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Abstract

We introduce and present a deterministic and semi-analytical method for doing transport analysis on neutrons and isotropically 
scattering ‘hard’ photons which are placed in two energy groups. There are advantages for doing such 2-group and higher 
multi-group analysis of radiative particles (i.e. neutrons and photons). These advantages are that we can more directly keep 
track of what percentages of radiative particles are close to the original high energy and how many are at significantly lower 
energy. An inspection of the profile of any build up function shows that the function is slightly larger than 1.0 at entry, then it 
rises to perhaps 2 or 3 within roughly one mean free path of the fast primary particles, and finally approaches the asymptote 
of 1.0 as the penetration depth gets progressively larger. Although it is more lengthy, our algorithm and formulation is much 

more complete than the popular formula used among radiologists of ( ) ( ) ( ) ( ) , 0Intensity x B E x Intensity exp xµ•= − . 
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Introduction

In this paper, we introduce an analytical method of 
calculating transmission, or conversely shielding coefficients, 
and contained therein an effective method of predicting local 
internal dose due to beam. Here in, the examples of an iron 
wall (i.e. of the main Fe-56) with thicknesses of 0.865cm 
and 2.88cm are examined for predictions of transmission 
ration and gross back-scatter ratio. In service to the field of 
health physics, the essential background topics in medical 
physics, and the reviews of radiological safety of reactors 
of nuclear reactor operations, various radiation related 
calculations have been conducted with reasonable caution 
for over 70 years. These calculations include: radiation 
shielding calculations, penetration assessments [1], and 
radiation dosimetry calculations [2]. Tying into the physics 
of interaction of radiation with matter, a beam which is 
comprised of either energetic neutrons or high-energy 

photons (i.e. gamma rays or hard X-rays) have conventionally 
been looked upon as candidates for interception via the 
standard X-section (i.e. cross-section) inspired models, for 
which one uses the typical expression

( ) (0) zI z I e µ−=  (1)

where z is the depth and μ is the attenuation parameter or 
‘coefficient’. 

The “simplistic” attenuation formula is an appropriate 
name for this short Equation (1). Many shielding calculations 
done by medical physicists and health physicists over 
the years (since at least 1970) have been done using an 
extension of this “simplistic attenuation formula” coupled 
with a buildup factor [3]. The buildup factor is necessary if 
we are to use an attenuation formula as our principal tool 
of analysis to account for scattered neutrons or energetic 
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photons, respectively [4]. Some of these “n’s” and “γ’s” are 
almost (or totally) elastically scattered, but some of these are 
down-scattered in energy. In keeping with the aspiration for 
excellence from the era of the “Space Age”, some computer/
electrical engineers and nuclear engineers have enhanced 
these efforts by conducting Monte Carlo simulations of the 
transport and penetration of neutrons or photons through 
walls and various barriers with various respected codes 
(packages with X-section libraries) such as MCNP, EGS4, 
EGSNrc, and the versatile but highly tedious GEANT4 [5-7]. 
In this short paper, we introduce and present a deterministic 
and semi-analytical method for doing transport analysis on 
neutrons and isotropically scattering ‘hard’ photons which 
are placed in two energy and, with future ambitions, into 3 
energy groups. There are advantages for doing such 2-group 
and higher multi-group analysis of radiative particles (i.e., 
neutrons and photons). These advantages are that we can 
more directly keep track of what percentage of radiative 
particles are close to the original high energy and how many 
are at significantly lower energy. An inspection of the profile 
of any build up function shows that the function is slightly 
larger than 1.0 at entry, then it rises to perhaps 2 or 3 within 
roughly one mean free path of the fast primary particles, and 
finally approaches the asymptote of 1.0 as the penetration 
depth gets progressively larger. 

