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Abstract

Graphical Abstract

The actual work evaluated the effect of initial phenol concentration (CPh0) of 500, 1000 and 1500 mg.L-1, the molar stoichiometric 
ratio of Phenol/Hydrogen peroxide (RP/H) of 25, 50 and 75 % and time (t) of 30, 90 and 150 min on the oxidation of phenolic 
effluents by called Direct Contact Thermal Treatment (DiCTT). This process provides a novel means to induce degradation and 
mineralization of organic pollutants in water. The experimental studies were carried out at semi-industrial plant. The organic 
pollutant was degraded with a conversion higher than 99% and a Total Organic Carbon (TOC) mineralization exceeding 40%, 
to a (RP/H) of 75%, independent of the CPh0, that was identified as the optimal condition by thermochemical process. The 
initial phenol concentration was quantified and identified by the High Performance Liquid Chromatography (HPLC) technique 
followed by statistical design tools to optimization using Response Surface Methodology (RSM) and an analytical mathematical 
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modelling via Artificial Neural Networks (ANNs). The results also showed the dynamic concentration evolution of the 
intermediates formed (catechol, hydroquinone and para-benzoquinone). Artificial Neural Networks were applied to model 
the step experimental of Phenol Degradation (PD) and Total Organic Carbon (TOC) conversion by DiCTT thermochemical 
process. For the ANN modelling, “statistic 8.0” software was used with a Multi-Layer Perceptron (MLP) feed-forward networks 
by input-output data using a back-propagation algorithm. The correlation coefficients R2 between the network predictions 
and the experimental results were in the range of 0.95–0.99.      

Keywords: Phenol; Thermochemical Oxidation; AOPs; DiCTT; ANNs

Introduction

The water is essential for life, being an important natural 
resource, both for a biochemical component of living beings, 
and through the life of various species, such as: vegetables 
and animals. Thus, the treatment, and management of 
chemical pollutants in the environment is a matter of extreme 
relevance for environmental sustainability. Therefore, the 
efficient removal of Persistent Organic Pollutants (POPs) 
from wastewater streams is severely important, due to their 
possible mutagenic and carcinogenic characteristics, as well 
as their acute and chronic consequence on human health 
mainly [1].

Phenol is considered one of the most toxic aromatic 
and refractory organic compounds found in wastewater 
released by various industries [2]. Wastewaters of industrial 
plants, often exhibit high levels of organic compounds, 
which are harmful to human health and the environment 
[3]. Phenol and BTEX (benzene, toluene, ethylbenzene and 
xylenes) are also added to the class of organic substances 
analysed as hazardous chemicals [4]. The great relevance in 
industrial and municipal treatment methods is the removal 
of contaminants present in wastewater through chemical, 
physical and biological processes [5]. The main sources of 
organic pollutants are oil refineries and petrochemical plants, 
coke gasifiers, pulp and paper production, pharmaceuticals, 
the food industry and plants that process minerals, plastics, 
metals and organic chemicals [6]. 

The primary impact of these industries on the environment 
is the generation of highly polluted wastewater. The organic 
pollutants most detected in those wastes are phenol: 
C6H5OH, 2-chlorophenol: C6H5ClO, 2,4-di-chlorophenol: 
C6H4Cl2O, 2,4,6-tri-chlorophenol: C6H2Cl3OH/C6H3Cl3O, 
2-nitrophenol: C6H5NO3, 4-nitrophenol: C6H5NO3, 2,4-di-
nitrophenol: C6H4N2O5, 2-metilphenol: C7H8O, 3-metilphenol: 
C7H8O, 4-dimetilphenol: C8H10O and 4-aminophenol: C6H7NO 
[7]. There are several physicochemical and biodegradation 
methods that have been employed to treat industrial effluents 
containing phenolic and refractory organic compounds, such 
as ozonization, adsorption, photocatalysis, use of membranes 

and enzymatic treatment [8]. Phenol removal has also been 
employed from an osmotic membrane bioreactor for the 
treatment of effluents [9]. 

Phenols have antiseptic properties that are 
explained by bactericidal action and are currently used 
in phenolic compounds such as espadol, creolin, and 
lisol, which are disinfectants due to their mechanism of 
coagulating microorganism proteins. Phenol is also used 
in the production of polymers (bakelite), pyric acid and its 
derivatives (explosives and burn medications), indicators 
(phenolphthalein), dyes, resins and salicylic acid [10]. 
However, phenolic compounds are harmful to human 
health and can cause necrosis, digestive problems, liver 
and kidney damage [11]. Phenols cause toxicity and are 
carcinogenic, so these compounds can provide bad odor 
and contaminate water, even in low concentration [12]. 
The presence of phenolic contaminants in sublethal doses 
affects the nervous and circulatory system, with reduced 
growth of blood cells [13]. Phenol vapors when inhaled 
through the airways, causes dyspnea (difficulty breathing), 
coughing and are quite corrosive to tissues. When exposure 
to concentrations of these compounds are high, it causes 
tachypnea, bronchopneumonia, bronchitis, pulmonary 
edema, and respiratory arrest. In the central nervous system 
arises initially excitement, and soon after, depression, which 
causes convulsions and unconsciousness. Contact with the 
skin and mucous membranes produces irritation, burns, 
inflammation and discoloration. It can also cause from an 
erythema to necrosis and gangrene in tissues, depending 
on the time of contact and the concentration of solutions 
[14]. When present in drinking water, phenols can cause 
serious public health problems and can also cause the death 
of fish, even at concentrations in the range of 1 mg. L-1. At 
concentrations of less than 1 mg. L-1, are also toxic to other 
biological species and destroy the aquatic environment 
[15]. Phenol has an identifiable taste in water, even at low 
concentrations of 0.002 mg.L-1. From an exposure time of 
around 4 days and concentrations ranging between 10 and 
100 mg.L-1, these compounds are lethal to many aquatic lives. 
Phenol can be detected at concentrations of only 40 μg.L-1 in 
the air and about 1-8 mg.L-1 in water [16]. 
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The toxicity of these compounds in water has had quite 
relevance due to their concentrations that at mg.L-1 levels, 
may affect the aquatic environment [17]. Thus, the various 
aromatic compounds present should be constantly identified 
and monitored. Therefore, there is a need to restore 
contaminated areas with these organic compounds and avoid 
further contamination of the environment [18]. The solution 
of such task requires a broad understanding of the chemicals 
and biological concepts of the potential contaminants [19].

In recent decades, several demands were suggested 
for the definition of strategies in order to improve existing 
processes and develop clean technologies to degrade a 
greater amount of toxic and polluting substances, which 
were generated by either the available methods process, 
such as, industrial wastes or municipal wastes [20]. Thus, 
the removal of organic pollutants from the environment 
has been a major technological challenge, because, in many 
times, conventional treatment technologies are not able to 
solve the problem efficiently. For this reason, the search 
for these effective technologies has grown so much to be 
destroyed [21]. The legislation through resolution No. 430, 
published on May 13, 2011, of the National Council for the 
Environment (CONAMA) establishes the maximum value 
for the presence of organic substances in effluents, such 
as chloroform, dichloroetene, carbon tetrachloride and 
trichloroetene, the limit of 1 mg. L-1, and for the presence of 
total phenols (substances that react with 4-aminoantipyrine) 
the maximum limit of 0.5 mg.L-1 [22].

There are several processes used in the treatment of 
industrial liquid effluents that can be divided into three main 
groups: biological, chemical and physical. A combination 
of these processes is generally used. The efficiency of the 
biological process in destroying organic substances can 
reach 97%. However, certain factors such as organic matter 
concentration and temperature can adversely affect the 
efficiency of such processes [23]. An alternative to biological 
treatment is incineration, however its use is limited when 
the Chemical Oxygen Demand (COD) is low, below 200 
g.L-1, due to the amount of energy required [24]. Physical 
processes have disadvantages in relation to selectivity in 
the treatment of liquid effluents and require storage and 
disposal of removed contaminants. Chemical processes 
are often limited with respect to the volume of liquid to be 
treated [25]. Currently, alternative methods were analyzed 
for the degradation stage of domestic and industrial liquid 
effluents containing organic compounds, such as catalytic 
oxidation, photo-oxidation and electrochemical oxidation, 
ultrafiltration and combined methods. Another auxiliary 
method for removal is the adsorption technique, which 
depends on the adsorptive materials used [26]. 

