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Abstract 

Tangential velocity in the cross-section of a cylindrical duct is a linear function of radius in many cases. This gives rise to 

the analogy of a Solid Body Model for swirl flow in ducts because of the similarity with a stiff rotating shaft. The 

generation of swirling flow by profiled ducts is described. Helically profiled lobate duct walls generate a twisting torque 

in an annular region at the outside periphery of the core flow. By contrast, wall friction in simple circular ducts causes 

swirl to decay. In the liquid counterpart of the solid body the torque is transmitted by duct walls rather than by shaft 

stiffness as in the solid case. The effect of the polar moment of inertia, J, of the rotating and twisting cylinder is unchanged 

from its solid counterpart and the damping coefficient, c, is directly related to the viscosity of the liquid acting in a narrow 

ring within the annulus between the rotating liquid cylinder and the duct wall. The system presents as a first order 

system with time constant J/c. The paper explores the behaviour of the “solid-body” in a cylindrical tube following a 

swirl- inducing duct using a 50mm bore duct conveying clean water as an example.  
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Background 

Lobate swirl-inducing ducts first appeared in a patent 
by a respected naval architect, E.F.Spanner [1,2], who 
applied a helically-lobed tube for use in ships boilers to 
facilitate the efficient presentation of water for heat 
transfer. Raylor [3] proposed that the design should be 
applied to the transmission of difficult liquids, for 
example those bearing particles. When applied to this 
task the original 3-lobe design was found to be less 
efficient than 4-lobe or 2-lobe variants. An early fixed-
pitch 4-lobe duct for particle bearing liquids is Illustrated 
in Figure 1. Later, this design incorporated a sigmoidal 
entry transition from circular to lobed profile (Figure 2), a 
fixed pitch central duct and a sigmoidal exit transition. 
This eliminated the practice of simply abutting cylindrical 
pipes at the entry and exit plane of a swirl duct causing 
attendant pressure losses. However the fixed pitch central 

section tended to constrain the angular acceleration of the 
transported media. Raylor [3] proposed a continually 
increasing spatial frequency to maintain the angular 
momentum of the duct contents. Current designs adopt 
this principle. 
 

 

Figure 1: Early 4-lobe swirl-inducing duct for particle-
bearing liquids.  
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Figure 2: Sigmoidal lobe radius function for swirl duct 
entry for entry from a 50 mm bore duct. 

 
 

Since the early 4-lobe design, progress has been made 
in ducts with continually varying pitch and lobate form. 
The swirl is measured by a quotient known as the swirl 
number, (also known as "swirl intensity")This is the 
ratio of angular momentum to axial momentum, non-
dimensionalised with the duct radius, defined as follows 
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Where R = pipe bore radius (of the cylindrical delivery 
pipe), u = axial velocity at radius r, 𝜌= fluid density and w 
= circumferential velocity at radius r. 
 
Another way in which swirl might be measured is the 
Swirl Angle,: 
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Swirl angle is roughly proportional to swirl number 
for the solid-body model as will be demonstrated later. 
Swirl angle can be fairly easily estimated from 
transparent tube sections as shown in Figure 3.  

 

 

Figure 3: 1.4% by volume coarse sand in water, axial 
velocity 1.7 m/s showing swirl angle. 

This is a useful method when the calculation of swirl 
number using equation (1) is not possible. 
 

Figure 4 illustrates a 2-lobe, 180° tube with 
progressive pitch and a throat at a 2:1 position 
downstream to maximize the rotation given to the fluid. 
This is a low-loss design which was analysed with CFX 
software (Reynolds Stress Omega Model [4]). The model 
yields a pressure drop, P, of 333 Pa over 0.3m. The swirl 
number was a modest 0.07 with swirl effectiveness,

/ 0.24
1 2
2

p

u


  . For improved swirl numbers, current 

designs incorporate a twist slightly greater than a full 
360° (actually 411°) to significantly improve the swirl 
number and to account for the lag of the transported 
medium. 
 

 

Figure 4: Two-lobe swirl-inducing duct with 180° of 
twist. 

 

Solid Body Model 

Figure 5 shows a tangential velocity profile for a 
nominal axial velocity of 2 m/s following a swirl duct. The 
near-linearity over approximately 84% of the bore 
indicates that angular velocity 𝜔, is almost constant in 
this range. Constant angular velocity is a characteristic of 
a solid rotating shaft and this concept suggests a simple 
mechanical analogy: The Solid Body Model. The data in this 
figure will be used to illustrate the model. 
 

