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Abstract

The idea of applying the scattering lifetime calculated from the imaginary part of the zero temperature elastic scattering 
cross-section to study a hidden self-consistent damping in two spaces of importance for non-equilibrium statistical mechanics 
is proposed. It is discussed its relation with the classical phase space from statistical mechanics and the configuration space 
from nonrelativistic quantum mechanics. This idea is contrasted with the mean free path values in three elastic collision 
regimes. The main exercise is to study the behavior of a self-consistent probabilistic distribution function in a space we have 
called the reduced phase space since it is related to the scattering lifetime. This exercise has been solved in two unconventional 
superconductors for which several calculations are discussed. One of them is to obtain the scattering phase shift from the 
inverse strength of an atomic potential and the other is to build several phases with different nodal configuration of the 
superconducting order parameter and show that the imaginary self-consistent part of the scattering cross-section is always 
positive for two compounds: the triplet strontium ruthenate and the singlet doped with strontium lanthanum cuprate when 
three models of superconducting order parameters are used: the quasi-point, the point and the line nodal cases. We finally 
compare the frequency dispersion in the anomalous skin effect with singular shapes of the Fermi surface with the frequency 
dispersion in the scattering lifetime and their respective mean free paths. This idea is useful because it intuitively explores the 
nonlocality of this type of hidden self-consistent damping for those incoherent fermionic quasiparticles.  
  
Keywords: Reduced phase space; Configuration space; Classical phase space; Mean free path; Collision lifetime; Damping; 
Non-equilibrium statistical mechanics

Introduction

This work is aimed at phenomenologically understanding 
the role of two parameters widely used in non-equilibrium 
statistical mechanics, the mean free path “l” and the 
scattering lifetime “τ”. One calculated and the other used 
in the study of the elastic scattering cross-section “σ”, Both 
parameters are inversely proportional to “σ ” [1-3] (see 
also Figure 1 for a graphical abstract) in two unconventional 
superconductors (strontium ruthenate [4,5] and doped with 
strontium lanthanum cuprate [6-8]) where unconventional 

superconductivity is suppressed by a nonmagnetic potential 
following the Larkin equation [9]. These compounds possess 
different nodal structures that belong to different point 
group representations. In addition, both compounds have 
similar crystal structures although they have different 
stoichiometric/doped composition of the nonmagnetic 
“strontium” in their elementary crystal cells [10-14].

We illustrate the idea by showing some data calculated 
self-consistently and address several macroscopic properties 
that appear numerically, scanning the behavior of the inverse 
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collision lifetime “ 1τ − ”. It is formalized and explored what we 
call “the reduced phase space” (RPS), used in this particular 
case for dressed fermion quasiparticles that are called 
incoherent carriers following a dependence on the doping 
concentration (see for example [15]). All this is made with 
a first neighbors tight-binding procedure. These incoherent 
carriers obey the Fermi-Dirac statistics and their scattering 
lifetime strongly depends on the Fermi energy value and the 
anisotropic Fermi surface average. 

Understand the input frequency window that are needed 
for the calculations in the reduced phase space is crucial and 
plays a fundamental role since the study of the imaginary 
part of the scattering cross-section is a well-established 
methodology [16,17] and it is an instructive computational 
tool that helps to understand the numerical relation between 
the macroscopic and microscopic interpretations of different 
physical phenomena when nonmagnetic disorder is added 
for the two crystals in their superconducting phases.

Figure 1: An Infographic Tale of the 2 Physical Parameters.

The numerical disorder is added with the help of two 
parameters [18]: The dimensionless collision parameter 

( )0

1   F
c N Uπ= where U0 is an impurity atomic potential and NF 

is the density of states at the Fermi level. The other parameter 

is the amount of doping  ( )2
imp

F

n
Nπ

+Γ =  where nimp is the 

impurity concentration. The reduced phase space (RPS) 
found, maps a self-consistent distribution probability 
function always positive for the dressed fermion 
quasiparticles (incoherent carriers) in the two mentioned 
compounds in their superconducting phase as it will be 
shown below. 

On the other hand, the non-equilibrium statistical 
mechanics makes use of the parameters “l” and “τ ”; for 
example, for a gas of dressed Fermi quasiparticles. The play 
between these two parameters, makes it possible to move 
from a complete description of a non-equilibrium state to an 
abbreviated description using a single distribution function 
of one quasiparticle as the one we have obtained [19]. 
Collision elastic regimes for fermionic dressed quasiparticles 
depending on the type of collision in the function 

( )  0 iω ω + + I due to nonmagnetic impurities are three 

[20]:

•	 The unitary collision regime with a maximum in 
 

( )  0 iω ω + + I  at zero frequency where holds the 

relation and the mean free path is “ l ” with 

l a∼  and is obtained from l 1
 1k 1 aF

−
  . “ – is the 

self-consistent frequency”, “ω	− is the real frequency”, “kF 
is the Fermi momentum” and “a – is the constant lattice 
parameter”.