Review of Buildup and Discussion of 
Methods of Analysis

The attenuation formula in the introduction expresses 
the particulate intensity, not the energetic intensity in our 
convention. This corresponds to the choice of analysis of 
particulate flux rather than energetic flux of radiation. For 
those with a non-nuclear background: “Flux” is used by 
the medical physics community and health physicists with 
a definition considerably different from that of the flux of 
electric fields. Our flux has units of “particles” per cm2 per 
second. See Frank Attix’s text [8] if this is unclear. Particulate 
intensity is less than or equal to the scalar flux of the 
particles. Very often intensity is defined as the magnitude of 
net current of transported particles per cm2 of surface per 
sec. Indeed, in a case where equally many particles approach 
and penetrate a wall bidirectionally the net current is zero. 
However, the scalar flux in such an example is much larger 
than zero. Admittedly, one can make some inferences on the 
approximate ratio of down-scattered particles at a given 
depth as a function of position by inspecting the build up 
function, should it be available in published tables for a 
given shape and material. Here the intensity with a buildup 
coefficient can be expressed as

( )( ) ( , ) (0) zI z B E z I e µ−=  (2)

However, the Buildup coefficient (i.e. B(E, z)) does not 
make clear just what percentage of scattered γ-ray or X-ray 
radiation is scattered so as to retain most of its energy and 
how much has been “demoted” to photons with 50% less 
or more of energy per radiative particle. This reality (of 
radiative particles often undergoing elastic or nearly elastic 
scattering) holds for ‘free’ neutrons which scatter off nuclei 
with an Atomic Number greater than 4. For example, when 
a ‘n’ with a kinetic energy of 1.0MeV collides with an Fe-56 
nucleus, it has a 99% chance of undergoing elastic or quasi-
elastic scattering (retaining most of its 1MeV). This same 
‘n’ has a probability of less than 0.8% of down-scattering 
to a “low” energy neutron with less than 0.201MeV of 
kinetic energy. The chance of capture at 1MeV is less than 
one in a 1000. Fast neutrons are not easily captured, they 
usually are just scattered. This information is given based 
on inspecting generally available public claims of two group 
data and, more importantly, by our careful conducting of 
MCNP [5] simulations in which we reproduce the conditions 
of scattering and so called “buildup” of scattered neutrons 
in rectangular walls of Iron (Fe-56). We are authorized to 
use and has extensive experience with the very versatile 
MCNP Monte Carlo code. Regarding neutrons, the buildup 
coefficient data either is not widely published for nuclear 
engineers or not readily available. Thus, the case of neutron 
shielding analysis offers a major service for performing 
multi-group energetic neutron flux and dose calculations. 
In this paper we stick with 2-group n’s (i.e., neutrons). 
The following formula is an overly simplistic & inadequate 
expression often used for metals with atomic number less 
than 84, away from the “uranic” family

[ , ,1 ]( )( ) (0) totl at MeV zz e ⋅−ΣΦ = Φ  (3)

However, Equation (3) gives a very incomplete story 
of the local neutron flux. Just as Equation (1) of I(z), which 
equals I(0)∙exp(-μz), gives an incomplete story of local 
current/intensity of X-rays and γ-rays, when one fails to 
include the Buildup factor included in Equation (2) where 
B(E, z) in Equation(2) is the buildup factor for the calculation 
of local ‘flux’ of γ-rays or photons at various depths (e.g. 
z) of penetration. It is more insightful to replace I(z) from 
Equation (1) with Φ(z) in Equation (3) where Flux is more 
appropriate than ‘n’ or photon current in the geometry of a 
wall or box since many of the neutrons or photons no longer 
travel straight forward along the z-axis after one or two 
collisions of scatter occur. 
 

If the nuclei/atoms of a medium which is entered by the 
beam of n’s or photons is a pure absorber, then Equation (1) 
and Equation (3) are acceptable solutions for penetration 
and the differential equation which explains the transport of 
the particle(s) is given by: 
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( )[2]
[2]

( )
( ) ( ) 0

d I z
I z

dz
µ+ ⋅ = , for absorb radnµ σ=  (4)

and where nrad is the number density from radiation. If the 
medium is Boron-10 and the neutrons are at low energy, 
then Equation (4) would be a realistic equation for modeling 
transport of the neutrons, because B-10 is nearly a pure 
absorber. However, most materials are not pure absorbers. 