In recent years, between the various methods of 

wastewaters treatment containing toxic organic substances, 
Advanced Oxidation Processes (AOPs) have been studied as 
an alternative technology for the treatment of toxic organic 
effluents [27]. This AOPs has been largely used in pre-
treatment on olive oil mill effluent using physicochemical, 
Fenton and Fenton-like [28]. This method by AOPs has also 
been applied through the use of ozone (O3, O3/H2O2, O3/UV and 
O3/UV/H2O2) for the treatment of textile effluents [29]. These 
processes have as main advantages the ability to degrade a 
toxic substance or convert it into a biodegradable form, due 
to the generation of hydroxyl radicals (•OH), species capable 
of attacking the majority of organic molecules [30]. Phenol 
catalytic oxidation has been applied with a heterogeneous 
Cu(II) onto Chitosan and poly(4-vinylpyridine) (PVP) 
catalysts in a reactor for municipal wastewater treatment 
using air and H2O2 as oxidants [31]. The stage of phenol 
photodegradation and formation of organic intermediates 
and •OH radicals were studied by UV/TiO2 and Vis/N, 
C-TiO2 processes [32]. Catalytic phenol degradation in 
sonolysis was studied by coal ash and H2O2/O3 as oxidants 
[33]. The toxicity of phenol solutions was analysed using 
oxidative systems such as H2O2/UV and H2O2/Fe [34]. The 
oxidation of triclosan by ferrate (Fe (VI)) was investigated 
to determine intermediates formed and evaluate the toxicity 
variations during this oxidation step during this oxidation 
step [35]. AOPs has also been applied through the procedure 
of sulphate radical by photooxidation (UV/PMS/PS), 
sonooxidation (US/PMS/PS) and sono-photooxidation (US/
UV/PMS/PS) with peroxymonosulfate (PMS) and persulfate 
(PS) as oxidants for simulated dyehouse effluent treatment 
[36]. AOPs are attractive technologies including photolysis, 
photocatalysis and Fenton oxidation for the degradation 
of Polychlorinated dibenzo-p-dioxins and dibenzofurans 
(PCDD/Fs) in wastewater. These compounds are considered 
a family of persistent organic pollutants (POP) because of 
their potential toxicity when discarded in the environment 
[37]. The UV photolysis with hydrogen peroxide (UV/H2O2) 
are effective treatments for phenolic compounds because 
of the reactions that occur during the effluent degradation 
stage, which includes mechanisms of intermediate reactions 
with •OH radicals [38]. AOPs has also been studied based on 
pre-magnetization Fe0 for wastewater treatment because 
these compounds are capable of destroying recalcitrant 
organic substances in other less toxic products by the use of 
radicals (•OH and SO4

-) [39].

An unconventional AOP named Direct Contact Thermal 
Treatment (DiCTT) was developed [40]. The DiCTT process 
presents operational and capital costs 2.5 fold lower than 
those of Wet Air Oxidation (WAO) and 4.1 fold lower than 
those of Electric Plasma Oxidation (EPO). The experimental 
set-up, a vertical reactor, is compact and allows easy 
operation. This technique is appropriate for off-shore oil 
drilling platforms, where natural gas is available and space is 
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limited, reported by Benali, et al. [41], and it is based on the 
thermochemical oxidation of organic compounds dissolved 
in an aqueous medium. Free radicals such as •OH, •H, •CH3 
and •CHO are generated from the combustion of natural gas 
(methane) according to the reaction mechanism defined by 
Benali and Guy [42] described in the following Equation (1):

A → • B + • C
• B + O2 → D + • E

• E + A → • B + H2O
 • E + A → • F + • E + 3/2 H2 (1)

Where: A= (CH4-Methane); • B= (• CH3-Methyl Radical); • 
C= (• H-Hidrogen Radical); • E= (• OH-Hidroxyl Radical); D= 
(CH2O-Methanal); O2 = Molecular Oxygen; H2O = Water; • F= 
(•CH- Methylidyne Radical); H2 = Molecular Hidrogen.

Statistical techniques commonly referred to as Response 
Surface Methodology (RSM) are powerful experimental 
design tools that have been used to optimise and evaluate 
the performance of difficult systems [43]. As well as 
Artificial Neural Networks (ANNs) also are strategic able 
tools for modelling and optimisation complex [44], non-
linear methods with uncertain dynamic models [45]. Thus, 
ANNs have been used to the processes, such as biological 
and physicochemical wastewater treatment, respectively. 
However, few studies have been published in the literature 
showing the applications of ANN in AOPs in the treatment of 
organic effluents containing phenol [46]. Thus, ANNs must 
be trained, tested and validated for a data set appropriate 
to model the neural network to resolve the complexity of 
obtaining phenomenological models. 

This research presents showed as novelty the extent of 
experimental tests, which analyzed the optimal operational 
conditions by the thermochemical process for complete 
phenol degradation and TOC conversion, regardless of 
the initial concentrations of phenol. The effect of the three 
factors CPh0, RP/H, and t were investigated. The input variables 
were initial phenol concentration, CPh0, of 500, 1000 and 1500 
mg L-1, the molar stoichiometric ratio of Phenol/Hydrogen 
peroxide, RP/H, of 25, 50 and 75% and collections times (t) 
of 30, 90 and 150 min. The liquid phase flow rate, QL, was 
170 L h-1, burner power dissipation, P, of 38.6 kW, air excess, 
E, of 10% and a recycle rate of gaseous thermal wastes, QRG, 
of 100%. Optimal conditions were identified for complete 
phenol degradation (>99%) and TOC conversion (>40%), 
to R of 75%, regardless of CPh0, and t of 150 min, being the 
best operational time studied to date by the optimized 
conditions of the DiCTT process. This study is the type of 
process modeling with optimization using RSM and ANNs 
for the Phenol Degradation (PD) and Total Organic Carbon 
(TOC) conversion by DiCTT thermochemical process. Thus, 
the method of modelling, i.e., RSM, was used to determine 

the relationship between input and output variables for the 
experimental complete factorial design type with factorial k, 
23, includes duplicate in each sample and six repetitions at 
the Centre Point (CP), totalling 22 runs and collection times, 
t, of 30, 90 and 150 min. The two methods of modelling was 
employed to evaluate the influence of the key variables on 
the process efficiency and at the steps of phenol oxidation 
and formation of their aromatic by-products, mainly, 
hydroquinone and catechol, and mineralization of them into 
carbon dioxide and water. Therefore, this method uses the 
smallest possible quantity of data and analyses all sets of data 
with the goal of optimising the operating conditions for the 
degradation/mineralization of phenol and its by-products by 
the DiCTT process. Thus, the output variables were the PD 
and TOC conversion. The importance of each input variable 
on the discrepancy of the output response was determined 
and compared with the results obtained by RSM and ANNs. 
The phenol concentration and mineralization content were 
obtained by High Performance Liquid Chromatography 
(HPLC) and Total Organic Carbon (TOC) Analysis, respectively. 
These results were achieved using statistic software version 
8.0.

Materials and Methods 

Reagents

The experiments were performed in a reactor using 
a prepared phenol solution (99% PA, Dinâmica) and 
oxygenated water, H2O2, analytical grade (35% PA, Vetec). 
The methanol was used, UV/HPLC (99.9% PA, Vetec) in the 
chromatographic analysis, and phosphoric acid, H3PO4 (25% 
PA, Vetec) was used in the TOC analysis. 