•	 The intermediate collision limit with a nonzero minimum 
in the imaginary function at the center of the distribution 
function and two maxima at real frequencies different 
from zero, where the inequalities and l a≥  
take place.

•	 The hydrodynamic (Born) collision scattering with a null 
imaginary function at zero frequency and two maxima 
in the imaginary part at finite real frequencies following 
the inequalities  and l a  and where self-
consistency can be neglected at very low frequencies. 

In this work, the physical parametrization of the RPS 
is made with the help of five physical parameters: the 
superconducting energy gap at zero temperature “ 0∆ (meV)”, 
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the inverse of the scattering strength “c” (dimensionless 
parameter), the concentration of non-magnetic impurities 
“Γ+(meV)”, the Fermi energy of the dressed quasiparticles 
(incoherent carriers) “εF (meV)” and the first neighbor 
hoping tight-binding parameter “t (meV)”. Therefore, this is a 
tight-binding case that generalizes the isotropic case [18,21] 
adding numerical anisotropy and dispersion in energy (see 
Figure1 for a graphical abstract). The idea of using four 
physical parameters self-consistently ( 0∆ , εF, c and Γ+) as 
a modeling tool in disordered HTSC was introduced and 
pointed out by Profs. J. Carbotte and E. Schachinger using 
isotropic Fermi surfaces in a series of works (check [18,22] 
and references therein).
 

The body of this manuscript is as follows. Section 2 
introduces the reduced phase space. Section 3 analyzes the 
sign of the imaginary self-consistent function and the meaning 
of a hidden damping, additionally links the reduced phase 
space with the phase spaces of nonequilibrium statistical 
mechanics and configuration space of nonrelativistic 
quantum mechanism; and finally; uses numerical values 
from the self-consistent procedure to build several 
phenomenologically disordered phase diagrams for the 
strontium doped La2xSrxCuO4, and the triplet Sr2RuO4. Section 
4 calculates the values for the scattering phase-shift in these 
compounds using the RPS analysis of the previous section. 
Section 5 compares briefly the frequency, mean free path 
and collision scattering lifetime of these two unconventional 
superconductors with those used in the anomalous skin 
effect with singular shapes in the Fermi surface for normal 
metals, and shortly addresses the difficult mathematical 
issue of nonlocality in “l” and “τ ”. Finally, conclusions and 
recommendations are given.

The Role of the “Reduced Phase Space” 
Between Non-Equilibrium Statistical 
Mechanics and Nonrelativistic Quantum 
Mechanics

The two dimensional self-consistent reduced phase 
space (RPS) for dressed fermions (incoherent carriers) is 
built with the pair of coordinates ( ( )ωR , ( )ωI ) and has the 

following properties:
•	 Property 1: “The reduced phase space (RPS) in the 

unitary, intermedium and Born limits has two axis: the 
real axis  and the imaginary axis 

. It serves to map a distribution function of 

dressed fermion quasiparticles, therefor is a fermionic 
space (also could be called incoherent phase space).

•	 Property 2: “Unconventional superconductors [17,23] 

can be also defined as those with nodes/quasinodal 
regions around the Fermi surface with an order 
parameter that has a spin paired dependence (singlet or 
triplet). This property allows to build self-consistently 
different macroscopic phases as happen for the isotope 
3He.

•	 Property 3: “The real part 
 
belongs to the x 

interval ( ),∞ ∞∈ − + , and the imaginary part only to the 
positive y axis ( )0, ∞∈ +  with the function 

always”.

•	 Property 4: “The reduced phase space resembles a 
space where damping is contained in the self-consistent 
imaginary part of the elastic scattering cross-section 
following a relationship that holds between the damping 
and the imaginary part: ”.

The units for the input and output parameters in the 
reduced phase space are the rationalized Planck units where 
always hold that   = kB = c = 1 and input and output units are 
in in milielectronvolts (meV).

Finally, if is incorporated the tight-binding method (TB) 
[24] into the dispersion law, the order parameter and the 
Fermi surface average, considering the group symmetry 
properties (such as parity and time reversal symmetries), 
the RPS opens a window to understand some macroscopic 
properties in these two compounds. Worthy to notice, that 
the use of the tight-binding enriches but also complicates the 
computational level of the self-consistent procedure to find 
the fermionic reduced phase space distribution function, 
making it more computing demanding. 