 

Figure 5: Mean Circumferential velocity, w, 
downstream of a 3-lobe swirl-inducing duct similar to 
E.F. Spanner’s design. Data from Dr Benjamin Raylor 
with thanks. 
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The swirl number quotient (equation (1)) can be 
considerably simplified if the tangential velocity w is 
replaced with r, where, the angular velocity over the 
linear region  is assumed to be constant. 
 

1
tan

2 2

wR

u
    (3) 

 

Note that equation (3) indicates an approximately 
linear relation between swirl number and swirl angle for 
small values of w/u. This is important because ISO 5167 
[5] and Halsey [6] characterize swirl in terms of swirl 
angle , rather than swirl number (Steenbergen [7]). 
Strictly, the graph in Figure 5 showed some departure 
from a linear law. Near the centre, the angular frequency 
was slightly less than the solid-body value, probably 
because the swirl had been created by a profile at the pipe 
wall. The peripheral 16% of the velocity profile indicates 
gathering damping friction as the radius increases. At the 
outer radial extremity, the circumferential velocity falls to 
zero in accordance with the no-slip principle of Newtonian 
mechanics. The swirl numbertakes account of these 
regions while the swirl angle,  does not.  
 

The expression for the torque of a rotating solid shaft 
is given by 
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where M is the torque on the notional solid shaft, J is the 
polar moment of inertia, c is the coefficient of damping 
and k is the stiffness of the shaft. 
 

By definition liquids do not have stiffness, they adapt 
to the shape of their containment, so … 
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This expression has conveniently reduced to a first-
order system in twist gradient d/dt with time constant 
given by 
 

J
T
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Convenient it may be, but equation (5) gives us the 
problem of defining a time-varying function for the torque 
input () before it can be solved. The dynamical system 
becomes much clearer when equation (5) is rewritten so 
that the dependent variable becomes axial distance along 
the cylinder (z). Putting G = twist gradient d/dz and 
dividing throughout by cu 
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Note that the group of variables at the left-hand side of 

equation [3] 𝐺𝐷(𝑧) =
𝑀

𝑐𝑢
 has the same dimensions as G and 

is the driving function, (torque per damping coefficient 
per axial velocity) i.e.  
 

𝑇𝑢
𝑑𝐺

𝑑𝑧
+ 𝐺 = 𝐺𝐷(𝑧) (8) 

 

Now the dynamics of the system is described by the 
properties of the profiled tube, particularly the swirl 
gradient d/dz inducing the swirl. 
 

This time constant can be easily obtained from the 
polar moment per length J/L and the damping coefficient 
per length c/L. 
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where Ry is the radius of the rotating body. Referring to 
the example in Figure 4, the rotating solid body has a 
radius of 20.5mm in a duct radius of 25mm. Between this 
radius and the law of the wall we have a narrow 
motivating annular space in which the viscous damping 
and swirl decay take place. For a Newtonian liquid 
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The time constant is strongly dependent on the bore of 
the duct, inversely dependent on the viscosity of the 
medium, but most importantly the radial width of the 
motivating annulus, δ. To help with the task of 
determining this width there are semi-empirical 
estimates of the time constant, T, for horizontal 
cylindrical ducts from Steenbergen [7] and Halsey [6] 
which allow equation (11) to be solved for δ.  

 
ISO 5167 [5] specifies a 2° swirl-angle limit for 

measurement purposes and Steenbergen [7] came up 
with an empirical law, crucially including a friction factor 
(f ) to account for the natural roughness of the pipe bore, 
as follows 
 

Ω(𝑧)

Ω0
= 𝑒−

𝜉𝑓𝑧

𝐷  (12) 
 

where Ω0 is the initial swirl number at the entry to the 
cylindrical duct. 
 

There is a some uncertainty in the constant ξ and 
Steenbergen [7] suggests 𝜉 = 1.49 ± 0.07. Much of the 
uncertainty is eliminated by factoring the friction factor in 
equation (12). A later study (Jones [8] has shown a value 
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of 1.7 for perfectly smooth pipe wall, impossible to 
achieve in practice. When factored with a realistic friction 
factor (0.228), the value 𝜉 = 1.483 is obtained. Making the 
assumption that the swirl angle is comparatively small, 
and 𝑡𝑎𝑛𝜃 → 𝜃 in equation (3), the swirl number can be 
substituted for swirl angle  to give Halsey’s earlier 
correlation.   

𝜃(𝑧) = 𝜃𝑜𝑒−
𝜉𝑓𝑧

𝐷  (13) 
 

This agreement on the constant ξ from three separate 
researchers is a rare event indeed. 
 

Differentiating equation (13) with respect to 
downstream distance z, we have 
 

𝑑𝜃

𝑑𝑧
= 𝐺0𝑒−

𝜉𝑓𝑧

𝐷  (14) 
 

where 𝐺0 = −𝜃0 (
𝜉𝑓

𝐷
) , a negative constant initial twist 

gradient (i.e. a decaying gradient). 
 

