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Abstract

Anthropogenic CO2 emissions rapidly increased during the post-industrial revolution causing global warming issues. In 
order to reduce the CO2 concentration in the atmosphere Carbon Capture and Sequestration will play a key transition role to 
transform into clean energy by utilizing the existing oil and gas infrastructure and subsurface data. The technology comes with 
certain challenges, amongst them, one of the real threats is the stored CO2 leakage back into the atmosphere and at shallower 
surfaces. This work talks about the understanding of geomechanical risks involved in the CCS process and probable ideas to 
mitigate the risks. CO2 injection leads to an increase in the pressure within the pores which eventually results in a change 
of stress and strain conditions within the reservoir. With a proper understanding of the reservoir and with a realistic field 
dataset a controlled injection can avoid a formation leading to geomechanical failures. Often field data are insufficient, in such 
a scenario this works talks about the preventive measures that can be adopted to avoid early mentioned calamity.
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Introduction

Carbon dioxide is a primary contributor to greenhouse 
gas emissions. It can be stored in subsurface conditions 
within saline aquifers, as they are abundant and provides 
adequate capacity [1,2]. However, this storage method is not 
foolproof; it comes with certain geomechanical challenges 
and risks. CO2 injection increases the pore pressure and can 
lead to caprock failure, reactivation of pre-existing faults, 
abnormal poroelastic response, surface uplift, induced 
seismicity contamination of drinking water, and soil 
pollution [3,4]. To mitigate CO2 migration risk to shallower 
depths, understanding the lithostratigraphic context of the 
proposed repository, the state of stress and the reservoir 
geomechanics processes become important. 

Fortunately, there is no report of significant carbon 
leakage from carbon sequestration since its inception in 

1996 in the Sleipner oil field in the North Sea [5]. But low 
induced seismic risk remains one of the basic criteria for a 
carbon sequestration site selection. Carbon dioxide leakage 
potentials can be divided into two broad categories, (i) 
Leakage potential from abandoned wellbores and (ii) 
leakage potential from geological formation through weak 
planes. A poor abandoned well database possess a real 
threat in identifying potential leakage areas whereas, 
within geological formation fault geometry, the existence 
of blind faults, critically stressed faults and fractures adds 
computational expenses [6].

To efficiently understand the geomechanical risks, a 
multiscale model of the reservoir is essential [7]. Models such 
as the single-phase analytical model [8], hybrid analytical-2D 
numerical simulation model [9], fluid simulation model [7], 
geomechanical model [10] previously addressed the leakage 
issue along the fault paths. But, in recent years numerical 
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modelling combined with reservoir flow simulation and 
geomechanical models achieved quite a success to predict 
rock failure behaviour under CO2 injection [4]. Coupled 
simulators such as TOUGH-FLAC3D [11,12], GEM-COMSOL 
[13], Eclipse-VISAGE [14,15], ABAQUS [16], plays a pivotal 
role in geomechanical application for carbon dioxide storage. 
However, the efficiency and accuracy of the model only 
increase with the valuable addition of field data. 

Previous Studies

Change in pore pressure during gas and fluid storage 
modifies the magnitude of horizontal stresses leading to 
the potentially irreversible mechanical change within the 
in situ rock, increasing the possibility of injection-related 
seismicity, caprock failure, and reactivation of existing faults 
[17-19]. Detailed knowledge of pre-existing faults, fault slip 
potential, criteria for generation of new faults and fractures, 
local and regional stress regimes, and earthquake focal 
mechanisms contribute significantly to the geomechanical 
understanding of the reservoir subjected to injection [20-
22]. Based on such valuable information, a comprehensive 
geomechanical model of a CO2 repository reservoir can 
be created. An accurate evaluation of the magnitudes, the 
direction of principal stresses, and pore pressure [23,24] 
while creating the model can help understand the potential 
for unfavourable outcomes and thus guide operational 
outcomes as detected by sensor arrays for seismic surveys, 
deformation and induced seismicity. 

