
Psychology & Psychological Research International JournalMEDWIN PUBLISHERS
Committed to Create Value for Researchers

Visualization of Social Networks in a Recovery Home
Psychol Psychology Res Int J

Appendix A. Syntax and Instructions

•	 Preprocessing Data
 The data are in the format of an edge per row. An edge is
defined as a connection between nodes (residents) within
the network. In this dataset, each edge is represented as
a binary: 1 for having a connection and 0 for not having a
connection. Each row includes the edge’s source node, edge’s
target node, and the attributes the edge has. Every edge in a
wave has a row dedicated to it. If an edge persists through
multiple waves, it is considered a new edge in a new wave
and has a row dedicated to it. If nodes left the network, a list
of existing nodes in each wave is also included.

•	 Package And Data Loading
A variety of packages was utilized in the study. The key
packages required for processing the data and animating
the dynamic network include SNA and NDTV [12]. Other
packages may be interchanged with preferred packages
with similar functions. Data loading should be done to fit
the proper file path required for a user’s interface. Replace
quotes “file path…” with your unique file paths depending on
how the data is saved on your device.

Load necessary packages
packages <- c(“data.table”, “tidyverse”, “keyring”, “blastula”,
“dtplyr”, “naniar”, “net-work”, “sna”, “Matrix”, “haven”, “xtable”,
“ndtv”, “networkDynamic”)
needed_packages <- setdiff(packages, rownames(installed.
packages()))
lapply(needed_packages, function(pkg) {if (!require(pkg,
character.only = TRUE)) {in-stall.packages(pkg)}library(pkg,
character.only = TRUE)})

Next, we filtered the edges into a binary format as
mentioned above. In the directions below, we focus on
friendship connections. Weight was assigned to give an edge
if a participant rated another high enough to be considered
a friend within the network (being rated a friend or close
friend). The following steps are required for future checks
and data assignments.
Data Upload
e0 <- read.csv(“file path to house 16 relationships”)
House_16_Presence <- read.csv(“file path to house 16
presence”)

•	 Creating Networkdynamic Object
The following codes created an empty networkDynamic
object. This object, part of the networkDynamic package

[13], facilitates the querying, manipulation, and analysis of
network data as it evolves, and is highly compatible with other
network analysis tools in R. It supports dynamic visualization
and efficient data import/export, making it an essential tool
for analyzing time-varying network data. Before creating
the object, a list of nodes that were to appear in the network
was created, as well as the number of waves of which data
were collected. The code created the networkDynamic object
and all nodes were activated for all waves, nodes leaving the
network were later deactivated in the code.

#Assigns weight to edges
e0$wt <- if_else(e0$frd < 3, 1, 0)
e1 <- e0[, 1:4]
#Helper function that finds a specific vertex
get_vertex_id_by_name <- function(net, name) {
 return (which(get.vertex.attribute(net, “vertex.
names”) == name))}
#Counts the number of waves
wave_num <- unique(e0$h)
#Creates a vector of wavetable names
wave_names <- paste0(“w”, 1:7)
Uses mget to create a list of data frames
wave_tables <- mget(wave_names)
#Creates separate tables for each wave
for(wave in wave_num){
 wave_table_name <- paste(“w”, wave, sep = “”)
 assign(wave_table_name, e1 %>% filter(h ==
wave))}
#Intialiaze a network and give each vertex a name
net_dynamic <- network.initialize(length(all_vertices),
directed = TRUE)
set.vertex.attribute(net_dynamic, “vertex.names”, all_
vertices)
#Acctivate all vertices
activate.vertices(net_dynamic, onset = 0, terminus =
length(wave_num) + 1)
#Get rid of the first 0-1 interval
deactivate.vertices(net_dynamic, onset = 0, length = 1)

•	 Deactivating Vertices
This section of code selects people who were not in the house
for a specific wave from the list of nodes in that wave and
generates a list of vertices that need to be deactivated. Then
the code loops through each wave and deactivates them.
When deactivating vertices, deactivate.edge needs to be set
to false since the function would disable edges connected to

https://medwinpublishers.com/PPRIJ/
https://medwinpublishers.com/
https://creativecommons.org/licenses/by/4.0/
https://cran.r-project.org/web/packages/sna/sna.pdf
https://cran.r-project.org/web/packages/ndtv/vignettes/ndtv.pdf
https://cran.r-project.org/web/packages/networkDynamic/networkDynamic.pdf

Psychology & Psychological Research International Journal
2

Jason LA, et al. Visualization of Social Networks in a Recovery Home. Psychol Psychology Res Int J 2024,
9(3): 000422a.

Copyright© Jason LA, et al.

those vertices for all waves.
#Creates a separate list of people for those not present in
each wave
for(wave in wave_num)
{cur_wave <- paste(“w”, wave, sep = “”)
 cur_name <- paste(“notIn_w”, wave, sep = “”)
 individual_ids <- House_16_Presence %>%
 filter(!!sym(cur_wave) == 0) %>%
 pull(ID)
 assign(cur_name, individual_ids)}

#Deactivate vertices who are not in the house at the current
wave
for(wave in wave_num)
{in_name <- paste(“notIn_w”, wave, sep = “”)
 cur_active <- get(in_name)

#Loops through the list of people not in the house
for(i in 1:length(cur_active))
{cur_id <- get_vertex_id_by_name(net_dynamic, cur_
active[[i]])
 deactivate.vertices(net_dynamic, onset = wave,
length = 1, v = cur_id, deacti-vate.edges =FALSE)}}

