciencedirect.com/science/article/abs/pii/S0896844614000709
https://www.hindawi.com/journals/isrn/2013/930484/
https://www.hindawi.com/journals/isrn/2013/930484/
https://www.hindawi.com/journals/isrn/2013/930484/
https://www.hindawi.com/journals/isrn/2013/930484/
https://www.sciencedirect.com/science/article/abs/pii/S0378381222003314
https://www.sciencedirect.com/science/article/abs/pii/S0378381222003314
https://www.sciencedirect.com/science/article/abs/pii/S0378381222003314
https://www.sciencedirect.com/science/article/abs/pii/S0378381222003314
https://www.sciencedirect.com/science/article/abs/pii/S0378381222003314
https://pubs.acs.org/doi/10.1021/acs.est.3c00372
https://pubs.acs.org/doi/10.1021/acs.est.3c00372
https://pubs.acs.org/doi/10.1021/acs.est.3c00372
https://pubs.acs.org/doi/10.1021/acs.est.3c00372
https://pubs.acs.org/doi/10.1021/acs.iecr.2c02006
https://pubs.acs.org/doi/10.1021/acs.iecr.2c02006
https://pubs.acs.org/doi/10.1021/acs.iecr.2c02006
https://pubs.acs.org/doi/10.1021/acs.iecr.2c02006
https://pubs.acs.org/doi/10.1021/acs.iecr.2c02006
https://www.sciencedirect.com/science/article/abs/pii/S0896844603000287
https://www.sciencedirect.com/science/article/abs/pii/S0896844603000287
https://www.sciencedirect.com/science/article/abs/pii/S0896844603000287
https://www.sciencedirect.com/science/article/abs/pii/S0896844603000287
https://www.sciencedirect.com/science/article/abs/pii/S0378381205002177
https://www.sciencedirect.com/science/article/abs/pii/S0378381205002177
https://www.sciencedirect.com/science/article/abs/pii/S0378381205002177
https://www.sciencedirect.com/science/article/abs/pii/S0378381205002177
https://www.sciencedirect.com/science/article/abs/pii/037838129285045A
https://www.sciencedirect.com/science/article/abs/pii/037838129285045A
https://www.sciencedirect.com/science/article/abs/pii/037838129285045A
https://www.sciencedirect.com/science/article/abs/pii/037838129285045A
https://www.sciencedirect.com/science/article/abs/pii/S1004954107601608
https://www.sciencedirect.com/science/article/abs/pii/S1004954107601608
https://www.sciencedirect.com/science/article/abs/pii/S1004954107601608
https://www.sciencedirect.com/science/article/abs/pii/S1004954107601608
https://dokumen.tips/documents/vapor-liquid-equilibrium-prediction-by-pe-and-ann-for-the-equilibrium-prediction.html
https://dokumen.tips/documents/vapor-liquid-equilibrium-prediction-by-pe-and-ann-for-the-equilibrium-prediction.html
https://dokumen.tips/documents/vapor-liquid-equilibrium-prediction-by-pe-and-ann-for-the-equilibrium-prediction.html
https://dokumen.tips/documents/vapor-liquid-equilibrium-prediction-by-pe-and-ann-for-the-equilibrium-prediction.html
https://www.sciencedirect.com/science/article/abs/pii/0021961487900012
https://www.sciencedirect.com/science/article/abs/pii/0021961487900012
https://www.sciencedirect.com/science/article/abs/pii/0021961487900012
https://www.sciencedirect.com/science/article/abs/pii/0021961487900012
https://www.sciencedirect.com/science/article/abs/pii/S0021961400907110
https://www.sciencedirect.com/science/article/abs/pii/S0021961400907110
https://www.sciencedirect.com/science/article/abs/pii/S0021961400907110
https://www.sciencedirect.com/science/article/abs/pii/S0021961400907110
https://www.sciencedirect.com/science/article/abs/pii/S0021961400907110
https://www.jstage.jst.go.jp/article/jcej1968/4/2/4_2_113/_article
https://www.jstage.jst.go.jp/article/jcej1968/4/2/4_2_113/_article
https://www.jstage.jst.go.jp/article/jcej1968/4/2/4_2_113/_article
https://www.jstage.jst.go.jp/article/jcej1968/4/2/4_2_113/_article
https://www.jstage.jst.go.jp/article/jcej1968/4/2/4_2_113/_article
https://www.jstage.jst.go.jp/article/jcej1968/4/4/4_4_379/_pdf/-char/ja
https://www.jstage.jst.go.jp/article/jcej1968/4/4/4_4_379/_pdf/-char/ja
https://www.jstage.jst.go.jp/article/jcej1968/4/4/4_4_379/_pdf/-char/ja
https://pubs.acs.org/doi/pdf/10.1021/je60068a030
https://pubs.acs.org/doi/pdf/10.1021/je60068a030
https://pubs.acs.org/doi/pdf/10.1021/je60068a030
https://pubs.acs.org/doi/pdf/10.1021/je60068a030
https://pubs.acs.org/doi/pdf/10.1021/je60068a030
https://pubs.acs.org/doi/10.1021/je60077a014
https://pubs.acs.org/doi/10.1021/je60077a014
https://pubs.acs.org/doi/10.1021/je60077a014
https://pubs.acs.org/doi/10.1021/je60077a014
https://www.sciencedirect.com/science/article/abs/pii/0011227583901376
https://www.sciencedirect.com/science/article/abs/pii/0011227583901376
https://www.sciencedirect.com/science/article/abs/pii/0011227583901376
https://www.scielo.br/j/bjce/a/K5MmR3zVjqmpjtJRBBRBjNP/
https://www.scielo.br/j/bjce/a/K5MmR3zVjqmpjtJRBBRBjNP/
https://www.scielo.br/j/bjce/a/K5MmR3zVjqmpjtJRBBRBjNP/
https://www.scielo.br/j/bjce/a/K5MmR3zVjqmpjtJRBBRBjNP/
https://www.scielo.br/j/bjce/a/K5MmR3zVjqmpjtJRBBRBjNP/
https://www.sciencedirect.com/science/article/abs/pii/S037838120500186X
https://www.sciencedirect.com/science/article/abs/pii/S037838120500186X
https://www.sciencedirect.com/science/article/abs/pii/S037838120500186X
https://www.sciencedirect.com/science/article/abs/pii/S037838120500186X
https://link.springer.com/article/10.1007/s11814-010-0492-0
https://link.springer.com/article/10.1007/s11814-010-0492-0
https://link.springer.com/article/10.1007/s11814-010-0492-0
https://link.springer.com/article/10.1007/s11814-010-0492-0
https://www.sciencedirect.com/science/article/abs/pii/S0378381216302400
https://www.sciencedirect.com/science/article/abs/pii/S0378381216302400
https://www.sciencedirect.com/science/article/abs/pii/S0378381216302400
https://www.sciencedirect.com/science/article/abs/pii/S0378381216302400