Pilot Plant and Experimental Procedures

Figure 1A & B shows the photograph of the installation 
of the DiCTT pilot unit. Figure 1C shows a schematic 
representation of the pilot plant used in the experiments 
that was composed of a vertical, stainless-steel reactor and 
a gas–liquid separator. The phenol solution was prepared 
in Tank 1 with a 250-L volume by heating the water to 
almost 70°C for an hour and a half; the synthetic effluent 
was transferred from Tank 2 and after was injected into 
the reactor tangentially to produce a liquid helical stream 
on its inner walls. The combustion gases were vented to 
the atmosphere through a chimney; a fraction of recycled 
combustion gases, of the total flow rate QRG, was immediately 
injected into Tank 2 by adjusting an open valve to heat the 
solution in the recirculation tank, Tank 2, more rapidly and 
to dissolve a fraction of the residual oxygen from combustion 
into the reaction liquid, thereby inducing the thermochemical 
oxidation of the phenolic compounds. For each assay, 
samples of approximately 250 mL of solution were collected 
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in duplicate, at the different points and regular times, in 
dark plastic bottles and were refrigerated. A 250 mL sample 
of treated water without phenol was also collected to serve 
as a blank for the phenol solutions. The molar ratio fraction 

of phenol/hydrogen peroxide, RP/H, was introduced into the 
recirculation tank, Tank 2, to initiate the phenol oxidation in 
the aqueous phase [47].

Figure 1: Installation of the DiCTT pilot unit: A) Front photograph containing the Reactor (R), Gas Liquid Separator (S) and 
Condenser (C); B) Side photograph of the pilot unit; C) Scheme of the semi-industrial plant using the DiCTT process.

Analytical Methods

High-performance liquid chromatography (HPLC): The 
concentrations of phenol, catechol and hydroquinone were 
monitored using High-Performance Liquid Chromatography 
(HPLC) Shimadzu, model LC-20AT, with integrated data 
acquisition using a UV detector and a CLC-ODS column M/C-
18 that was 250 mm in length and 4.6 mm in diameter, also 
from Shimadzu. An isocratic elution mode was used under 
the following conditions: oven temperature of 35°C; flow 
rate of the mobile phase, 0.75 mL min-1; injection volume 
of 20 μL; mobile phase consisting of 10% methanol and 
90% phosphoric acid/deionised water with pH adjusted to 
2.2; and UV detector wavelength, 270 nm to detect phenol, 
catechol and hydroquinone [47].

Total organic carbon (TOC): The Total Organic Carbon 
(TOC) content was measured using a TOC analyser, TOC-
Vcsh model, Shimadzu, to analyse phenolic mineralisation 
quantitatively. The TOC is the difference between the Total 
Carbon (TC) and the Inorganic Carbon (IC) content [48].

Definitions of operation parameters and calculated 
magnitudes: A molar stoichiometric ratio of 100% for 
phenol to hydrogen peroxide corresponds to the number of 
moles of hydrogen peroxide needed to completely convert 1 
mole of phenol into carbon dioxide and water in accordance 
with the reaction stoichiometry described in the following 
Equation (2):

C6H5OH + 14 H2O2 → 6 CO2 + 17 H2O                   (2)

https://medwinpublishers.com/PPEJ/


Petroleum & Petrochemical Engineering Journal 
6

Brandão YB, et al. Thermochemical Advanced Oxidation Process by DiCTT for the Degradation/
Mineralization of Effluents Phenolics with Optimization using Response Surface Methodology 
and Artificial Neural Networks Modelling. Pet Petro Chem Eng J 2023, 7(1): 000329.

Copyright© Brandão YB, et al.

Molar ratios other than 100% were calculated 
proportionally using the reaction stoichiometry in Equation 
(2).

For each mole of natural gas, methane, which is oxidised 
in the combustion process, 9.881 moles of air are needed 
stoichiometrically. Consequently, the excess air (E) in the 
combustion of natural gas and the respective equivalent ratio 
(ϕ) can be evaluated using Equation (3) and Equation (4) 
from the literature reported by Oliveira [49] with a natural 
gas composition provided by the Companhia Pernambucana 
de Gás–Brasil (Pernambuco Gas Company–Brazil) [50]:

1 1
9.881

AR

GN

QE
Q

 
= − 

 
                               (3)

9.881  GN

AR

Q
Q

φ
 

=  
                                  

 (4)

Where: QAR denotes the volumetric flow rate of air, and QGN 
denotes the volumetric flow rate of natural gas. The power 
dissipated by the burner, P, was calculated using the following 
Equation (5):

P= QGN.PCM,                                            (5)

Where: PCM denotes the average combustion heat of natural 
gas, which has a value of 34.740 kJ m-3 [50].

The percent Phenol Degradation (PD) was calculated using 
the following Equation (6):

. . .
.100

.
 ,o v

o

L Ph L Ph G Ph

L Ph

Q C Q C F C
PD

Q C
 − −

=   
 

              (6)

Where: QL denotes the volumetric liquid flow rate, CPh0 
denotes the initial phenol concentration, CPh denotes the 
phenol concentration at a given time, FG denotes the mass 
flow rate of dry air and CPhv denotes the phenol concentration 
in the condensate at a given time.

The percent TOC conversion (TOC) was calculated using 
the following Equation (7):

( )  ,.
TOCTOC.Q

TOC.FTOC.QTOC.QTOC
BL

GLL 100
0

0








−

−−
= ν

        
 (7)

Where: TOC0 denotes the initial total organic carbon 
concentration, TOC and TOCV denote the total organic carbon 
and the total organic carbon in the condensate, respectively, 
at a time point t of the process and TOCB denotes the total 
organic carbon in the blank. 

Experimental Design

Response surface methodology and contour curves: The 
Response Surface Methodology (RSM) were used for the 

experimental complete factorial design type with factorial k, 
23, includes duplicate in each sample and six repetitions at 
the Centre Point (CP), totalling 22 runs and sample collection 
times, t, of 30, 90 and 150 min; as well as optimisation by 
means of statistical analysis software package, Statistic 8.0. 
The most popular class of second-order designs was used for 
Response Surface Methodology (RSM) in the experimental 
design [51]. The 23 full-factorial is well suited for fitting 
a quadratic surface, which usually works well for process 
optimisation [52]. The independent variables, t, of 30, 90 and 
150 min; CPh0 of 500, 1000 and 1500 mg L-1; RP/H of 25, 50 and 
75%, as well as their experimental ranges, t: –1, 0 and +1; 
CPh0: –1, 0 and +1; RP/H: –1, 0 and +1 were determined in the 
experimental design. 

Artificial Neural Networks 

The Artificial Neural Network (ANN), also called 
“conexionism”, composed of artificial neurons, had as 
main purpose, to evaluate certain mathematical functions 
(usually nonlinear). The ANN was simulated using Statistic 
8.0 software with the Neural Network component to predict 
the Phenol Degradation (PD) and the TOC conversion (TOC). 
The ANNs are able to solve problems that initially pass in 
the “network learning” stage from an experimental data 
set, where input values are provided in order to represent a 
satisfactory response to the problem. In this work an ANN was 
created using the following network input factors: the initial 
phenol concentration (CPh0) of 500, 1000 and 1500 mg.L-1, 
the molar stoichiometric ratio of Phenol/Hydrogen peroxide 
(RP/H) of 25, 50 and 75 % and time (t) of 30, 90 and 150 min, 
where the Phenol Degradation and the TOC conversion was 
the neural network output. Fifty-seven experimental data 
points were used to simulate the ANN. Table 1 shows the 
duplicate data that were achieved for each trial.

In the ANN building was used a Multi-Layer Perceptron 
(MLP) feed-forward networks by input-output data using a 
back-propagation algorithm, being this ANN determined by 
the number of layers, number of neurons (nodes) in each 
layer, the class of learning algorithms and the functions of 
transfers. In this step, the number of neurons in the Hidden 
Layer (HL) and the number of iterations for network 
calibration were chosen as random variables in the network 
development. The best choice of the algorithm and transfer 
function were the primary factors in the conception of the 
ANN model obtained [53]. 