The Sign of the Imaginary Elastic Cross-
Section for Dressed Fermion Quasiparticles

The inverse of the scattering lifetime is given in normal 
metals and unconventional superconductors by the following 
expresion  [16,17]. In general, the 

mathematical treatment of an external constant potential 
“U0” using the elastic scattering theory in nonrelativistic 
quantum mechanics is a complicated subject [25]. In this 
work, the real part is given in the RPS with the coordinate 

. The imaginary term in the RPS is represented by 
the function ( ) ( ) ( )1  2   ω ω τ ω ω−ℑ =       

 with a hidden self-

consistent damping ( )   0 iγ ω ω + =−ℑ + 

. 

Now, let us bring to the attention some examples that 
address this issue. In first instance, to describe “self-consistent 
damping” in the classical phase space of the non-equilibrium 
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statistical mechanics (NESM), we need the time-dependent 
distribution function “f(t)” using the τ-approximation in the 
Boltzmann equation, where the partial derivative respect to 
time refers to the collision of dressed fermion quasiparticles 
[26] with ( ) ( )0    coll

f ff
t τ

−∂ = −∂
 . If the distribution 

function goes rapidly to an equilibrium situation denoted by 
the function  , the previous expression can be approximated 
by

( ) ( )0
 ( ) 2   0  0  coll
f i f ft ω +∂  + + − = ∂  ,                  (1)

with a hidden self-consistent collision “coll” behavior and a 
damping ( ) ( )1   0  (2 )   iγ ω ω τ ω ω+ − = −ℑ + =−     

. The 

solution of Equation 1 for (t) will depend on the whole set of 
TB parameters 0∆ , εF, c, t and Γ+.

A second example, comes from the configuration space 
in non-relativistic quantum mechanics (NRQM) [27,28]. If 
the equation for the time dependent probability density 

( ) t is obtained with a wave function containing an extra 
exponential term which describes some damping at the 
quasi-stationary level. This can happen for one dressed 
quasiparticle inside an isotropic or anisotropic Fermi 
reservoir as suggested in [27]. The wave function will contain 

quasi-stationary levels of the form . For 

fermionic quasiparticles is known that  [29] with 

a probability density where 0  

denotes the equilibrium case.

For ( ) t in the configuration space [28], the following 

equation holds  [27]. If we again 

look at Equation 1 and rearrange this new expression as a 
partial differential equation with , 
we obtain

( ) ( ) ( )   2   0 0,   
qsd

t i tt ω ω +∂   + ℑ + =   ∂ 


             (2)

where now “qsd” means quasi-stationary damping, and the 
time partial derivative refers to quasi-stationary levels such 
as those that can be originated in an unconventional 
superconductor with strontium from the influence of its 
nonmagnetic atomic potential U0. Equations 1 and 2 are 
identical although refer to different physical processes 

(collision and damping). However, Equation 2 resembles the 
τ-approximation in the kinetic Boltzmann equation, but for 
NRQM. Henceforth, we can define a hidden damping from 
Equation 2 as being given by a coefficient ( )   0   iγ ω ω + = −ℑ + 

where on the self-consistent mechanism depends how long 
will survive the dressed quasiparticle (incoherent state) 
around the atomic potential. We control the physical phases 
in the RPS by learning how to use properly the five 
parameters: the number of dressed fermions, the hoping, the 
strength of the scattering, the zero superconducting gap and 
the disorder.

Now is clear that this analogy links the quasi-stationary 
probability density ( )t  on the configuration space [28] 
and the quasi-stationary distribution function f(t) on the 
phase space [27], one being a classical phenomenon, the 
other a quantum one (see Figure1). We now understand why 
is called a “reduced phase space”. The answer we find is that 
the “lifetime” is the only output parameter, and the “mean 
free path” has to be given by the strength “c” of the strontium 
atomic potential as an input dimensionless number, and 
looking and the distribution functions obtained from the 
imaginary part, several phases can be predicted.

Non-equilibrium “classical or quantum” statistical 
mechanics refers also to phenomena where the damping 
is hidden self-consistently in the distribution probability 
function f(t) or the quasi-stationary probability density , 
near the equilibrium and with a coefficient

( ) ( )   0    0 0 i iγ ω ω ω ω+ +   + = −ℑ + <     .               (3)

Relation (3) means that the imaginary part of the elastic 
scattering cross-section is always positive defined and can 
open the possibility for the quasi-nodal points in the OP such 
as the ones in the Miyake-Narikiyo model [12] where four 
superconducting isolate quasinodal points are symmetrically 
distributed in the first Brillouin zone. A second condition 
in the zero temperature imaginary elastic cross-section is 
derived from the first

 
( )  0 0 iω ω + ℑ + >  .                                         (4)

In order to validate relation (4) in the case of the two 
unconventional superconductors, we discuss several 
calculations in detail. 