If we presume that there are two energy levels for 
neutrons and photons (i.e., fast n’s and slow n’s), then it 
is appropriate to write a double energy-group Maxwell 
Boltzmann Transport Equation (MBTE) in order to express 
what is going on for transmission and for energy demotions 
(i.e., down scatters). This pair of equations is written below 
for the transport of neutrons with two possible energy levels 
[9-11]. Note in Equation (5) that Ψ[2] is proportional to 1/
(4π)∙Φ [2] for fast neutrons (of grp-2). Here Φ [2] is the scalar 
flux which includes neutrons in the energy grouping of 
0.201MeV up to 10MeV (at least when we model & analyze 
iron shielding). Φ[1] is the scalar flux which includes all 
neutrons of energy 0.20MeV and lower. Here is the two-
group MBTE: 

2,1( ) [2] [ ,2] [ ,2] [ ] [2] [ ,2] [2] ( )( , ) ( ) ( , ) ( , ') ( ) 'ab s s s jacobin r r r dθ θ θ θ θ⋅∇Ψ + Σ + Σ + Σ ⋅Ψ = Σ ⋅Ψ ⋅∫ �

   
�  

(5a)

( )2,1( ) [1] [ ,1] [ ,1] [1] [ ,1] [1] [ ] [2] ( )( , ) ( ) ( , ) ( , ') ( , ') ( ) 'ab s s s jacobin r r r r dθ θ θ θ θ θ⋅∇Ψ + Σ + Σ ⋅Ψ = Σ ⋅Ψ + Σ ⋅Ψ ⋅∫ �

    
�

 

(5b)

Suppose that [ ,2] [2,1]s sandΣ Σ  are equal to zero, as we 

might imagine for a medium of “super-Boron”. Then, 
Equation(5a) can be rewritten as: 

[2] [ ,2] [2]_ _( , ) ( 0) ( , ) 0abn r r⋅∇Ψ + Σ + ⋅Ψ =
   . If our wall is 

very broad and if the distribution to approximation depends 
only on coordinate z, then this simple 1st order equation is 
completely equivalent to Equation (4) on attenuation on the 
2nd page. In this paper, we presume that scattering is isotropic, 
which is often a good approximation for the scattering of 
neutrons. Therefore, we establish that 

2,2[ ,2] [ ]ands sΣ Σ are 
completely independent of θ , `θ , and any angle. This 2-group 
version of the MBTE is an example of a pair of integro-
differential equations. Generally, it is easier to solve a purely 
integral equation, such as a Fredholm Int. Equation [12]. 
Holding on to the presumption of isotropic scattering, 
Equations (5a) and (5b) can be subjected to a special integral 
transformation via Green’s functions in order to re-express 
them as the following integral equations. 

( ) [ ,2]

2,2

( ( `))
[2] [2]^2

1 1( ) ( ( `) ( `)) e `
4 `

totl r r
s beamr r I r dr

r rπ
−Σ ⋅ −Φ = Σ ⋅ Φ + ⋅ ⋅

−∫∫∫
    

 �  

(6a)

( ) [ ,1]

1,1 2,1

( ( `))
[1] [1] [ ] [2]^2

1 1( ) ( `) ( `) e `
4 `

totl r r
s sr r r dr

r rπ
−Σ ⋅ −Φ = Σ Φ + Σ Φ ⋅ ⋅

−∫∫∫
    

 �  

(6b)

Equations (6a) & (6b) are challenging, but some 
solutions have been found. In the Russian Math academy 
of the 1950s and by a ‘computations’ group at Los Alamos 
in the 1950s some solutions have been found to Equations 
(6). The author(s) have found a method for numerically, with 
arbitrary precision, to iteratively solve the monoenergetic 
version of Equation (6a) and the 2-group Equations (6) [13]. 