In this work, the logistic transfer function (activation) in 
the hidden layer and in the network output was used for ANN, 
being the algorithms used to optimise the network the almost 
Newton method of the type BFGS (Quasi-Newton method 
with the Hessian approximation proposed by Broyden, 
Fletcher, Powell and Goldfarb) with differential evolution 

https://medwinpublishers.com/PPEJ/


Petroleum & Petrochemical Engineering Journal 
7

Brandão YB, et al. Thermochemical Advanced Oxidation Process by DiCTT for the Degradation/
Mineralization of Effluents Phenolics with Optimization using Response Surface Methodology 
and Artificial Neural Networks Modelling. Pet Petro Chem Eng J 2023, 7(1): 000329.

Copyright© Brandão YB, et al.

algorithm. In total, 57 experimental data points were used 
to generate the ANN, with 80% used for training, 10% for 
testing and 10% for validation. In total, 5,000 networks were 

trained. The training was used to adjust the ANN weights and 
the test to evaluate the neural network configuration. 

Run t 
(min)

CPh0
 (mg L-1)

RP/H 
(%) 

PD
 (%)

TOC 
(%) Run t 

(min)
CPh0

 (mg L-1)
RP/H 
(%)

PD 
(%)

TOC 
(%)

1 30 500 25 0 0 30 150 1000 50 98.95 26.59
2 90 500 25 52.96 16.54 31 30 1000 50 31.55 1.89
3 150 500 25 88.97 33.71 32 (CP) 90 1000 50 89.13 16.02
4 30 500 25 0 0 33 150 1000 50 99.02 27.05
5 90 500 25 53.07 16.87 34 30 1000 75 41.23 3.98
6 150 500 25 87 33.88 35 90 1000 75 88.46 17.8
7 30 500 50 0 0 36 150 1000 75 99.61 38.47
8 90 500 50 83.23 16.27 37 30 1000 75 40.99 4
9 150 500 50 98.9 37.27 38 90 1000 75 88.8 18.02

10 30 500 50 0 0 39 150 1000 75 99.35 38.08
11 90 500 50 84.39 15.65 40 30 1500 25 0 0
12 150 500 50 98.47 37.58 41 90 1500 25 40.16 3.68
13 30 500 75 0 0 42 150 1500 25 74.91 10.03
14 90 500 75 84.92 14.86 43 30 1500 25 0 0
15 150 500 75 99.49 40.57 44 90 1500 25 40.37 3.91
16 30 500 75 0 0 45 150 1500 25 74.98 10.25
17 90 500 75 85.04 14.95 46 30 1500 50 0 0
18 150 500 75 99.51 40.14 47 90 1500 50 48.38 10
19 30 1000 25 0 0 48 150 1500 50 96.32 22.04
20 90 1000 25 52.51 8.23 49 30 1500 50 0 0
21 150 1000 25 93.08 16.61 50 90 1500 50 48.72 10.79
22 30 1000 25 0 0 51 150 1500 50 96.3 21.87
23 90 1000 25 51.99 8.47 52 30 1500 75 0 2.03
24 150 1000 25 92.99 16.58 53 90 1500 75 84.95 12.98
25 30 1000 50 31.46 1.88 54 150 1500 75 99.1 37.8

26 (CP) 90 1000 50 88.78 15.97 55 30 1500 75 0 1.99
27 150 1000 50 98.44 27.03 56 90 1500 75 83.07 12.48
28 30 1000 50 31.53 1.76 57 150 1500 75 98.95 37.48

29 (CP) 90 1000 50 89.08 15.46 - - - - - -
Table 1: The 23 full-factorial with replicates in the sample and three centre point for the PD and TOC.
t= time; CPh0= initial phenol concentration; RP/H= the molar stoichiometric ratio of phenol/hydrogen peroxide; PD= phenol 
degradation; TOC= Total Organic Carbon; CP= Centre Point.

The first goal in the ANN training is characterized in 
minimizing the error function by looking for the connections 
of the weights and bias that generate the ANN to produce 
network output. The Mean Quadratic Error (MQE) was used 
as an error function and measures the accuracy of network 
performance according to the Equation (8) [25]: 

 
( )2

, ,1

i N
i predicted i experimentali

y y
MQE

N

=

=
−

= ∑                   (8)

Being: (N) the number of data, (yi,predicted) is the prediction of 
the network and (yi,experimental) are the experimental values of 
the data (ith).

https://medwinpublishers.com/PPEJ/


Petroleum & Petrochemical Engineering Journal 
8

Brandão YB, et al. Thermochemical Advanced Oxidation Process by DiCTT for the Degradation/
Mineralization of Effluents Phenolics with Optimization using Response Surface Methodology 
and Artificial Neural Networks Modelling. Pet Petro Chem Eng J 2023, 7(1): 000329.

Copyright© Brandão YB, et al.

The sum used in the transfer function (λ) of these ANN 
summarized the weights and bias at the input variables of 
the neural network to be processed, according to Equation 
(9) [25]:

1

.
n

i i
i

x w bλ
=

= +∑                                        (9)

 Being: “wi” (i= 1, n) the connections of the weights, “xi”, is the 
input variable, “n” is the number of input variables, “i” is the 
whole index and “b” is the bias calls.

In the ANN used in this work, the transfer function (λ) 
was employed to solve nonlinear regression problems, 
characteristic of an MLP, such as the logistic type (also 
called log-sigmoidal or logsig), and the output of neurons is 
computed, according to the Equation (10) [25]:

)exp(1
1)(

λ
λ

−+
=Losig

                            
(10)

Results and Discussion

Response Surface Optimisation

The 23 full-factorial design was employed to determine 
the simple and combined effects of the three operating 
variables (CPh0, RP/H and t) on the process efficiency.

The following response Equation (11) was used to 
correlate the dependent and independent variables for 
phenol degradation (PD) and TOC conversion (TOC).

2 2 2
0 1 1 11 1 2 2 22 2 3 3 33 3 12 1 2 13 1 3 23 2 3       Y b b x b x b x b x b x b x b x x b x x b x x= + + + + + + + + +  

(11)

Where: Y is the response variable for PD and TOC rate 
efficiency; b0 is a constant; b1, b2 and b3 are regression 
coefficients for the linear effects; b11, b22 and b33 are a quadratic 
coefficient; b12, b13 and b23 are an interaction coefficient.

Study of the Phenol Degradation, TOC 
Conversion and the Production of Intermediates

Table 2 shows for the phenol degradation (PD), the 
regression coefficient values, b0, b1, b2, b3, b11, b22, b33, b12, b13 
and b23, the standard deviation values and test t (texp) values, 
as well as the significance level p-values (p) of 0.37 and <0.05 
for all other. It can be seen that the linear coefficient b1, b2 and 
b3, the quadratics coefficients b11, b22 and b33, as well as the 
coefficient b12 and b23 are all significant for a 95% confidence 
(p-value<0.05). However, the coefficient b13 is not significant 
for a 95% confidence (p-value<0.05) by the model. The 
significance of these interaction effect between variables 
would have been lost if the experiments were conducted 
using conventional methods. From ANOVA analysis, it was 
observed that the model developed by RSM was statistically 
significant and the model was the quadratic model. The 
determination coefficient (R2) and adjusted determination 
coefficient (R2

Adj) value for model are 94.44% and 93.38%, 
respectively, for 3 factors, 1 block, 22 runs and pure error of 
0.17.

Table 2 exhibits also for the TOC conversion, the 
regression coefficient values, b0, b1, b2, b3, b11, b22, b33, b12, 
b13 and b23, the standard deviation values and test t (texp) 
values and the significance level p-values (p) 0.050 and 
<0.05 for all other. It can be seen that the linear coefficient 
b1, b2 and b3, the quadratics coefficients b11 and b33, as well 
as the coefficient b12, b13 and b23 are all significant for a 95% 
confidence (p-value<0.05). However, the coefficient b22 is 
not significant for a 95% confidence (p-value<0.05) by the 
model. The significance of these interaction effect between 
variables also would have been lost if the experiments 
were conducted using conventional methods. From ANOVA 
analysis, it was observed also that the model developed 
by RSM was statistically significant and the model was the 
quadratic model. The determination coefficient (R2) and 
adjusted determination coefficient (R2

Adj) value for model are 
97.25% and 96.72%, respectively, for 3 factors, 1 block, 22 
runs and pure error of 0.047.