We begin with Table 1 showing a few points of the whole 
set of data calculated self-consistently to obtain the Miyake-
Narikiyo tiny gap [30] in the unitary collision regime with the 

five input values  0∆  = 1.0 meV, εF = -0.4 meV, c = 0, t = 0.4 meV 
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and Γ+= 0.05 meV. As can be seen from the second column in 
Table 1 with values taken from the self-consistent solution 
for the function 0 ~ − +F xp vε , the numbers that represent 
the tiny gap are close to zero but always positive (since 1 
meV = 10-3 eV), so the values of the imaginary self-consistent 
elastic scattering cross-section are never zero or negative in 
our calculations when the Fermi energy is negative and very 
small (εF = - 0.4 meV). The smallest number obtained self-
consistently is shadowed gray in the second column of Table 
1.

To complement this, some numbers for the case where 
Sr2RuO4 has point nodes is also showed in the third column 
of Table 1 [31]. The parameter for the Fermi energy is now 
bigger and close to the zero value (εF = - 0.04 meV), but the 
other four TB parameters remain equal to those used in the 
quasinodal case. For the node points situation (Figure 2), 
there are not small values in the imaginary part as seen in the 
third column of Table 1 and in Figure 2, with the minimum of 
the imaginary function shadowed gray for a dilute coalescent 
Γ+ = 0.05 meV.

At this point is good to remember that the Fermi-Dirac 
distribution describes the function of dressed electrons and 
holes on the quasi-stationary quantum energy levels (en and 
where n = 0,1,2…) with

 

1 
( 1)

n f

B

n
k T

f
e

ε ε−
−

=

+

. Therefore, it is 

important to recall that the Fermi energy εF enters as a 
parameter in the function fn, and that the consequence of 
increasing the number of dressed fermion quasiparticles in 
the system results in an increase of the Fermi energy [32] as 
we do to obtain point-nodes in strontium ruthenate [31]. 
Despite strontium ruthenate continues to be part of an 
intense discussion with respect to its OP as expressed 
recently in Curtis M, et al. [33], for the point nodes triplet 
model in the unitary collision regime, Figure 2 shows the 
behavior of the function ( )  0iω ω + ℑ + 

 with parameters: D0 = 
1.0 meV, εF = -0.04 meV, c = 0, t = 0.4 meV and varying Γ+≈ 
(0.05-0.40) meV from dilute to optimal [31]. From Figure 2, it 
can be observed for example, that only for Γ+= 0.05 meV 
there is a noticeable change in slope around the frequency 
value of 1.4 meV (Tc for this compound when samples are 
clear is around 1.5 Kelvin). The other dressed curves show a 
smooth minimum displaced to higher frequencies [31].

The case involving the HTSC La2xSrxCuO4 is more difficult 
to obtain numerically because the real frequency window 
should suffix to locate the normal state-superconducting 
transition point; and in addition; we cannot extend this 
procedure to the antiferromagnetic phase. This is due to the 
existence of gap values that strongly depend on disorder 
[34,35], and this kind of numerical calculation is a difficult 

task since it depends on the Fermi energy value (the number 
of dressed quasiparticles) and is very computing demanding 
task, with real frequencies in a window of 120 meV to 
describe properly the whole behavior of the imaginary 
elastic cross-section part (details of the last statement to be 
published by the authors in a separate manuscript).

One of the peculiarities with the compound La2xSrxCuO4 
is that Tc depends on both the concentration of doped ions 
and the number of CuO2 layers and makes the use of this 
procedure a computational challenge where the initial 
frequency values are not always stable to obtain the hidden 
self-consistency. Similitudes and differences of the two 
compounds using this approach with a small frequency 
window is given in [36,37]. We think of a model composed 
by a gas of fermionic dressed quasiparticles which obey the 
Fermi liquid behavior [38]. 

For La2xSrxCuO4 we show Table 2 and Table 3 with some 
numerical results from [20] for a zero superconducting gap 
with the value D0 =33.9 meV, εF = -0.4 meV, c = 0, t = 0.4 meV and 
Γ+= 0.05 meV using a linear nodal OP model [10,11]. Notice 
in Table 2, that the box shaded gray represents the minimum 
value for the imaginary self-consistent function, which is 
given in Figure 3 in orange color and represents a coalescent 
phase where the nonmagnetic strontium atoms stick together 
in a metallic region and get the quasi-momentum transferred 
from the dressed Fermi quasiparticles, but only for a very 
dilute doping with Γ+ ≈ (0.01 - 0.05) meV represented in 
Figure 3 with the yellow and orange curves [20]. 