Petroleum & Petrochemical Engineering Journal 
11

Rostami S, et al. Prediction of Vapor Liquid Equilibrium of Binary CO2-Contained Mixtures for Carbon 
Capture and Sequestration using Artificial Intelligence. Pet Petro Chem Eng J 2023, 7(4): 000365.

Copyright© Rostami S, et al.

Phase Equilibria 428: 18-31.

35. Joung SN, Yoo CW, Shin HY, Kim SY, Yoo KP, et al. (2001) 
Measurements and correlation of high pressure VLE 
of binary CO2 alcohol systems (methanol, ethanol, 
2-methoxyethanol and 2-ethoxyethanol). Fluid Phase 
Equilibria 185(1-2): 219-230.

36. Oliver GS, Luna LAG (2001) Vapor liquid equilibria near 
critical point and critical points for the CO2+ 1-butanol 
and CO2+ 2-butanol systems at temperatures from 324 
to 432 K. Fluid Phase Equilibria 182(1-2): 145-156.

37. Oliver GS, Luna LAG, Sandler SI (2002) Vapor liquid 
equilibria and critical points for the carbon dioxide+ 
1-pentanol and carbon dioxide+ 2-pentanol systems 
at temperatures from 332 to 432 K. Fluid Phase 
Equilibria 200(1): 161-172.