Equations (6) are more demanding and difficult to solve 
than it is to simplistically use Equation (2) with the buildup 
coefficient to calculate relative intensities. The information 
which we get out of Equations (6) for Φ[2] and Φ[1] is much 
richer than what we can get from the calculation of I(z) 
as a function of penetration into a wall Equation (2). This 
is especially apparent for a very broad slab of shielding 
(presuming breadth of slab is more than 6 times > than 
thickness of slab). Presuming a beam of neutrons enters 
from the left at the interface where z=0, the user would 
need to read, download, and interpolate a table of build-up 
coefficient values (or use an approximate local formula) for a 
slab of the given material (such as Fe, Pb, or concrete). These 
tables are almost non-existent for neutrons. Such tables do 
exist for γ-ray and X-ray photons for industrial and medical 
materials, but they are limited in their range and diversity of 
examples. Thus, the dosimetrist who is borrowing or using 
the data often is stuck with having to interpolate from near 
fits of other examples most similar to the geometry which 
he or she has chosen to design or assess for predictions or 
dose verifications. As a reminder of geometrical concepts, 
the portion of “battered” particulate current density which 
escapes from the right-hand boundary of a rectangular slab 
of shielding from “mid-face” equals approximately ½ or 
0.6 times the “battered” scalar flux which is present on the 
boundary of escape from the rectangularly shaped shield. 
‘Battered’ shall be defined as the condition of a particle 
which has either been coerced or forced to scatter so as to 
keep some or all kinetic energy. “Battering” of a neutron 
changes its direction and can reduce its energy. For a very 
thin shield whose thickness is less than ⅛ of a mean free 
path of a neutron, the first author has verified that I[‘battered’]
(escape)= ½ Φ[‘battered’](boundary) by analytical means of 
integrating the Green’s function of the radiative source and 
by consideration of Gauss’s Law with a discrepancy of less 
than 2 percent in lieu of rare double-scatter histories. For 
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thicker samples MCNP simulations have been verified with 
converging persuasiveness that the escape ratio is in the 
range of ½ through 0.65, depending on thickness of shielding. 
I[‘battered’] refers to the particulate current density of n’s which 
have undergone at least one collision before escaping from 
either the left-hand side (LHS) or right-hand side (RHS) of 
the slab. Many books casually refer to the ‘I’ in I[‘battered’] and 
I[entering, beam] as intensity. In this paper, ‘I’ shall mean current 
density of particles (mostly neutrons here) per cm2 (or m2) 
per second. If the beam and scattered particle are all mono-
energetic, then, of course, energetic I, or energetic intensity, 
is given by the product of ‘I’(of ‘n’) and Energy[of ‘n’]. 

Computations and Results

Following our earlier work Steinfelds EV, et al. [13,14], 
we can iteratively solve integral equations (6a) and (6b) in 
the case where we have one very broad rectangular slab. 
If there is a monoenergetic beam of fast neutrons which 
enter the designated slab of shielding, then before the first 
iteration we find that Φ[2][0](z) goes as [ ,1 ]( )(0) total MeV zI e ⋅−Σ , as in 
Equation (3) and where I(0) and Φ[0] were interchanged. 
Φ[2][0](z) is that part of the flux of neutrons at z that have 
never undergone scattering. The first index, which holds 
[2], shall denote that this is flux/current of the fast group of 
neutrons. In the first iteration (upon the event of scatter) we 
find the formula of Φ[n][1](z) for the n-group’s neutrons where 
n equals either 1(slow) or 2(fast). Upon integration this 
flux can be found analytically for the n-group of neutrons. 
Consider Equation (7) 

( )[ total ,1 ] cos( )
[2] [2][1] [2][2] [2][3]( ) (0) ( ) ( ) ( ) ...M eV

z
r I e z z zθ⋅− Σ

Φ = +Φ +Φ +Φ +  

(7)

where [2][ ] ( )n zΦ  is generated iteratively from the input of 
[2][ 1] ( )n z−Φ into the RHS of Equation (6). The writing out of 

the summation of 
[2][ ] ( )n zΦ  with respect to iteration index 

n is akin to the early methods of perturbative quantum 
electrodynamics done by Hans Bethe circa 1949 [15], but only 
without the need to subtract infinities out. Renormalization 
methods are not required to solve Equations (6), analytically 
or computationally. The first iteration, Φ[2][1](z), contains 
logarithms of z, Ei functions of z, and terms of exp(-Σt z) for 
several factors. The “2” refers to the 1-MeV neutrons and can 
be efficiently approximated by a much more tractable sum 
of a polynomials and log expressions. Φ[2][1](z) is the flux of 
fast neutrons which have been scattered only once. We allow 
batter-1 to refer to radiative particles which have undergone 
collisions only once. Following through with the iterations, 
Φ[2][2](z) is the flux of fast neutrons which have been battered 
twice. Likewise, Φ[2][3](z) is the flux of fast neutrons which 
have been battered three times. In general, Φ[m][n](z) is the 
flux of neutrons of group ‘m’ which have been battered n 

times without being either demoted from nor promoted from 
its energy-group “m”. ‘Fast’ albedo is the ratio of the sum of 
fast scattering cross sections divided by the total fast cross 
section of neutrons. So long as the albedo is less than or equal 
to 1, the series of Φ[n][m](z) is guaranteed to converge. Five to 
eight iterations have proven to be required for sufficiently 
convergent solutions. We use the approximation that the 
current of escaping neutrons which have penetrated the 
wall is given by the sum of the ‘unbattered’ flux plus half (i.e. 
0.5) of the sum of fluxes comprised of scattered neutrons, 
where 0.5 is the analytically and geometrically guaranteed 
minimum. Judiciously, we occasionally replace 0.5 with 0.52 
or even 0.55, where this is the dimensionless factor of escape 
which relates surface Φ value to current density of scattered 
neutrons which depart from the surface. 