In the same Figure 3 is observed a very small displacement 
of the minimum in the imaginary function ( )  0 iω ω + ℑ +   
when frequency values are increased. This behavior is 
notorious in the other compound strontium ruthenate and 
the varying parameter becomes the zero temperature gap as 
was obtained in Contreras P, et al. [38]. But to slightly notice 
the same behavior in the doped lanthanum, for now, we 
show some values taken from Figure 3 in the third column 
of Table 3, where we have also shadowed some numerical 
fluctuations in the real frequency values in gray color at 
the point where the transition occurs, when scanning the 
function from dilute to optimal values of the doping Γ+. 

If the dressed fermionic quasiparticles momentum is 
transferred to the strontium atoms in the crystal lattice, 
sticking together in a coalescing metallic state with an 
almost constant scattering lifetime for the whole set of 
real frequencies, it allows to adjust non-equilibrium low 
temperature data fairly well using the same normal state 
scattering lifetime, but only if the impurity concentration 
is low enough with Γ+≈ (0.01 -0.05) meV. This hypothesis 
was firstly proposed in Rink SS, et al. [39]. In addition, we 
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were able to fit ultrasound and electronic heat transport 
data for bulk crystals of strontium ruthenate at very low 
temperatures with a constant lifetime by properly averaging 
the kinetic coefficients using tight binding parameters, and 
making use of the three sheets of the Fermi surface, thanks to 
what, a self-consistency procedure wasn’t required [40,41].

In Figure 4 we give an intuitive sketch located inside 
the dashed blue rectangle built from Figure 3 on how looks 
like the superconducting part of the phase diagram in the 
reduced phase space for La2xSrxCuO4. We could make it, 
interpreting the results from the imaginary part of the zero 
scattering cross-section and the doping Γ+ is scanned from 
light to optimal values in the unitary collision regime [20]. 

At this point, we remind that all calculations were possible 
thanks to the fact that we added Edwards disorder. A review 
of the work in this direction with the original references can 
be found in Ziman JM [42].

The use of the time dependence (non-equilibrium 
processes) in both functions (t) and  mentioned in the 
previous section is crucial to understand the physical picture 
underlying this approach, that comes from a well-established 
methodology as the elastic cross-section analysis [16-18,39] 
when we look at the numbers obtained in the reduced phase 
space for the lifetime considering the unitary limit. This 
remark gives the title of this manuscript. 

( ) ω ω= R  (meV)
8.51e-

01
8.61e-

01
8.71e-

01
8.81e-

01
8.91e-

01
9.01e-

01
9.11e-

01
9.21e-

01
9.31e-

01

( ) ( )12   t ω− = I Quasi-point 

nodes

8.63e-
08

3.49e-
08

3.54e-
04

1.59e-
05

6.25e-
07

2.21e-
08

5.65e-
04

1.87e-
05

6.74e-
07

( ) ( )12   t ω− = I Point nodes
3.43e-

01
3.43e-

01
3.43e-

01
3.43e-

01
3.43e-

01
3.43e-

01
3.43e-

01
3.42e-

01
3.42e-

01

Table 1: Smallest values of the imaginary elastic scattering cross-section for the miyake-narikiyo quasi-points [30] and the point 
nodes [31] OP. the parameters used are given in the main text, Γ+ = 0.05 milielectronvolts.

( )  ω ω= R  (meV) 33.66 33.71 33.78 33.81 33.86 33.91 33.96 34.01 34.1

( ) ( )12   t ω− = I  line 

nodes

6.06e-02 5.97e-02 5.86e-02 5.75e-02 5.61e-02 5.47e-02 5.56e-02 5.98e-02 6.33e-02

Table 2: Smallest values of the imaginary elastic scattering cross-section for the line nodes op in the unitary limit with a zero gap 
D0

 =33.94 meV and coalescent (dilute) doping Γ+ = 0.05 meV.

Ã+  (meV) 0.01 0.05 0.1 0.15 0.2

( )ω ω= R  (meV) 33.95 33.91 33.9 33.901 33.801

( ) ( )12   t ω− = I  Line nodes 

(meV)

9.63e-03 5.47e-02 1.19e-01 1.89e-01 2.63e-01

Table 3: displacement in the values of the real and imaginary parts of the elastic scattering cross-section observed for the singlet 
linear op when the zero superconducting gap is D0 = 33.94 meV and doping goes from very dilute to an optimal value.
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Figure 2: Points Nodes in the Triplet Model When the Fermi Energy is Very Close to Zero. Data in Table 1 Comes from the Black 
Curve Calculated in Contreras P, et al. [31].

Figure 3: Imaginary Part of the Elastic Scattering Cross-Section in the Unitary Limit for Line Nodes. Data in Table 2 Comes 
from the Orange Curve [20].