38. Jou FY, Otto FD, Mather AE (1998) Solubility of H2S, 
CO2 and their mixtures in an aqueous solution of 
2-piperidineethanol and sulfolane. Journal of Chemical 
& Engineering Data 43(3): 409-412.

39. Teng TT, Mather AE (1989) Solubility of H2S, CO2 and 
their mixtures in an AMP solution. The Canadian Journal 
of Chemical Engineering 67(5): 846-850.

40. Li H, Jakobsen JP, Wilhelmsen O, Yan J (2011) PVTxy 
properties of CO2 mixtures relevant for CO2 capture 
transport and storage Review of available experimental 
data and theoretical models. Applied Energy 88(11): 
3567-3579.

41. Westman SF, Stang HGJ, Lovseth SW, Austegard A, 
Snustad I, et al. (2016) Vapor liquid equilibrium data for 
the carbon dioxide and nitrogen (CO2+ N2) system at the 
temperatures 223, 270, 298 and 303 K and pressures up 
to 18 MPa. Fluid Phase Equilibria 409: 207-241.

42. Ottoy S, Neumann T, Stang HGJ, Jakobsen JP, Austegard 
A, et al. (2020) Thermodynamics of the carbon dioxide 
plus nitrogen plus methane (CO2+ N2+ CH4) system: 
Measurements of vapor liquid equilibrium data at 
temperatures from 223 to 298 K and verification of EOS-
CG-2019 equation of state. Fluid Phase Equilibria 509: 
112444.

43. Donnelly HG, Katz DL (1954) Phase equilibria in 
the carbon dioxide–methane system. Industrial & 
Engineering Chemistry 46(3): 511-517.

44. Esper GJ, Bailey DM, Holste JC, Hall KR (1989) Volumetric 
behavior of near equimolar mixtures for CO2+ CH4 and 
CO2+ N2. Fluid phase equilibria 49: 35-47.

45. Brown TS, Niesen VG, Sloan ED, Kidnay AJ (1989) Vapor 
liquid equilibria for the binary systems of nitrogen, 
carbon dioxide, and n-butane at temperatures from 220 
to 344 K. Fluid phase equilibria 53: 7-14.

46. Djebaili K, Ahmar EE, Valtz A, Meniai AH, Coquelet C 
(2018) Vapor Liquid Equilibrium Data for the Carbon 
Dioxide (CO2)+ 1, 1, 1, 3, 3-Pentafluorobutane (R365mfc) 
System at Temperatures from 283.15 to 337.15 K. Journal 
of Chemical & Engineering Data 63(12): 4626-4631.

47. Hosseini M, Katragadda S, Wojtkiewicz J, Gottumukkala 
R (2020) Direct normal irradiance forecasting using 
multivariate gated recurrent units. Energies 13(15): 
3914.

48. Jaubert JN, Mutelet F (2004) VLE predictions with 
the Peng Robinson equation of state and temperature 
dependent kij calculated through a group contribution 
method. Fluid Phase Equilibria 224(2): 285-304.