Phenol Degradation (PD) Model
 Reg. Coeff. Std.Err. texp p -95,% +95,%

Mean/Interc. -110.371 0.773951 -142.607 0.000 -111.952 -108.791
(1) t (L) 1.679 0.007158 234.645 0.000 1.665 1.694

t (Q) -0.005 0.000032 -159.208 0.000 -0.005 -0.005
(2) CPH0 (L) 0.097 0.001019 95.631 0.000 0.095 0.100

CPH0 (Q) 0.000 0.000000 -118.725 0.000 0.000 0.000
(3) RP/H (L) 1.182 0.020375 58.017 0.000 1.14 1.224

RP/H (Q) -0.009 0.000183 -49.949 0.000 -0.01 -0.009
1L by 2L 0.000 0.000003 -15.722 0.000 0 0
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1L by 3L 0.000 0.000056 0.911 0.370 0 0
2L by 3L 0.000 0.000007 23.942 0.000 0 0

TOC Conversion (TOC) Model
 Reg. Coeff.  Std.Err. texp p -95,% +95,%

Mean/Interc. 5.782 0.405 14.271 0 4.954 6.609
(1) t (L) 0.123 0.004 32.792 0 0.115 0.131

t (Q) 0.001 0 31.327 0 0.001 0.001
(2) CPH0 (L) -0.006 0.001 -11.22 0 0.007 0.005

CPH0 (Q) 0 0 -2.097 0.05 0 0
(3) RP/H (L) -0.262 0.011 -24.602 0 0.284 0.241

RP/H (Q) 0 0 -3.819 0.001 0.001 0
1L by 2L 0 0 -82.375 0 0 0
1L by 3L 0.003 0 93.45 0 0.003 0.003
2L by 3L 0 0 63.296 0 0 0

Table 2: Regression coefficients values for the PD and TOC model.
t= time; CPh0= initial phenol concentration; RP/H= molar stoichiometric ratio of phenol/hydrogen 
peroxide; L= linear effects; Q= quadratic coefficient; texp= test t; p= p-values. 

Figure 2A shows for the phenol degradation (PD), 
the Pareto Diagram with the effects that are statistically 
significant. The effects whose angles are the right of the 
divider (p>0.05) are considered significant, are these: “t(L), 

t(Q), RP/H(L), CPH0(Q), CPH0(L), RP/H(Q)” and the interactions 
“2L by 3L” and “1L by 2L”. However, the interaction “1L by 3L” 
this within an uncertainty with p<0.05. 

Figure 2: A) The Pareto Diagram in function of the values for PD; B) Predicted values versus Observed values by the model for 
the response of PD; C) Raw residuals versus Case number by the model for the response of PD.

Figure 2B presents the adjustment between the 
predicted values (simulated) and observed values 

(experimental) by the model to get the best response as 
regards Phenol Degradation (PD) of almost 100%. This shows 
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that the points are well distributed along the trendline, in 
an operating range that varies from about 0.00 to 99.61%. It 
was observed that the predicted result was almost the same 
as the experimental analysis and the error between the two 
was less than 5%. The coefficient of multiple determinations 
(R2), which represents the proportion of the variation of 
the studied parameters being described through the set of 
selected explanatory variables, showed values greater than 
0.99. The adjusted R2 is the percentage of variation in the 
response that is explained by the model, adjusted for the 
number of model predictors in relation to the number of 
observations, presented values greater than 0.98 (98%) 
demonstrating the excellent response capacity of the model 
proposed directly impacting on the low residual error and 
its uniform distribution (Figure 2C and 2D).

Figure 2C indicates the residual distribution to analyze 
the dispersion of the data with the values of deviations 

(data calculated on the basis of experimental data) well 
distributed around the axis of abscissas for the response 
of phenol degradation. In this, it is possible to verify that 
the data did not show dispersions trends relative to the x 
axis (zero point), so this model satisfactorily represents the 
behavior of the process within the domain.

To analyze the mathematical model, adjustments to the 
points were made by nonlinear regression methods. The 
application of Response Surface Methodology (RSM) offers, 
on the basis of parameter estimation, the Equation (12) like 
empirical relationship between the Phenol Degradation 
rate, YPD, and independent variables studied.

2 2 2
1 1 2 2 3 3

1 2 1 3 2 3

110.3711 1.6795. 0.0052  0.0974 0.0001 1 .1821  0.0092
0.0001  0.0001  0.0002

PDY x x x x x x
x x x x x x

= − + − + − + − −
+ +

 

(12)

Figure 3: A) PD as a function of (CPh0) and (t); B) PD as a function of (RP/H) and (t); C) PD as a function of (RP/H) and (CPh0); D) 
Evolution of catechol concentration as a function of (CPh0) and (t); E) Evolution of hydroquinone concentration as a function of 
(CPh0) and (t). 
P=38.6 kW, E=10%, QL=170 L h-1 and t=30-150 min.
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Figure 3A, B and C shows the response surface 
methodology from the simulated data of the by means of 
statistical analysis of phenol degradation. Figure 3A indicates 
only <20% of phenol degradation was attained in 30 min of 
process time, independently of CPH0 (500, 1000 and 1500 mg 
L-1). However, increasing the operation time to 150 min the 
total phenol degradation is almost completely achieved in 
100%, for RP/H between 50% and 75%, independently of CPH0. 

Figure 3B indicates the lowest values, <20% of the 
phenol degradation was attained in 30 min of process time, 
independently of RP/H (25, 50 e 75%), but the increase of 
the time to 150 min obtained the total phenol degradation, 
100%, for RP/H between 50% and 75%, independently of 
CPH0 (500, 1000 and 1500 mg L-1). This can be explained due 
to the amount of hydrogen peroxide added [40].

Figure 3C presents a low phenol degradation, <80%, in 
90 min of process time, for RP/H of 25%, independently of 
CPH0 (500, 1000 and 1500 mg L-1). However, in 150 min of 
process time, for RP/H >50%, independently of CPH0, obtained 
the total phenol degradation, 100%. Regardless of the value 
of the initial phenol concentration, CPh0, of 500, 1000 and 
1500 mg L-1 and to the molar stoichiometric ratio of phenol/
hydrogen peroxide, RP/H, of 75%, the process presents 
maximum rates of phenol degradation almost 100% in 
t=150 min of operation.

The phenol oxidation occurred based on the change in 
the liquid phase coloration with reaction time (see Figure 
1C). Resolution 430 of the Conselho Nacional do Meio 
Ambiente-CONAMA (National Council on the Environment), 
Brazil set a maximum total concentration of phenols of 0.5 
mg.L-1 for all effluents originating from any polluting source 
that can be disposed of in water bodies as of 13 May 2011 
[22].

Figure 3D and E shows the dynamic concentration 
evolution of the intermediates formed, catechol and 
hydroquinone, respectively, which are products of the 
thermochemical oxidation of phenol, according to the 
mechanism given by Devlin and Harris [54,55]; however, 
catechol shows a more accentuated profile than the profile 
of hydroquinone. These products were formed after 30 min 
of phenol consumption until 100 min of reaction, being then 
reduced the concentration of these intermediaries and as the 
process progressed 1,4-dioxo-2-butene, alkenes, and glyoxal, 
aldehydes, were likely the products in the reaction mixture 
that were formed from of the hydroquinone and catechol/
hydroquinone degradation, respectively [55]. Similar results 
were reported by Lipczynska-Kochany [56] and Alnaizy and 
Akgerman [57]. There are parallel reactions that compete for 
the same reactants and therefore a higher concentration is 
expected for the reaction that generates more products, such 
as carboxylic acids, alkenes and aldehydes.