Figure 4: Superconducting Part of The Phase Diagram for Strontium Doped Lanthanum Is Sketched Inside The Blue Dashed 
Rectangle From The Analysis of Figure3 In The Reduced Phase Space.

The Scattering Phase Shift 0
 Versus the 

Inverse Scattering Strength C

Since we used the RPS to numerically calculate self-
consistently and study the behavior of several families of 
positive fermionic distribution functions depending on 

disorder and scattering strength, that we called in first 
instance “Wigner macroscopic probabilistic distributions” 
[43,44] and where the energy is conserved in the three 
collision regimes, i.e., the unitary, the intermediate and 
the Born cases. Therefore, we can calculated an important 
property, “the scattering phase-shift” for the two compounds 
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using the equation  [22] and the results obtained from the 
set of distribution functions when considering different 
scattering regimes. Henceforth, we build Table 4 that relates 
the inverse nonmagnetic dimensionless strength c which the 
phase shit .

As we can observe from the second column in Table 4, 
numerically this model shows that the HTSC unconventional 
superconductor La2xSrxCuO4 has a major diversity of phase-

shift values than the triplet superconductor strontium 
ruthenate. This happens when the numerical calculation is 
performed for the TB values mentioned in section 2 for both 
compounds since the singlet compound can be numerically 
found in more regimes, i.e., the unitary, the intermediate and 
the hydrodynamic limits [20], meanwhile the triplet model 
remains most of the time in the unitary and intermediate 
limits.

Strontium 
ruthenate

c values observed from the imaginary part self-
consistently (0.0 for the unitary limit and 0.4 for 

the intermediate scattering limit) [20]

0δ values in degrees calculated for the phase shit from 

the previous column: 90.00° for the unitary regime and 
68.20° for the intermediate scattering limit.

Doped 
strontium 
lanthanum 

cuprate

c values observed self-consistently (0.0 for the 
unitary limit , 0.2 for the intermediate limit, and 

0.4 for the Born regime) [30]

0δ values in degrees found for the phase shit from the 

previous column: 90° for the unitary, 78.70° for the 
intermediate and 68.20° for the hydrodynamic limit.

Table 4: calculation of the phase shift for both compounds using different regimes for elastic collisions.

Frequency Dispersion Relations for the 
Anomalous Skin Effect Versus the Elastic Self-
Consistent Scattering Lifetime

Finally, in order to gain additional credibility in the 
use of the RPS approach with respect to the Boltzmann 
kinetic equation; we conclude with a very short analysis by 
contrasting frequency values with the anomalous skin effect 
[45] and the examples discussed in previous sections. We 
first, give a brief introduction to the anomalous skin effect 
and after that we assemble Table 5 to summarize section five.

Differences between normal and anomalous 
skin effects

In the anomalous skin effect, the equation for the metallic 
impedance changes and the electronic mean free path “l” 
starts to play a role. Let us, summarize the main differences 
between the normal and anomalous skin effect briefly to 
start with [46]. In the normal skin effect, the metallic 
impedance “ζ” has the equation ζ	= Re(ζ) –i Im (ζ) composed 
by equal real resistive and imaginary reactive terms where 
Re ζ = Im 

( )2
2 

 c
πωζ

σ
= . The physical behavior of an 

external electromagnetic field (EMF) on the metal surface is 
to penetrate it and decay as 

 
 ~ 

x
e δ− with an effective 

penetration depth of the EMF given by  
2normal

cδ
πωσ

=  

which does not depend on the mean free path [46].

However, normal metals have a high conductivity “σ” 
when dnormal is small, but at low temperatures the mean 
free path “l” becomes larger and the Ohm law in the local 
form   j Eσ=  cannot be applied. Thus, it is used a non-local 
equation (*) ( ) ( ) ( )  , ´ ´  ´ik kj r k r r E r dr= ∫ where the anomalous 
skin effect is defined by saying that the kernel of the equation 
(*) depends on the mean free path “ ( ), ´  ~ Iikk r r ” [47]. As a 
consequence, the external electric field is non-uniform, and 
since the normal skin effect can be derived from the kinetic 
equation only if the electric field is assumed uniform, the 
kinetic equation in the diffusive limit for a non-equilibrium 
fermionic distribution function has to be solved [47].