•	 Activating Edges
In this section, the code looped through each wave and
activates the valid edges for those waves. When trying to
find an edge by its source and target, the vertices have their
persis-tent ID (PID) which is a constant between waves. The
PID is not the same as the vertex name, which is shown on
the final animation and raw data, therefore the PID needs to
first be located. Each edge has its PID as well, once located,
the wave in which an edge is active can be edited.
Activates valid edges at each wave
for(wave in 1:length(wave_num)){

#Finds the current wave being run
valid_edges_table_name <- paste(“validEdge_w”, wave, sep =
“”)
valid_edges <- get(valid_edges_table_name)

#Activates edges that are present during current wave
for(i in 1:nrow(valid_edges))
{source_vertex <- which(get.vertex.attribute(net_dynamic,
“vertex.names”) == val-id_edges[i, “source”])
 target_vertex <- which(get.vertex.attribute(net_dynamic,
“vertex.names”) == val-id_edges[i, “target”])

#Checks if the vertex exists
if(length(source_vertex) > 0 && length(target_vertex) > 0) {

#Checks if the edge already exists, adds new edge, and
activates vertex if not
existing_edge_ids <- get.edgeIDs(net_dynamic, v = source_
vertex, alter = tar-get_vertex)
if(length(existing_edge_ids) == 0){
add.edge(net_dynamic, tail = source_vertex, head = target_
vertex, activate = FALSE)
activate.edges(net_dynamic, onset = wave, terminus = wave,
e = get.edgeIDs(net_dynamic, v = source_vertex, alter =
target_vertex))}

#Activates an existing edge
activate.edges(net_dynamic, onset = wave, terminus = wave,
e = get.edgeIDs(net_dynamic, v = source_vertex, alter =
target_vertex))}}}

•	 Dynamic Attribute
Continuing with the next section of code gives dynamic
attributes to vertices, specifically color to a specific vertex.
Even if there is only one vertex that has the attribute, every
vertex needs a default value for the attribute because the
rendering package needs it. In the case of this code, the
default color is cyan.
vertex_colors <- rep(“cyan”, network.size(net_dynamic))
names(vertex_colors) <- get.vertex.attribute(net_dynamic,
“vertex.names”)
vertex_colors[“1228”] <- “red”
set.vertex.attribute(net_dynamic, “vertex.color”, vertex_
colors)

•	 Rendering
The final section of code rendered the networkDynamic
object using the NDTV package. Aesthetic attributes were
changed, and if they were not included as part of the
parameters, a default value was filled by the package itself.
render.d3movie(net_dynamic,
 displaylabels = TRUE,
 vertex.col = “vertex.color”,
 edge.lwd = 4, #Value of visual edge size
 vertex.cex = 12, #Value of visual vertex size
 label = “vertex.names”,
 output.mode = “html”,
 filename = “dynamic_network_visualization.html”)

https://medwinpublishers.com/PPRIJ/

Psychology & Psychological Research International Journal
3

Jason LA, et al. Visualization of Social Networks in a Recovery Home. Psychol Psychology Res Int J 2024,
9(3): 000422a.

Copyright© Jason LA, et al.

Appendix B. Visualizations, Data, and Open Access Code

Visualization for Friendship: https://asikora3.github.io/
Social-Network-Animation/dynamic_network_visualization_
FRD.html
Visualization for Advice-Seeking: https://asikora3.github.io/
Social-Network-Animation/dynamic_network_visualization_
ADV.html
Visualization for Loaning: https://asikora3.github.io/
Social-Network-Animation/dynamic_network_visualization_

ln.html
Data-Relationships:https://github.com/Asikora3/Social-
Network-Animation/blob/main/House%2016.csv
Data-Presence:https://github.com/Asikora3/Social-
Network-Animation/blob/main/House%2016%20
Presence.csv
GitHub for all data, code, and syntax: https://github.com/
Asikora3/Social-Network-Animation

https://medwinpublishers.com/PPRIJ/
https://asikora3.github.io/Social-Network-Animation/dynamic_network_visualization_FRD.html
https://asikora3.github.io/Social-Network-Animation/dynamic_network_visualization_FRD.html
https://asikora3.github.io/Social-Network-Animation/dynamic_network_visualization_FRD.html
https://asikora3.github.io/Social-Network-Animation/dynamic_network_visualization_ADV.html
https://asikora3.github.io/Social-Network-Animation/dynamic_network_visualization_ADV.html
https://asikora3.github.io/Social-Network-Animation/dynamic_network_visualization_ADV.html
https://asikora3.github.io/Social-Network-Animation/dynamic_network_visualization_ln.html
https://asikora3.github.io/Social-Network-Animation/dynamic_network_visualization_ln.html
https://asikora3.github.io/Social-Network-Animation/dynamic_network_visualization_ln.html
https://github.com/Asikora3/Social-Network-Animation/blob/main/House%2016.csv
https://github.com/Asikora3/Social-Network-Animation/blob/main/House%2016.csv
https://github.com/Asikora3/Social-Network-Animation/blob/main/House%2016%20Presence.csv
https://github.com/Asikora3/Social-Network-Animation/blob/main/House%2016%20Presence.csv
https://github.com/Asikora3/Social-Network-Animation/blob/main/House%2016%20Presence.csv
https://github.com/Asikora3/Social-Network-Animation
https://github.com/Asikora3/Social-Network-Animation

	Abstract
	Abbreviations
	Introduction
	A Visualization of Social Networks in Recovery Homes

	_GoBack
	_Hlk169187686