For the sake of space and the context of this paper, we 
will focus on predictions for scattering deterministically of 
the transmission of neutrons through sample slabs of iron at 
various thicknesses and on the prediction for the portion of 
neutrons which are returned backwards (due to back-scatter) 
from the slab. Our deterministic method distinguishes 
between the population of fast scattered neutrons and of 
slow neutrons (where the choice of ‘1’ for ‘m’ designates the 
down-scattered (i.e., slow) neutrons). We also conducted 
Monte Carlo simulations of neutrons from a beam which 
approach the same wall of iron material. The two Monte 
Carlo (MC) codes used are: MCNP (which was developed and 
updated by LANL) and a custom Monte Carlo code which was 
developed early in 2014 [13,14] and had proven to be valid 
for the modeling of isotropic scattering. In Table 1 the name 
assigned to our custom MC code is SMUSKE, where SMUSKE 
is designed to simulate isotropic scattering or radiative 
particles in arbitrarily chosen rectangular geometries, as 
done in the past. 

Two examples are given below for a broad rectangular 
slab of homogeneous cast-iron where a beam of neutrons 
approaches the barrier at normal incidence. Our deterministic 
predictions, the predictions of MCNP, and the predictions 
of the MC code, SMUSKE, are included in Table (1). In the 
common style, MFP shall denote Mean-Free-Path of neutrons 
in response to the total cross section for the fast (0.9 MeV 
to 1.0 MeV) neutrons. Our deterministic algorithm is named 
“IntegIterator”, which stands for Iterative Integral Equation 
Solver. “Deterministic Iterator” is a slightly lengthy alias for 
our abbreviation of IntegIterator. As a reminder, Equations 
(6a) and (6b) are Fredholm integral equations in terms of 
mathematical structure. “Mfpm” in column one means the 
value of MFP/(Wall Thickness). “Grp#’ in the 2nd column of 
the table refers to the energy group number of the neutrons. 
Grp# 2 includes all neutrons which are in the energy range 
of 0.9 MeV through 1.0 MeV. These are the designated fast 
neutrons. Grp# 1 denotes the slow neutrons, which include 
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all the free neutrons which have energy in the range of 0.0 
MeV through 0.160MeV. There were less than one in 5000 
neutrons found in the energy range which lies in between 

the ‘slow’ Group and the ‘fast’ Group of neutrons, therefore, 
we do not include such an intermediate group of negligible 
population. 

 

Mfpm grp# IntegItera 
backward

Smuske 
backward

Mcnp 
backward

IntegItera 
forward

Smuske 
forward

Mcnp 
forward

1.0 1-slow 0.0137306 0.0086246 0.10248209 0.012238 0.0083994 0.0859201
1.0 2-fast 0.3356 0.31328 0.1379007 0.6374654 0.669173 0.6721823

Go to 
Mfpm grp# Mfpm IntIter 

back
value of Smuske 

back 3/10 Mcnp back IntIter fwd Smuske fwd Mcnp fwd

0.3 1-slow 0.008677 0.002346 0.03172595 0.007289 0.0023406 0.031896
0.3 2-fast 0.130606 0.11286 0.0512400 .863998 0.88179 0.884878

Table 1: Summary of Forward Scattering and Back-scattering Predictions based on the Monte Carlo Codes of SMUSKE and MCNP 
and on the IntegIterator Deterministic Algorithm.
 

In the first half of Table (1) the thickness of the rectangular 
slab of iron is 1 MFP long, which is 2.884 cm. According to 
SMUSKE, out of 10,000 incoming fast neutrons, 3132.8 fast 
n’s travel out or backward from the wall, and slow n’s escape 
back toward the source of the beam. Accordingly, SMUSKE 
predicts that 6,691.7 fast n’s escape forwards out through 
the iron wall, and 84 slow n’s escape forward. Comparing the 
Deterministic Iterator and SMUSKE’s predictions starting 
with the thick wall at 2.884 cm first, we find that for the 
collective back-scattered n’s, which escape out of wall 
backward, the percent differences between the Deterministic 
Iterator and SMUSKE are: 45.6% for slow n’s (i.e., of grp.1) 
and 14.6% for fast n’s (i.e., of grp.2). For the rate of forward 
escape, or transmission, the percent differences between 
IntegIterator and SMUSKE are: 37% for slow n’s (i.e., of 
grp.1) and -4.85% for fast n’s (i.e., of grp.2). We also consider 
the wall which is at 3 tenths of an Mfpm at 0.8652 cm, giving 
a rate of forward escape, or transmission, the percentage 
of disagreement between our IntegIterator and SMUSKE 
as: 103% for slow n’s and -2.03% for fast n’s (i.e., of grp.2).  