The main qualitative difference between normal and 
anomalous skin effects in the impedance equation is given by 
the square root of three in the imaginary part of the 
impedance: ζ	= Re(ζ) – 3  i  Im (ζ). Additionally, the depth 
penetration has a mean free path dependence given by 

3 2 
 

4anomalous
c l

a
δ

πω σ
=

 with  ~1 a , and this dependence 

between the mean free path “l” and the anomalous 
penetration depth is used to plot “ζ”. Otherwise, normal and 
anomalous skin effects can be differentiate sketching (Re ζ)-1 
versus 1/2 σ , where two regions are well defined [46]. One of 
them where the inverse resistive impedance has an 
approximate linear dependence on the square root of the 
conductivity that is the normal skin effect and another where 
the resistive impedance is constant and is called the 
anomalous skin effect [46].
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Geometrical Interpretation of the Singular 
Behavior in the Anomalous Skin Effect

To describe the anomalous skin effect in geometrical 
terms, we say that the anomalous skin effect happens if the 
fermionic quasiparticles lye in a belt of the Fermi surface 
with two geometrical conditions: First, ( ). 0=n  v p  where n 
is a vector normal to the metallic surface; and; Second 
( ) 0 Fpε ε− =  [48]. The singularities in ( ) pε  will become 

important for the anomalous skin effect region when the 
radius 1

normalδ
   and that happens when the dispersion 

law for fermionic quasiparticles has terms of the type 
0 ~ F xp v− +ò  +(higher order terms in momentum) [48] 
which is possible if the fermionic quasiparticles obey a non-
quadratic energy spectrum. In that case ( ). 0=n  v p is not 
the equation of a plane in the phase space and the belt is not 
a planar curve [48]. In this case the geometry of the belt is a 
strong function of the geometry of the Fermi surface and the 
direction of the vector n. As a consequence of this, the type of 
connectivity changes in two different ways: either a closed 
loop can appear or disappear in the belt (O-type singularity), 
or a bridge between two loops can rupture or rejoin (X-type 
singularity) [49]. As a consequence, non-equilibrium 
“kinetic” characteristics of a metal such as the anomalous 
skin effect, or the sound absorption have singularities of the 
“0” or “X” types and the change in the shape of the belt gives 
“local information” about the Fermi surface. Kaganov MI and 
Avanesyan G [48,49] called the p-point responsible for this 
type of change in connectivity “a critical point pc”, and 
showing that they are located “along curves of parabolic 
points”. Therefore, the singularities of 0 and X types can only 
occur only for those metals whose Fermi surfaces have 
parabolic points (called also zero curvature lines [49]).

If the metal is isotropic, then there will be an effective 

conductivity given by the equation ( )
  effective

ia
k

σσ =


 with 

 ~1 a  because the number of fermion quasiparticles that 
participate in the anomalous skin effect is approximated by 

 ~  effectiven nδ


 [46]. Thus, one can say that the effective 
conductivity when the Fermi surfaces are isotropic depends 

on the mean free path as 1


 , i.e., ( )
  effective k
σσ ∝


 and 

depends “only” on the characteristics of the fermionic 
spectrum [46]. To finalize this brief summary, it is important 
to mention that the diffusive reflection in the anomalous skin 

effect is given by including the term  .  
f∂
∂v r in the Boltzmann 

kinetic equation, where ( )f=v p is the velocity of a fermion 
quasiparticle with p a quasi-momentum in the crystal lattice 
[47], that can be mitted only in the case when the mean free 
path is much smaller than the distances along which the 
electric field changes significantly, in other words, nonlocality 
is neglected and the skin effect is in the normal regime when 
the resistive and reactive parts of the impedance are equal 
and the conductivity does not depend on the mean free path.

Anomalous Singular Skin Effect “L” versus 
Incoherent (Dressed)Superconducting “1/ (2τ)”

A link with the previous sections arises naturally because 
we seek an analogy between the phase and the configuration 
spaces and the existence of a kernel in the integro-diferential 
equations that include nonlocality of the kinetic parameters 
l and τ. As pointed out in Kaganov MI, et al. [47] “to find out 
the explicit form of the kernel k (ik) the kinetic equation for 
the non-equilibrium part of the electron distribution function 
must be solved”. Table 5 shows several frequency dependent 
dispersion relations for “l” and “τ “by comparing the two 
effects: the anomalous skin effect in normal metals with 
Fermi surfaces with parabolic points [48], with the reduced 
phase space for unconventional superconductors. In Kaganov 
MI, et al. [48], it was found theoretically the impedance in 
the hydrodynamic limit   1ωτ for the anomalous skin 
effect in thin metallic films by giving some examples using 
complicated 3D Fermi surfaces to average the conductivity 
and the impedance. We found that the real part of the 
impedance strongly depends on two parameters: the mean 
free path and the shape of the belts on each Fermi surface 
studied (the shape of the singular belts makes used of the 
topological generalized Lifshitz transitions [47]). 