The phenol degradation and formation of intermediates 
following the break in the aromatic ring way result from an 
excess of hydroxyl radicals [58]. Thus, in the first oxidation 
step, the increased catechol production followed by the 
formation of o-benzoquinone may have been instigated 
by mesomeric properties (electronic effects resulting by 
the phenomenon of resonance in a series of components), 
leading to the re-distribution of electrons to the ortho 
position, which can increase the reactivity of this part 
of the structure due to the nearness of differing charges 
[59], following to the Equation (13). The next phase, para 
addition, includes the increased hydroquinone production 
followed by the formation p-benzoquinone and depends 
on the position at which the hydroxyl radical attacks the 
aromatic ring (mesomeric effect) [60], according to the 
Equation (14):

Ortho addition to the aromatic ring:

+ OH

O

H

OH

OH

Radical

O O

Radical

O

O

o-BENZOQUINONECATECHOLPHENOL

OH OH

                         (13)
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Para addition to the aromatic ring:

+ OH

O

H

OH

OH

Radical

O

OH OH

O

Radical

O

O

p-BENZOQUINONE
HYDROQUINONE

PHENOL

                            (14)

 
Brandão, et al. [26] studied the effect of burner power 

dissipated (19.3, 29.0 and 38.6 kW) and air excess (10 and 
40%). The optimal conditions for phenol degradation were 
then identified: burner power dissipated 38.6 kW and air 
excess of 40%, thus reaching phenol degradation values of 
100%. The complete phenol degradation can be achieved 
after 225 min of process operation, regardless of the air 
excess value (10 or 40%) and burner power dissipation (29 
or 38.6 kW). The increase in the burner power dissipated 
from 19.3 to 38.6 kW allows the reduction of the operational 
time of the process for a phenol degradation of 100%. The 
concentrations of hydroquinone and catechol formation 
obtained using the burner power dissipated of 38.6 kW are 
lower compared to those quantified with the power of 29 
kW, for the same excess of air of 10%.

Amado-Piña [61] investigated the phenol degradation 
in three conditions: ozonation (O3), Electro-Oxidation 
(EO) and ozonation-electro-oxidation (O3-EO) combined 
method. The more high phenol mineralization with values 
above than 99.8%, practically, was obtained with use 
of the combined effects (O3-EO) under pH 7.0 ± 0.5, at a 
current density of 60 mA cm−2, 0.05 L min−1 flow rate, ozone 
concentration of 5 ± 0.5 mg.L−1. This process lets to detect 
the highest degrees of mineralization and eliminates the 
toxicity of the samples.

Barik and Gogate [62] reviewed the application of 
hybrid treatment including AOP/Hydrodynamic Cavitation-
HC for degradation of 2,4,6-trichlorophenol (2,4,6-TCP). 
The degradation efficiency was obtained with use of the 
combined effects: HC/H2O2, HC/O3, O3/H2O2 and HC/O3/
H2O2, reaching values above than 95% degradation with use 
of HC/O3 and O3/H2O2 processes. The complete degradation 
by Chemical Oxygen Demand (COD) practically was achieved 
and a TOC decrease was obtained representing 80.95% 
with use of HC/O3/H2O2 process, being an efficient method 
for hybrid treatment containing 2,4,6-trichlorophenol.

Renuka and Gayathri [63] examined a polymer supported 
containing: Fe(PS-BBP)Cl3 [PS = chloromethylated 
polystyrene divinyl benzene; BBP = 2,6-bis (benzimidazolyl) 
pyridine] to evaluate the degradation of phenolic 
compounds and dyes, in 30 and 120 min respectively, under 
the efficiency of AOPs including ultravioleta/hydrogen 
peroxide (UV/H2O2). The photodegradation efficiency was 
practically 100%. The mineralization rates were obtained 
by Chemical Oxygen Demand (COD) trials representing 
the efficiency of the process, indicating 96 and 100% 
mineralization conversion of phenol and methyl orange, 
respectively.

Figure 4A shows for the TOC conversion, the Pareto 
Diagram with the effects that are statistically significant. The 
effects whose angles are the right of the divider (p>0.05) are 
considered significant, are these: “t(L), t(Q), RP/H(L), RP/H(Q), 
CPH0(L)” and the interactions “1L by 2L”, “1L by 3L” and “2L by 
3L”. However, the effects “CPH0(Q)” this within an uncertainty 
with p<0.05.

Figure 4B presents the adjustment between the 
predicted values (simulated) and the observed values 
(experimental) by the model to get the best response as 
regards TOC exceeding 40%. This shows that the points are 
well distributed along the trendline, in an operating range 
that varies from about 0.00 to 40.57%. It was observed that 
the predicted result was almost the same as the experimental 
analysis and the error between the two was less than 5%. 
For the coefficient of multiple determinations (R2) and the 
adjusted R2 that had their values greater than 0.96 as well as 
uniform distribution in the residual error, the model can be 
considered satisfactory in its predictions.

Figure 4C indicates the residual distribution to analyze 
the dispersion of the data with the values of deviations 
(data calculated on the basis of experimental data) well 
distributed around the axis of abscissas for the response of 
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TOC. In this, it is possible to verify that the data did not show 
dispersions trends relative to the x axis (zero point), so this 

model satisfactorily represents the behavior of the process 
within the domain.

Figure 4: A) The Pareto Diagram in function of the values for TOC; B) Predicted values versus Observed values by the model 
for the response of TOC; C) Raw residuals versus Case number by the model for the response of TOC.

To analyze the mathematical model, adjustments to the 
points were made by nonlinear regression methods. The 
application of Response Surface Methodology (RSM) offers, 
on the basis of parameter estimation, the Equation (15) 
like empirical relationship between the TOC rate, YTOC, and 
independent variables studied.

2 2 2
1 1 2 2 3 3 1 2

1 3 2 3

5.782 0.123. 0.001  0.006 0.000  0.262  0.000 0.000 
 0.003  0.000

TOCY x x x x x x x x
x x x x

= + + − − − − −
+ +

 

(15)

Figure 5A, B and C shows the response surface 
methodology from the simulated data of the by means of 
statistical analysis of TOC conversion. Figure 5A shows that 
the speed of the rate of reduction of organic load increases 
with increased, t, and that from 150 min, the TOC conversion 
was practically more than 40%, regardless of CPh0; In 
addition, with a (t) less than 120 min, the TOC conversion 
begins to decrease and is around <30% independent of CPh0. 

Figure 5B shows that the speed of the rate of reduction 
of organic load increases with increased, t, and that from 
150 min, the TOC conversion was practically more than 
40%, for RP/H of 75%; thus, this test corresponded to the 
best operational condition for DiCTT thermochemical 
oxidation [40]. In addition, with a RP/H less than 50%, the TOC 
conversion begins to decrease and is around <30% for (t) 
less than 120 min. 

Figure 5C shows that the highest percentage 
mineralization (>40%) was obtained using a large quantity 
of free hydroxyl radicals (•OH) in the media, a RP/H of 75%, 
which provided the best process conditions. In addition, with 
a RP/H less than 50%, the TOC conversion begins to decrease 
and is around 35% for values of CPh0, less than 1200 mg L-1. 
Just as, for the higher concentrations of phenol, above 1200 
mg L-1, and RP/H decreasing of 50 for 25%, the TOC conversion 
is less than 15%. Using an equivalent concentration of 
hydrogen peroxide at the molar stoichiometric ratio of 
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phenol/peroxide was essential for preventing the destructive 
effects that can be caused by an excess of this oxidizing agent 
during the reaction with phenol [64]. Data reported in the 
literature demonstrated in organic compounds that during 

treatment by AOPs (UV/H2O2) high degradation efficiency 
was observed in the percentage removal of the compound 
with less time of treatment [65].