Taking Steenbergen’s value of ξ, this implies a time 
constant of 
 

𝑇 =
𝐷

1.49𝑓𝑢
 (15) 

 

For 50mm bore duct, friction factor 0.0228 and mean 
axial velocity 2m/s we get a time constant of 1.46s ± 0.07s 
for the case of the cylindrical duct data given in Figure 4. 
From Figure 4 we can assert 𝑅𝑦 = 0.0205 (0.0045m from 

the wall). Solving equation (11) with the Steenbergen/ 
Halsey estimate of the time constant, we obtain the width 
of the motivating ring. 
 

𝛿 = 0.00029 𝑚 (16) 
 

The outer perimeter of the motivation ring is distant 
0.0045 − 0.00029 = 0.0042𝑚 from the pipe wall. It is 
now important to establish the thickness of the so-called 
“Law of the Wall” because, in theory at least, the boundary 
layer might encroach on the motivation ring. The law 
defines a non-dimensional quantity known as y+, the 

dimensionless distance to the wall, defined 
𝑦𝑈∗

𝜈
 where 

 
y = distance from the wall 

𝑈∗ = shear velocity (√
𝜏𝑊

𝜌
 where 𝜏𝑊 is the shear stress at 

the wall), and 
ν = kinematic viscosity 

𝜇

𝜌
 

 
In the immediate proximity to the wall ( 0 ≤ 𝑦+ ≤ 5 ) 

is a laminar sub-layer. By definition a laminar region can 
provide no torque to the medium in the duct. Beyond this 
layer is the buffer layer through which the turbulent flow 

develops. The outer limit of this layer is indistinct, but has 
generally been accepted to lie between 𝑦+ ≈ 25 and 
𝑦+ ≈ 50, typically 35. For the example 50mm bore duct, 
this gives an extent between 0.0001m and 0.00015m. In 
light of these calculations, it is reasonable to discount the 
laminar sub-layer and the buffer layer as influences in the 
outer radius of the motivation ring. They do not encroach 
upon it. 
 

0.0045 ≥ 𝑦 ≥ 0.0042 𝑚 (17) 
 

Further, the Seventh Power Law (Prandtl [9]) indicates 
that at a radius of 0.205m in the example, the axial 
velocity is in fully turbulent flow and close the pipe mean 
velocity. 
 

𝑢 = 2.53 (
0.0045

0.025
)

1
7

= 1.98 𝑚/𝑠 
 

where 2.53 m/s is the maximum axial velocity predicted 
by the law. 
 

Driving Function for the Generation of 
Swirl in A Profiled Duct 

In contrast to the case of decay of swirl in a cylindrical 
tube, a profiled tube with a constant spatial frequency 
generates swirl (Figure 6). 
 

 

 

Figure 6: Response of tangential velocity in a 
Spanner-type swirl-inducing duct of diameter 50mm 
carrying clean water at 2 m/s. Radial position is 0.7R. 

 
 

In a profiled duct with progressive pitch, if the rate of 
increase in swirl gradient is , we have 
 

𝑇𝑢
𝑑𝐺

𝑑𝑧
+ 𝐺 = 𝜆𝑧 + 𝐺0  

 
For the duct illustrated in Figure 3 the swirl gradient 
starts at zero (Go=0) 
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This yields the response of the rotating fluid as follows 
 

𝐺(𝑧) =
𝑑𝜃

𝑑𝑧
= 𝜆𝑧 − 𝑇𝑢𝜆 (1 − 𝑒−

𝑧
𝑇𝑢) 

 
The solid body is a wall jet (Steenbergen [6]), roughly 

akin to a concentric tube rather than a solid shaft, with a 
very much smaller value for J, the polar moment of inertia, 
in consequence. The time constant is considerably smaller 
for the generation case as shown by Figure 6. See Jones 
[8,10] for discussion of this issue. 
 

Conclusions 

Swirling flow in a duct has been shown to mimic a 
solid body with a motivating ring at its outer extremity. 
The main difference between a rigid solid body and a 
rotating body of fluid is in the transmission of torque. In a 
rigid body torque is transmitted by the stiffness of the 
body. In a rotating body of fluid there is no stiffness and 
the walls of the duct provide the torque. When the walls 
are helically profiled, positive swirl is generated. When 
the walls are cylindrical and unprofiled, a decay function 
is transmitted to the medium. 

 
The decay of swirling flow in a cylindrical duct can be 

represented as a first order dynamical system with a time 
constant given by J/c, the polar moment divided by the 
coefficient of damping. There is a small motivating ring 
which has relatively small dimensions and contains the 
damping function. 