It was noticed in Kaganov MI, et al. [48] that by doing 
an appropriate integration, two physical behaviors can be 
distinguished in the anomalous real part of the impedance 
(one of them called a singular behavior, check Figure 6 in 
Kaganov MI, et al. [48] and Table 1 Kaganov MI, et al. [47] 
for the type of singular points [49] and the impedance 
dependence on the mean free path). Hence, it was stated in 
Kaganov MI, et al. [47] that the solution for the impedance 
and conductivity depend sensitively on the ratio of spatial 
and temporal dispersions of the kinetic parameters “l” 
and “τ”. Therefore, we state in this work, that the solution 
for the imaginary function ( )    0   iω ω + ℑ +  (or the inverse 
scattering lifetime) depends sensitively on the ratio of spatial 
and temporal dispersions for “l” and “τ” as well, since for the 
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analysis of the previous sections, we needed the unitary 
collision limit where the mean free path l a , being a the 
lattice parameter, but requiring this time a self-consistent 
calculation of the inverse scattering lifetime ( )1/  τ ω
, although it might be no obvious in this case, because the 
existence of the kernel is not clear.

In addition, the frequency window required in 
the reduced phase space for the two unconventional 
superconductors happens if 0

1 ~   4 Äω τ ∼  (around 4 meV 
for strontium ruthenate and 120 meV for the doped with 
strontium lanthanum cuprate). Moreover, the tight-binding 
parameters ( ), Ft ò influence strongly the Fermi surface 
averages and their values are able to distinguish different 
OP physical phases as it was done by comparing the singular 

belts in the anomalous skin effect [37]. Therefore, the relation 
dispersion in the scattering lifetime that holds for the unitary 
collision regime in the reduced phase space might be written 
as stated in the introduction.

( )( )    ~1 ùωτ ω                                         (5)

To conclude, it is important to recall that recently, the 
anomalous skin effect with this type of anomalies in the 
Fermi surface has gained attention among the research 
community. Mainly for microwave applications [50,51] and in 
the study of nonlocality phenomena in solids, as recently was 
theoretically and experimental realized for the compound 
PdCoO2 [52,53].

Kinetical Physics 
Condensed Matter 

Phenomena.
To study in: Theoretical methods of 

solution

Temporal 
dispersion 
relation for 

the scattering 
lifetime

Spatial dispersion 
relation for the 
quasiparticles

Anomalous skin effect 
and surface impedance 

with Fermion 
quasiparticles.

Normal metal thin samples.
Kinetic Boltzmann 

Equation in the 
τ-approximation.

  1 ωτ

Hydrodynamic 
limit

 l δ  δ  is the 

anomalous skin 
depth, the mean 

free path is l

Strange metallic phase 
in two unconventional 

superconductors

Superconducting ceramic thin 
samples for the doped HTSC 
and crystal bulb samples for 

the ruthenate

Numerical self-
consistent equation 

( )  0 iω ω + ℑ +   in the 

reduced phase space.

( )( )   1 ω ωτ ω ∼

Unitary limit

l a∼  a is the 

lattice parameter

Table 5: Dispersions for the anomalous skin effect versus the two unconventional superconductors.

Conclusion and Recommendations

This work was aimed at introducing with some numerical 
examples the importance of two physical parameters, the 
mean free path and scattering lifetime, both widely used in 
non-equilibrium statistical mechanics and a brief analysis of 
what we have called the reduced phase space for the real and 
imaginary parts of the elastic scattering cross-section, using 
two unconventional superconductors in the unitary limit as 
examples, when the fermionic quasiparticles are dressed by a 
non-magnetic impurity potential, for three cases of the order 
parameter, the quasi/nodes, point nodes and line nodes 
using a 2D anisotropic TB self-consistent parametrization 
with nearest neighbor hoping. 

Despite, we focused our study to the unitary regime, 
we took into account a discussion involving three scattering 
regimes in the imaginary part of the elastic cross-
section. We have defined a “hidden damping parameter” 

( )   0   iγ ω ω + = −ℑ +   in “the imaginary part of the elastic 
scattering cross-section”, being the last always positive, 
i.e., ( )"   0 0" iω ω + ℑ + >   obtained using a self-consistent 
numerical procedure. Therefore, that kind of self-consistent 
hidden behavior might be of interest for researchers who 
study the statistical physics of non-equilibrium phenomena 
(classical or quantum) from a macroscopic point of view.

To conclude, several examples were analyzed in sections 
2 to 5. Sometimes using tables and figures from numerical 
calculations, but also giving analogies between the classical 
phase space of the non-equilibrium statistical mechanics, the 
configuration space of nonrelativistic quantum mechanics, 
and the reduced phase space (see Figure 1 for a graphic 
summary). The study of the imaginary part of the elastic 
cross-section not only is important for these two models of 
unconventional superconductors with strontium, but also 
is of interest for the study of fermionic and bosonic trapped 
gases at very low temperatures as it has been addressed [54].
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