Figure 5: A) TOC conversion as a function of (CPh0) and (t); B) TOC conversion as a function of (RP/H) and (t); C) TOC conversion 
as a function of (RP/H) and (CPh0). P=38.6 kW, E=10%, QL=170 L h-1 and t=30-150 min.

Brandão, et al. [47] analyzed the effect of initial 
phenol concentration, CPh0, of 500, 2000 and 3000 mg.L−1. 
The experiments studies were performed using a molar 
stoichiometric ratio of phenol/hydrogen peroxide, RP/H, of 
50%, an air excess, E, of 40%, a combustion gas recycling 
rate, QRG, of 50%, a liquid phase flow rate (QL) of 170 L.h−1, 
and, a natural gas flow, QGN, of 4 m3 h−1, on the oxidation of 
phenolic effluents by DiCTT. The complete degradation of 
phenol, almost 100%, was obtained independently of CPh0 
over a 170-min period. A TOC conversion of almost 35% 
was obtained to time of 210 min. A time of 110 min was 
identified from the concentration profiles of hydroquinone 
and catechol. The concentrations of these intermediates 
decreases independently of CPh0, indicating the formation of 
the other organic substance, which were not acids, constant 

pH, such as, 1,4-Dioxo-2-buteno and Glyoxal.

Berenguer, et al. [66] studied the effect of Temperature 
(T), Stoichiometric Molar Ratio Phenol/Hydrogen Peroxide 
(R), Air Flow (QAR) and pH of a liquid effluent containing 
the synthetic organic compound (phenol) with an initial 
concentration (CF0) of 500 mg.L-1, in a laboratory-scale 
batch reactor, model type PARR. A degradation of the phenol 
above 99% and a conversion of the TOC greater than 70% 
were respectively obtained under the optimum operating 
conditions of the process (T=90°C, R=100%, pH=7 and 
QAR=100 NL.h-1).

Chandana and Subrahmanyam [67] investigated the 
liquid phase phenol degradation and mineralization by using 
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an atmospheric pressure plasma reactor operating under 
argon (Ar)/air plasma. The addition of CeO2, Ce0.90Ni0.10O2-δ 
and 10 wt% NiO/CeO2 catalysts better the efficiency of phenol 
degradation. The results indicated that Ar plasma allows 
the degradation due to the formation of hydroxyl radicals 
(•OH) in the presence of a solid catalyst, being the better 
results for the degradation and mineralization of phenol 
with 71 mg.L−1 of H2O2, 1.5 × 10−6 Molar s-1 of •OH production 
rate. The use of catalyst Ce0.90Ni0.10O2-δ + Fe2+ obtained the 
phenol degradation and mineralization efficiency up to 
99% and 61% for 300 mg.L−1 of phenol and it was observed 
a combination to plasma that showed the highest efficiency 
of 24 g kWh-1 due to the formation of of •OH, indicating the 
formation of the stable intermediates, benzoquinone and 
hydroquinone. 

Modeling the Data Set Generated by the ANN 
for Phenol Degradation and TOC Conversion

Artificial neural network (ANN) application is typically 
used for optimization and process modeling [68]. ANNs 
have been applied in a total of 20 experimental data 
points, containing five replications at the central point to 
determine optimized process conditions using microwave 
technique for the extraction of natural dye from dried 
pomegranate rind. Following trial, it was analyzed that 10 
neurons produce minimum result of error of the training 
and validation sets. The network showed a perfect model 
with correlation coefficient (R) approximately 1 between 
the prediction of the model and the experimental results 
trained from the input data using error backpropagation 
algorithm [69]. ANN modeling was used and the number of 
experimental trials was 27 for removal of high concentration 
of sulfate from pigment industry effluent by chemical 
precipitation using barium chloride. ANN prediction by the 
model was evaluated and it exhibited good performance (R2 
value 0.9986). The network architecture consisted of one 
input layer with 3 inputs, one hidden layer with 10 neurons 
and an output layer [70].

In this study, ANN building were chosen as a Multi-
Layer Perceptron (MLP) feed-forward networks that were 
trained by input-output data using the backpropagation 
algorithm [68]. For the ANN used through mathematical 
modeling with the configuration of an MLP network, the 
number of neurons tested in the Hidden Layer was varied 
between 3-11. The number of neurons in the hidden layer 
is established from the precision intended for neural 
predictions, possibly being used as a measure in the 
neural network model. In the next step, ANN model was 
applied to predicate the optimized parameters required 
for maximizing the removal efficiency of phenol and a TOC 
mineralization [8].

When an incomplete number of samples are accessible, 
proceeding to develop nonlinear pattern identification 
methods (such as ANN’s) which can model the complex 
biological, environmental and instrument variation can 
be considered as a better solution to develop robust 
models [71]. The type of ANN that uses a back-propagation 
perceptron with controlled learning is defined by layered 
architectures, and feed-forward connections between 
neurons or back-connections [72]. The neural network is a 
tool that is useful in problem solving, being deployed from 
a set of biological model with computational technique that 
contains of some processing units in the system. ANN has 
a arrangement constituted of small computational units 
called artificial neurons [73]. In this research, the selection 
of the best model for ANN was established from the average 
of the smallest quadratic errors in training, testing and 
validation that was developed to predict the relationship 
between the experimental variables: the degradation 
efficiency and TOC conversion. Total 57 experimental data 
points was taken for to generate the ANN and nearly 5,000 
neural networks were trained, out of which the best 6 
results were chosen for the assessment [69]. The training 
was used to adjust the ANN weights and the test to evaluate 
the neural network configuration, in which 80% of the data 
were used for the formation of the network in the training, 
10% for testing and 10% for validation. The Root Mean 
Squared (RMS) was calculated with 6 neurons in the hidden 
layer and were obtained the following results, considering 
the lowest average quadratic error form 6 best models: for 
PD residual (1.61% for all data, 1.56% for Train, 0.89% for 
Test and 2.44% for Validation) and for TCO residual (1.02% 
for all data, 1.07% for Train, 0.38% for Test and 1.01% for 
Validation). Thus, the network had a 3:6:2 configuration.

In this research, for the ANN with MLP model was used 
the hyperbolic tangent activation function for the network 
input and the sigmoidal logistic activation function for 
the network output, being this technique quite efficient 
to get the optimal conditions for this DiCTT method. In 
the MLP network configuration, the principle of the error 
backpropagation algorithm is to calculate the error in the 
network output, then back to the intermediate layers in 
order to perform the adjustment of the weights proportional 
to the values of the connections between the layers. The 
sigmoidal (nonlinear) functions of each neuron both in the 
intermediate layers and in the composition of its structure 
in successive layers of the network, are usually used for an 
approximation of the degree function due to the possibility 
of the descending gradient requiring the use of continuous 
and differential activation functions, characteristic of an 
“MLP”.

Table 3 shows the values of the weights (wij) of the 
input variables, output and the hidden layer obtained by 
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Artificial Neural Network (ANN) for the experimental 
complete factorial design type with factorial k, 23. This ANN 
was obtained a Multilayer Perceptron, MLP-type, like the 
logistic-type (also called log-sigmoidal or logsig), with a 
3:6:2 structure representing three data in the input (initial 
phenol concentration, molar stoichiometric ratio Phenol/
Hydrogen peroxide and the reaction time), six neurons 
in the hidden layer and two data (results) in the output 

(Phenol Degradation and TOC conversion). These results 
were achieved using statistic software version 8.0. 

The ANNs present good results, with slopes of 
approximately 1, near-zero Intercepts, R2 values near 0.99 
and a standard error close to 1. Several iterations were 
conducted with different numbers of neurons in the hidden 
layer to determine the best ANN structure.