Data Acquisition and State of Stress

Pore pressure data can be acquired from the Drill Stem 
Test, the Repeat Formation Test, borehole geophysical 
logs, seismic data, and drilling mud weight values [25-
27]. The orientation of principal stresses is derived from 
borehole breakouts and tensile fractures, earthquake focal 
mechanisms [25,28]. There are many methods and direct 
measurements to estimate the magnitude of the stresses such 
as density log data (for Sv magnitude), poroelastic horizontal 
strain model, empirical tectonic factors, image log data, 
borehole failure data, earthquake focal mechanism inversion 
technique (for Shmax magnitude) and specific activities such 
as Leak-Off Tests, Hydraulic Fracturing Tests and Pressure 
While Drilling, and Diagnostic Fracture Injection Test (for 
Shmin magnitude) [22,27,29,30]. Based on the principal stress 
magnitude and directions, the state of stress can be specified 
and extrapolated regionally, given adequate data. In general, 
studies show that elevated compressive regional stress is 
more conducive to rock slip within a reservoir [31].

Identifying pre-existing faults, particularly critically 
stressed faults, is crucial to probabilistically analyze and 
assess reservoir containment before a major prolonged 

injection period. Providing that injection pressures do not 
exceed the minimum principal stress, rock commonly fails 
under shear failure and pre-existing faulted/fractured rocks 
require special attention in the framework of Mohr-Coulomb 
failure analysis [4]. Within the subsurface, fault specification 
(undetected faults, small faults, unknown lateral continuity 
of a fault system, fracture orientation) is needed. Then, 
pore pressures, local stress of faults, elastic properties 
and frictional/cohesive strength specification present real 
challenges. To quantify uncertainties, the probability of the 
fault plane slipping can be expressed as:

[ ]0fP =P nτ µσ− ≤  (1) [22]

Specifying Mohr-Coulomb failure criteria in a 
probabilistic manner, fault planes which are most susceptible 
to slip can be identified.

To avoid a fault plane slipping under shear failure, 
Ferronato, et al. [31] introduced a safety factor by which the 
threshold margin of injection pressure can be detected.

For shear failure a safety factor can be expressed as:

( )*1 /m mχ τ τ= −         (2)

In which mτ  is the current largest shear stress and *
mτ  is the 

maximum allowable shear stress.

For tensile failure safety factor is presented as:

3
3,0
σ
σ

Ψ =                  (3)

Where 3,0σ  is the initial minimum principal stress. When
0Ψ = , tensile fracture is induced.

Changes in stress conditions can lead to the opening 
of microfracture networks, reactivate pre-existing faults, 
and create induced fracture, leading to micro-seismic risk 
to the formation [32]. Studying the change in stress path is 
an accepted method to identify the slip potential of the fault 
plane and determine allowable maximum injection pressure 
[19]. 

Possible Areas Undergoing Geomechanical 
Changes

Within a reservoir, there are areas more vulnerable to 
brittle deformations. Over-pressured zones have lower 
effective stresses and are more prone to slip, thus, requiring 
special consideration during injection simulation [4,22]. 
Moreover, the lower boundary of the cap rock is the weakest 
zone to initiate a slip surface and this tendency is influenced 
also by the thermal expansion coefficient and elastic 
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properties of the rock [4,33]. Even sufficient temperature 
differences can cause fractures to develop within the caprock 
[34].

The distribution of injected CO2 is driven by 
heterogeneous permeability distributions in the subsurface 
[35]. Rutqvist, et al. [33] observed a proportional relation 
between permeability and the change in effective stress 
after the injection of CO2. Thus, it is essential to consider the 
various geomechanical factors together to provide realistic 
simulations and reliable probabilistic assessments. 

Effective stress within the formation is reduced with the 
injection of CO2. This can lead rock to fail in three different 
ways:
•	 An immediate slip on the critically stressed planes 

under the influence of high pore pressure, especially in 
the areas close to the injection point, therefore further 
reducing the stress-bearing capacity.

•	 Modified stress magnitudes of much larger scale leading 
to the slip of distantly placed weak planes at roughly the 
same depth.

•	 Prolonged injection with an accumulation of additional 
stress triggering faults at different depths [36-38].