49. Hosseini M, Rostami S (2023) Project VLE, GitHub 
repository.

https://medwinpublishers.com/PPEJ/
https://www.sciencedirect.com/science/article/abs/pii/S0378381216302400
https://www.sciencedirect.com/science/article/abs/pii/S0378381201004721
https://www.sciencedirect.com/science/article/abs/pii/S0378381201004721
https://www.sciencedirect.com/science/article/abs/pii/S0378381201004721
https://www.sciencedirect.com/science/article/abs/pii/S0378381201004721
https://www.sciencedirect.com/science/article/abs/pii/S0378381201004721
https://www.sciencedirect.com/science/article/abs/pii/S0378381201003880
https://www.sciencedirect.com/science/article/abs/pii/S0378381201003880
https://www.sciencedirect.com/science/article/abs/pii/S0378381201003880
https://www.sciencedirect.com/science/article/abs/pii/S0378381201003880
https://www.sciencedirect.com/science/article/abs/pii/S0378381202000249
https://www.sciencedirect.com/science/article/abs/pii/S0378381202000249
https://www.sciencedirect.com/science/article/abs/pii/S0378381202000249
https://www.sciencedirect.com/science/article/abs/pii/S0378381202000249
https://www.sciencedirect.com/science/article/abs/pii/S0378381202000249
https://pubs.acs.org/doi/10.1021/je970272q
https://pubs.acs.org/doi/10.1021/je970272q
https://pubs.acs.org/doi/10.1021/je970272q
https://pubs.acs.org/doi/10.1021/je970272q
https://onlinelibrary.wiley.com/doi/abs/10.1002/cjce.5450670517
https://onlinelibrary.wiley.com/doi/abs/10.1002/cjce.5450670517
https://onlinelibrary.wiley.com/doi/abs/10.1002/cjce.5450670517
https://www.sciencedirect.com/science/article/abs/pii/S0306261911002224
https://www.sciencedirect.com/science/article/abs/pii/S0306261911002224
https://www.sciencedirect.com/science/article/abs/pii/S0306261911002224
https://www.sciencedirect.com/science/article/abs/pii/S0306261911002224
https://www.sciencedirect.com/science/article/abs/pii/S0306261911002224
https://www.sciencedirect.com/science/article/abs/pii/S0378381215301394
https://www.sciencedirect.com/science/article/abs/pii/S0378381215301394
https://www.sciencedirect.com/science/article/abs/pii/S0378381215301394
https://www.sciencedirect.com/science/article/abs/pii/S0378381215301394
https://www.sciencedirect.com/science/article/abs/pii/S0378381215301394
https://www.sciencedirect.com/science/article/pii/S0378381219305060
https://www.sciencedirect.com/science/article/pii/S0378381219305060
https://www.sciencedirect.com/science/article/pii/S0378381219305060
https://www.sciencedirect.com/science/article/pii/S0378381219305060
https://www.sciencedirect.com/science/article/pii/S0378381219305060
https://www.sciencedirect.com/science/article/pii/S0378381219305060
https://www.sciencedirect.com/science/article/pii/S0378381219305060
https://pubs.acs.org/doi/10.1021/ie50531a036
https://pubs.acs.org/doi/10.1021/ie50531a036
https://pubs.acs.org/doi/10.1021/ie50531a036
https://www.sciencedirect.com/science/article/abs/pii/0378381289800044
https://www.sciencedirect.com/science/article/abs/pii/0378381289800044
https://www.sciencedirect.com/science/article/abs/pii/0378381289800044
https://www.sciencedirect.com/science/article/abs/pii/0378381289800676
https://www.sciencedirect.com/science/article/abs/pii/0378381289800676
https://www.sciencedirect.com/science/article/abs/pii/0378381289800676
https://www.sciencedirect.com/science/article/abs/pii/0378381289800676
https://pubs.acs.org/doi/10.1021/acs.jced.8b00683
https://pubs.acs.org/doi/10.1021/acs.jced.8b00683
https://pubs.acs.org/doi/10.1021/acs.jced.8b00683
https://pubs.acs.org/doi/10.1021/acs.jced.8b00683
https://pubs.acs.org/doi/10.1021/acs.jced.8b00683
https://www.mdpi.com/1996-1073/13/15/3914
https://www.mdpi.com/1996-1073/13/15/3914
https://www.mdpi.com/1996-1073/13/15/3914
https://www.mdpi.com/1996-1073/13/15/3914
https://www.sciencedirect.com/science/article/abs/pii/S0378381204003127
https://www.sciencedirect.com/science/article/abs/pii/S0378381204003127
https://www.sciencedirect.com/science/article/abs/pii/S0378381204003127
https://www.sciencedirect.com/science/article/abs/pii/S0378381204003127
https://creativecommons.org/licenses/by/4.0/

	Abstract
	Introduction
	Machine Learning Models
	Decision Trees
	Random Forest
	Extra Trees Model
	Thermodynamic Model

	Results
	Discussion
	Conclusion
	References