Connections W1 W2

N0 of neurons CPh0 (mg.L-1) RP/H (%) t (min) Layer/ Input (Bias) PD TOC
1 1.0376 0.2827 4.1141 -1.185 1.1208 0.1322
2 1.5555 -1.467 -2.9247 1.2657 -2.3658 -7.9059
3 -1.7787 -2.1614 -1.2651 3.7011 -3.6215 -1.2745
4 -5.1935 -0.008 -4.9088 2.0681 -4.5156 -2.6658
5 -2.1805 0.6661 1.2917 -0.7701 -4.9369 -6.3325
6 0.551 -5.4344 -3.9446 0.3775 -4.75 -5.6763
- - - - Hidden Layer/(Bias) 12.3936 6.9208

Table 3: Values of the weights between the input and the hidden layers, W1, and output layer, W2, for the Phenol Degradation of 
(PD) and Total Organic Carbon (TOC) conversion in the liquid phase.

In order to observe once again the consistency of the 
results obtained by ANN, the graphs were generated from 
the calculated data presented according to the experimental 
results, for the training, test and validation data set. With 
the produced graphs, the linear correlation factor (R2) for 
the configuration of the analysed networks was obtained 
through a linear adjustment.

Figure 6A and B show the data calculated according to 
the experimental results for the data set (training, testing 
and validation) used in ANN to obtain Phenol Degradation 
(PD) and TOC conversion, respectively. In these were verified 
a good alignment of the data obtained in the ANN to the 
linear adjustment line, indicating that also for a number of 
iterations (Ni) of 1000 used in the calibration of the neural 
network and a number of Neurons in the Hidden Layer (NHL) 
of 6, the alignment of the data represents well the behaviour 
of the system.

The ANN with an index of 6 contains few neurons in the 
hidden layer and was selected as the best ANN, with good 
results for R2 (0.9983 for Training, 0.9999 for Testing and 
0.9958 for Validation). The algorithms used to optimise the 
network were the almost Newton method of the type BFGS 
(Quasi-Newton method with the Hessian approximation 
proposed by Broyden, Fletcher, Powell and Goldfarb).

Figure 6A and 6B show that R2-adjusted is observed 
very close to R2. This indicates that the curve is not biased. 
The results obtained in the construction of the neural 

network were accurate and satisfactory, as evidenced by the 
R2 value and the validation test. The R2-adjusted coefficient 
is represented by Equation 16, being exemplified by a 
changed correlation coefficient R2 that checking account for 
the number of independent variables and data set extent.

( ) ( )2 211    1
1Adj

nR R
n k

−
= − ⋅ −

− +
                      (16)

where n denotes the data set extent, and k denotes the 
number of independent variables.

Figure 6C and 6D show from a clearer analysis that the 
dispersion of the data was generated with the values of the 
deviations (data calculated according to the experimental 
data) by the ANN and that it’s are well distributed around 
the axis of the abscissas for the 6 neurons in the hidden layer.

Figure 6C demonstrates a small more dispersion in 
the training, testing and validation of ANN (for phenol 
degradation) in relation to the x-axis when compared to 
Figure 6D (for TOC Conversion). Although, these results are 
still quite satisfactory for this ANN, considering that the 
linear correlations are greater than 99% and most of the data 
are still near to the zero point.

Figure 6D confirms that the data do not indicate 
dispersion trends in relation to the x-axis (zero point) in 
ANN (for TOC conversion). Thus, the ANNs model presents 
satisfactorily once again the behaviour of the process being 
well distributed in the domain of experimental data.
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Figure 6: Comparison between calculated and experimental values of the output variable: A) Phenol Degradation (PD) and 
B) TOC conversion; Deviations obtained for the data set related to learning, testing and validation of the ANN: C) Phenol 
Degradation (PD) and D) TOC conversion. 
 NHL= 6 and Ni= 1000.

Brandão, et al. [40] studied the thermochemical 
oxidation phenol and it’s was monitored from oxidative 
degradation to the mineralization of the organic compound 
and the formation of acids. The concentrations of phenol, 
catechol, hydroquinone and para-benzoquinone were 
monitored by High performance Liquid Chromatography 
(HPLC), a Total Organic Carbon (TOC) analyzer and the 
hydrogen potential (pH) using a pH meter. The following 
operational parameters were performed: The liquid phase 
flow rate (QL) of 170 L.h-1, a burner power dissipation (P) of 
38.6 kW at an 10% air excess (E) of 10 %, an initial phenol 
concentration (CPh0) of 500 mg.L−1 and a recycle rate of 
gaseous thermal wastes (QRG) of 50%. The organic pollutant 
(phenol) was degraded (almost 100%) over a 150-min 
period and a TOC mineralization of approximately 60% was 
observed corresponding to an operational time of 210 min at 
a RP/H of 75%, which was considered to be the best operating 
condition for the DiCTT process. The ANN computational 
tool was later used with a “Neural Networks” module to 
predict the phenol degradation, the TOC conversion and 
the temporal velocity profile of phenol degradation, as 
a function of time, respectively. The best MLP-type ANN 
model used 7 neurons in the hidden layer to predict the 
most accurate response. Thus, the network showed a 2:7:3 
configuration for a correlation coefficient (R2) of 0.999 for 
phenol degradation and the TOC conversion and R2 of 0.997 
for temporal velocity profile of phenol degradation.

Conclusion

The present work used an empirical matematical 
modeling for phenol degradation and TOC conversion by 
the thermochemical oxidation of the effluents using Direct 
Contact Thermal Treatment process. The developed model 
establishes some chemical reactions and formations of 
organic compounds, being able to predict phenol oxidation 
in the ortho and para positions, resulting in aromatic 
isomers that are catechol and hydroquinone, as well as 
other chemical species, such as: carboxylic acids, alkenes 
and aldehydes. Sensitivity analysis was performed on 
the matematical parameters to determine those that are 
most influential in the phenol oxidation, catechol and 
hydroquinone concentrations. As expected, the most 
influential parameters are that regulate the oxidation 
by hydroxyl radical reactions involving these studied 
compounds. 

The parameter estimation was performed to best fit the 
experimental data and the overall correlation coefficient 
obtained from the model developed by Response Surface 
Methodology (RSM) that was 0.9444-0.9725 for both, 
phenol degradation and TOC conversion, respectively. It was 
shown that of the three RP/H used in the experiments, RP/H 
of 75%, independent of the CPh0, was able to meet the best 
CONAMA standard for maximum concentration of residual 
aromatic compounds, showing practically 100% of phenol 
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degradation and more 40% of TOC conversion after 150 
min.
 

The graphs of the comparison between calculated 
and experimental values of the output variable and the 
deviations obtained for the data set related to learning, 
testing and validation by ANN model simulation showed that 
the optimum condition for complete phenol degradation 
and more 40% of TOC conversion was obtained at RP/H of 
75%. The results data corroborates the experimental data in 
this research. The Root Mean Squared (RMS) was calculated 
with 6 neurons in the hidden layer and was obtained the 
following results: for PD residual (1.61% for all data, 1.56% 
for Train, 0.89% for Test and 2.44% for Validation) and for 
TCO residual (1.02% for all data, 1.07% for Train, 0.38% 
for Test and 1.01% for Validation). The best MLP-type ANN 
model used 6 neurons in the hidden layer to predict the 
most accurate response for phenol degradation and TOC 
conversion, respectively. Thus, the network showed a 3:6:2 
configuration for a correlation coefficient (R2) of 0.99 for 
phenol degradation and the TOC conversion, respectively.

In these conditions, the reaction medium temperature 
reached approximately 78 0C, thus, it became the controlling 
factor in the TOC conversion, as well as other operational 
parameters, including the molar ratio of phenol/peroxide. 
The present developments include the integrated 
optimisation of the process consisting of a termochemical 
oxidation, as well as the extension of the model to DiCTT 
process. This new technology is attractive because natural 
gas is used as the energy source, and phenolic compounds 
can be oxidized at low temperatures, atmospheric pressure 
and the reagent used for the generation of hydroxyl radicals, 
hydrogen peroxide, is cheap, to initiate the phenol oxidation 
in the aqueous phase, the natural gas is available in off-shore 
petroleum platforms and configuration reactor requires 
limited space. All these advantages make the DiCTT process, 
potentially efficient method, allows integrating the advanced 
oxidation processes existing in the industrial practice. 
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