Next, we compare the escapee numbers of SMUSKE to 
those of MCNP for n’s: the rate of backward escape, returning 
to the beam source, when the wall is one MFP thick, the 
percentage of disagreement between the predictions of MCNP 
and SMUSKE are: -168% for slow n’s and 77% for fast n’s. For 
the rate of forward escape, when the wall is one MFP thick, 
the percentage of disagreement between the predictions of 
MCNP and SMUSKE are: -164% for slow n’s and 0.448% for 
fast n’s. For the rate of backward escape, returning to the 
external beam source, when the wall is 3/10 of a MFP thick, 
the percentage of disagreement between the predictions of 
MCNP and SMUSKE are: -172.4% for slow n’s and 75.1% for 
fast n’s. For the rate of forward escape, when the wall is 3/10 
of a MFP thick, the percentage of disagreement between the 
predictions of MCNP and SMUSKE are: -172.6% for slow n’s 

and 0.349% for fast n’s.

On the other hand, on a more impressive note, there 
is only a -5.30% disagreement between the respective 
predictions of our Deterministic Iterator (i.e., IntegIterator) 
and those of MCNP for the number of forward transmitted 
fast neutrons through the wall which has 1 MFP (2.884 cm) 
of thickness. In addition, there is a -2.387% disagreement 
between the respective predictions of IntegIterator and 
MCNP for the number of forward transmitted neutrons 
through the wall with thickness of 3/10 of an MFP (0.8652 
cm). 

One can see that our deterministic IntegIterator makes 
predictions which are either as close as or almost as close 
in their respective predictions to those of SMUSKE to 
the predictions of forward escape and backward escape 
generated by using MCNP alone. IntegIterator and SMUSKE 
have comparable operation speeds if one is content with 
1.5 percent statistical fluctuations of Monte Carlo from 
using SMUSKE. However, SMUSKE does not easily lend 
itself to decisive mapping of internal flux at high resolution. 
IntegIterator does, by default, offer the feature of internal 
mapping. We observe the effectiveness of SMUSKE and 
IntegIterator in spite of the disadvantage of using isotropic 
cross sections used in these codes. MCNP does consider 
angular probabilities in great detail for ‘n’-scattering for all 
of the well-known isotopes on the complete table of nuclides. 

Indeed, in a nuclear historical context, the compilation 
of the ‘scatter-kernel’ data of MCNP was a project which 
spanned more than a decade. Thus, it would be very 
difficult to summarize such a large amount of angular data 
with approximations of the zeroth, first, and second order 
Legendre polynomials of the cosine of scatter-angle with any 
tractable and manageable database which could function 
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without incurring “data strangulation” of an analytical 
iterator (e.g., our IntegIterator) written in Maplesoft, high-
level Python, or similar language/package. Some ask, “why 
not just give the M.C. ‘jobs’ to GEANT4 to execute?”. With all 
due acknowledgement of the formidable abilities of GEANT4, 
such as readily offering options of angular data streaming, the 
three smaller codes SMUSKE, MCNP, and IntegIterator are all 
faster and easier to work with than GEANT4 for designated 
rectangular walls of metal bombarded by n’s. 