 
The time constant of the system can be determined 

from equations for J and c. The formula for the polar 
moment J for a cylinder is well known. Less well known is 
an equation to determine the coefficient of damping, c, in 
terms of the Newtonian viscosity of the medium. It is 
critically dependent on the position of the motivating 
annulus (about 4mm from the wall in a pipe of 50mm 
bore) and for this reason is quite difficult to calculate. 
Fortunately, estimates of the time constant of the 
dynamical system for a cylindrical duct can also be made 
using semi-empirical correlations. The first of these to be 
used was developed by Halsey [6]. A later investigation by 
Steenbergen [7] confirmed his result. The width of the 
motivating annulus was estimated by equating these 
approaches with the value of the time constant described 
here. 

 
The group Tu is a distance constant which comes from 

the dynamical equation (7). Since the system is a classical 
first-order system, it will reach 95% of its target after a 
downstream distance of 3Tu metres. In the decay case this 

implies that 95% of the swirl will have dissipated after 
3 × 1.46 × 2 = 8.76𝑚. 

 
The first order system also applies to the generation of 

swirl in a profiled tube. In this case, the rotating body is a 
wall jet, of roughly cylindrical tubular form inside the 
profiled walls. The time constant for generation is 
significantly smaller than the time constant for decay 
(0.05s for the example). The swirl will have reached 95% 
of its target value after 0.3m. This dimension has been 
verified in tests and current designs for testing are 
300mm in length. 
 

References 

1. Spanner EF (1940) British patent GB521548. 

2. Spanner EF (1945) British patent GB569000. 

3. Raylor B (1998) Pipe Design for Improved Particle 
Distribution and Improved Wear. University of 
Nottingham. 

4. ANSYS (2017) Omega Reynolds Stress model. ANSYS 
CFX-Solver Theory Guide, ANSYS Inc. Southpointe, 
Canonsburg, PA, pp: 95-96.  

5. International Standards Organisation (2003) 
Measurement of Fluid Flow by means of pressure 
differential devices inserted in circular cross-section 
conduits running full – Part 1: General Principles and 
Requirements. 2nd (Edn.), Technical Committee 
ISO/TC30/SC 2 Pressure differential devices, pp: 33. 

6. Halsey DM (1987) Flowmeters in Swirling Flows. J 
Physics E: Sci Instru 20(8). 

7. Steenbergen W (1995) Turbulent pipe flow with 
swirl. TU Eindhoven. 

8. Jones TF (2017) A Solid Body Model for Swirling 
Flows. 18th International Conference on Transport 
and Sedimentation of Solid Particles, Prague, Czech 
Republic,pp: 129-136. 

9. Prandtl L (1921) Uber den Reibungswiderstand 
stromender Luft About the frictional resistance of 
strea ming air. Ergebnisse AVA Gottingen, pp: 136. 

10. Jones TF (2019) Swirl-Inducing Ducts. In: Boushaki T 
(Ed.), Swirling Flows and Flames. Intech Open.  

http://eprints.nottingham.ac.uk/13448/
http://eprints.nottingham.ac.uk/13448/
http://eprints.nottingham.ac.uk/13448/
https://www.iso.org/standard/28064.html?browse=tc
https://www.iso.org/standard/28064.html?browse=tc
https://www.iso.org/standard/28064.html?browse=tc
https://www.iso.org/standard/28064.html?browse=tc
https://www.iso.org/standard/28064.html?browse=tc
https://www.iso.org/standard/28064.html?browse=tc
https://iopscience.iop.org/article/10.1088/0022-3735/20/8/016/meta
https://iopscience.iop.org/article/10.1088/0022-3735/20/8/016/meta
https://pure.tue.nl/ws/files/1534421/430720.pdf
https://pure.tue.nl/ws/files/1534421/430720.pdf
http://ts.upwr.edu.pl/ts18/files/18/proceedings/TS18_129-136_Jones_et_al.pdf
http://ts.upwr.edu.pl/ts18/files/18/proceedings/TS18_129-136_Jones_et_al.pdf
http://ts.upwr.edu.pl/ts18/files/18/proceedings/TS18_129-136_Jones_et_al.pdf
http://ts.upwr.edu.pl/ts18/files/18/proceedings/TS18_129-136_Jones_et_al.pdf
https://www.intechopen.com/books/swirling-flows-and-flames/swirl-inducing-ducts
https://www.intechopen.com/books/swirling-flows-and-flames/swirl-inducing-ducts
https://creativecommons.org/licenses/by/4.0/

	Abstract
	Background
	Solid Body Model
	Driving Function for the Generation of Swirl in A Profiled Duct
	Conclusions
	References