Geomechanical Simulation Studies

To ensure safe injection, reservoir simulation involving 
CO2 and brine flow coupled with geomechanics analysis 

provides a better estimation of the hydrofracturing and 
stick-slip threshold values as compared to single-phase flow 
models [21]. If the reservoir itself is faulted, it can be analyzed 
by the finite-thickness element approach [20]. However, 
knowledge of subsurface parameters is often somewhat 
sparse and not regularly distributed, thus a probabilistic 
approach is the best way to model the injection-related 
geomechanical changes and therefore outcomes. Such an 
approach can deal with stress magnitudes, the orientation of 
the principal stress, fault orientation and dip, and frictional 
coefficient-related uncertainties [36,39]. Fluid flow coupled 
with geomechanical simulation (e.g., GEM-COMSOL, Eclipse-
VISAGE, TOUGH-FLAC, ABAQUS) helps to identify the risks 
involved in the form of surface upliftment, induce seismicity, 
reactivation of faults, generation of new fracture networks.

With a probabilistic geomechanics approach, the San 
Juan CarbonSAFE project in the USA was identified as having 
low-induced seismicity potential [40].

With a controlled injection pressure, tensile failures 
can be avoided within the rock [32]. However, on the other 
hand, a tensile crack can appear under low differential stress 
conditions for critically-stressed faults and fractures which 
further decreases the value of the maximum allowable 
pressure of injection [41]. The rock’s mechanical strength 
and geometric characteristics can be comprised of the 
reaction of CO2 with minerals, leading to drastic changes in 
local stress conditions [42].

Figure 1: Conceptual diagram of CO2 leakage from geological storage under a high CO2 injection rate. The pink colour represents 
injected CO2. Black straight lines indicated weak planes (faults and fractures). Blue dotted circles indicate ground/ drinking 
water. Black solid arrows indicate surface upliftment. The black half arrow indicates the slip direction of the fault plane. The 
red star indicates seismic activity. Diagram not to scale.

https://medwinpublishers.com/PPEJ/


Petroleum & Petrochemical Engineering Journal 
4

Biswas T. Role and Advancements in Geomechanical Challenges in Carbon Capture and Sequestration. 
Pet Petro Chem Eng J 2023, 7(2): 000348.

Copyright© Biswas T.

Discussion

The CO2 storage project in In Salah, Algeria, was identified 
with injection-induced faulting. This is a classic case of 
fracture reactivation and the area is now identified with 
potential microseismic activity area [43]. Regular monitoring 
of CO2 injection not only helps to detect valuable information 
but also helps to initiate preventive measures against early 
warnings. Several monitoring methods such as geophysical 
survey (microseismic activity analysis), hydrogeochemistry 
and surface soil gas technique, and shallow well monitoring 
of underground fluids are capable of detecting CO2 leakage 
[44-46]. However, none of them is infallible. At Svelvik in 
Norway, a shallow-level (20m) CO2 injection test resulted in an 
unpredictable CO2 gas escape route, which further demands 
the improvement of existing fixed monitoring methods [45]. 
Carbon dioxide can leak at an uncontrollable rate under the 
existence of faults and fractures. In such a scenario, polymers, 
gels and foams can be used to choke porous and permeable 
zones and reduce fluid mobility [6]. Recently, the microbially 
induced carbonate precipitation (MICP) technique yielded a 
positive result in treating fractured concrete with a 26-50% 
recovery of the initial tensile strength [47]. With proper 
tuning, this method has the potential to become successful 
in treating densely induced fractured intervals. Although the 
preference should always be not to initiate fault and fracture 
networks by controlling the CO2 injection rate [48]. 

Conclusion

CO2 is one of the primary contributors as a greenhouse 
gas that can be stored in subcritical conditions within 
saline aquifers as they are abundant and provides more 
capacity. However, the storage method comes with certain 
geomechanical risks which need to be eliminated before 
identifying a reservoir as a suitable storage site. Such risks 
involve the reactivation of faults, creation of new fractured 
networks, induced seismicity, surface upliftment and 
migration of CO2 from the leaked path to shallower levels. This 
work reviews the recent advancements in geomechanical 
challenges in carbon capture and sequestration. Reservoir 
Modelling can only be performed close to reality with the 
availability of the field data. In case of the non-availability of 
the dataset, a probabilistic statistical approach can possibly 
be a good option to identify the leakage risks. With a close 
post-injection monitoring method, it is possible to identify 
an early indication of geomechanical failure. In case of a rock 
failure under injection pressure, there are methods that exist 
to choke or treat the fractured interval and help them recover 
their strength back.
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