Conclusions

Our deterministic iterative algorithm, IntegIterator, 
agrees reasonably well regarding the prediction of the 
energy distribution and the direction distribution to the 
corresponding distributions of energy and overall forward 
direction which are generated via our MCNP simulations, 
in spite of the deficiency of IntegIterator not being able to 
process anisotropic scattering in terms of the design of a 
‘scatter’ kernel or helpful Green’s Function. This can be seen 
from the results posted in Table (1) and in the summary of 
Table (1) above. On the other hand, neither our deterministic 
code nor our isotropically designed SMUSKE agree extremely 
well with the predictions of back-scatter results from MCNP. 
All three methods of calculation agree well on the prediction 
of percent neutrons (sum of quasi-elastically scattered and 
down-scattered neutrons) which escape from the target 
slab of our ferrous metal informatively showing the trend of 
almost succeeding to sustain the population of free neutrons 
(albeit with records of past collisions and occasional energy 
reductions). In reference to “surviving” n’s, ‘free neutron’ 
means neutron not captured by any atom. It is evident from 
the slowing down that every one of the iron slabs in Table 
1 incidentally functions as a neutron moderator. However, 
the directionality and ratio of down-scattering are subject 
to disagreement. As explained above, MCNP has extremely 
detailed cross section libraries. Iron-56 turns out to be one 
of these extremely anisotropically scattering isotopes. With 
the exception of the work of Chandrasekhar [16] and his use 
of H-functions for tracing intensities of scattered photons, 
there is little analytical work recorded on predicting flux 
densities theoretically which are solutions to the MBTE 
in which the scattering cross sections are anisotropic. 
The discrete ordinate method used to solve the MBTE is 
impressive in its flexibility and is deterministic, but that 
method is not analytical - thus being completely numerical at 
every step, unlike our IntegIterator which offers some “term-
by-term” perspective for the theorist. It is ‘somewhat’ easy 
to do analysis of solutions of the MBTE when the neutron 
scatterers (i.e., the nuclei) are isotropic. Many experts of 
reactor physics and shielding analysis approximate the 
multi-group MBTE as a multi-group coupling of two, 3, 
or even 6 simultaneous diffusion equations of radiative 
particles. By its intrinsic nature, it is virtually impossible to 

do angle dependent “ray track tracing” of neutrons if one 
does modeling with a diffusion equation (or equivalently a 
pair of diffusion equations) rather than the MBTE. 

It would be convenient from a clinical radiological 
treatment planners’ point of view to carefully look up the 
data for B(E,z), where B(E,z) is the buildup factor included 
in Equation (2). However, in regard to neutrons, buildup 
coefficient data either is not widely published or is not 
available to the broad national/international communities of 
health physicists or engineers. Moreover, a significant benefit 
of our deterministic method (and algorithm) of IntegIterator 
is the superior speed which it offers by its retention of the 
definitions of chosen geometries per wall to be bombarded 
and in its output extraction compared to the time and 
duties required at the conclusion of a corresponding run of 
an MCNP simulation. Similarly using GEANT4 is often even 
more involved and tedious than MCNP. Thus our 2-group 
IntegIterator algorithm and formulation is much faster than 
MCNP when predicting penetration ratios as well as the 
distribution of energy of penetrating neutrons [17]. 

In regard to the CPU (one or multi) time of a single ‘run’ 
of modeling transmissions and down-scattering of neutrons 
through rectangular walls, MCNP is sufficiently fast. 
However, the processing of the output data from the output 
files generated by the MCNP code requires considerable 
data processing which is done best either in a UNIX console 
environment or a DOS console environment. In order to 
conduct our local Flux calculations, we selected Maplesoft 
for the code and kernel of IntegIterator. Our ‘Maple’ version 
of IntegIterator can operate within the environments of 
Windows, XWindows of Mac OS, and Linux - as valid versions 
of Maplesoft can be placed in these OS’s. Much of our 
Maplesoft code can be translated into Matlab code, for the 
accommodation of the preferred software environment of 
many electrical engineers for Matlab. Another, great benefit 
of our deterministic code is that one can procure a polynomial 
approximation of the local dose of neutron flux at any depth 
within the metal. The structure of the spatial internal solution 
for flux is a combination of log and polynomial terms. With 
MCNP such a feat of mapping flux as a function of the depth 
in a wall would require updated writing of an Input file which 
is more than ten-fold more elaborate than the input file for 
the IntegIterator code for the same slab of metallic material. 
Internal depth profiling with SMUSKE also is a challenge, but 
less so than it is with standard MCNP input file declarations. 

It is reasonable to anticipate a future effort of analysis 
of 3-group neutron flux distributions with respect to energy 
by radiation transport theorists. However, for now, we 
focus on constructing 2-group databases of neutron cross 
sections of various important materials besides just iron and 
boron and subsequently using the algorithm and code(s) 
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of IntegIterator to predict collective forward escape and 
backward escape of neutrons which initially enter slabs of 
the respective materials of interest. 
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