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Abstract

Machine learning has become a global trend in artificial intelligence and computing. Its application cuts across different 
industrial verticals. The application of machine learning algorithms in material science and related fields is becoming a topic 
of interest to many researchers. However, unlike other fields such as health, sports, communication, and agriculture, the use 
of machine learning in material science is still in its ideation stage. This mini-review is designed to explore some of those 
machine learning tools that have been applied to material science, the importance of machine learning in material science, 
and the challenges limiting the implementation of machine learning techniques in material science. One of the major findings 
from this review is that the limited availability of material science data is a major challenge to the implementation of machine 
learning algorithms. A specialized material science data repository was recommended.
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Abbreviations: ML: Machine Learning; CNN: 
Convolutional Neural Networks; ANN: Artificial Neural 
Network; DNN: Deep Neural Network; BMI: Body Mass Index; 
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Introduction

Material science is a field of science that studies 
the relationship between the structure, properties, 
and applications of materials [1]. Professionals in this 
field are called material scientists. The importance of 
materials in engineering design and application cannot be 
overemphasized [2]. Engineering materials are needed to 
bring into reality various design concepts and ideas in the 
mind of engineers thereby turning them into useful products 
for the benefit of mankind and society by improving the 

standard of living and contributing to economic growth. In 
recent years, material science has become a growing field of 
study which is partly due to the high cost of materials and 
scarcity of certain materials due to global population growth 
and demand. These have necessitated material engineers 
to research alternatives by synthesizing new materials that 
are smart and more affordable than conventional materials. 
This can be achieved by altering the structures of materials 
through physical, thermal, or chemical treatments. The 
altered structure thereby presents new properties that 
are desired in specific operation conditions and service 
conditions [3,4].

During the design of engineering structures and 
machines, one of the design problems is material selection 
[5]. The engineer or scientist is faced with a wide range of 
materials and diverse properties to select from. Similarly, the 
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availability of properties of different materials will further 
assist the material scientist with the necessary information 
required to synthesize new materials for new application 
areas. There are over 300,000 different materials on Earth 
comprising metals, non-metals, plastics, ceramics, and 
composites. A huge dataset will be required to capture all 
these materials and their properties. This has led material 
science researchers to diversify into the fields of data science 
and machine learning techniques in material science. The 
purpose of this review is to establish the extent of the work 
done, and the various machine learning tools and techniques 
that have been deployed in material science studies.

Machine Learning Tools and Techniques

Machine learning (ML) is a growing concept in the world of 

computing and artificial intelligence and has been viewed as 
one of the drivers for the actualization of Industry 4.0 [6]. 
The focus of ML is to develop computer systems that can 
learn from data. The process of machine learning begins with 
the development of an algorithm based on collected data, 
thereafter, the algorithm is trained to identify and understand 
relationships and patterns in the dataset. The algorithm or 
model is then tested with a similar dataset before it is finally 
deployed in the specific area of application. The process of 
training the model is referred to as the learning process. 
ML models can be broadly classified into four main groups 
based on how the models are trained or how the models 
learn as shown in Figure 1. The classifications are supervised 
learning, unsupervised learning, semi-supervised learning, 
and reinforcement learning [7].

Figure 1: Classification of ML models [7].

In supervised learning, labelled datasets are used to 
train the model. This is done so that the model can recognize 
the relationship between the input and the outcome [8]. 
Examples of supervised learning include the use of regression 
models and classifications. Unsupervised learning is the 
use of unlabelled datasets in the training of the model or 
algorithm [9]. When both labelled and unlabelled datasets 
are used in training the model, it is called semi-supervised 
learning. The procedure for implementing semi-supervised 
learning is called self-training. It requires that the model be 
trained with a small labelled dataset and then be allowed 
to predict an unlabelled dataset. Meanwhile, reinforcement 

learning is based on a trial and error procedure that enables 
the algorithm to learn from the positive and negative 
feedback it gets from trying [10].

Some of the tools and techniques used in machine 
learning include Convolutional Neural Networks (CNN), 
Artificial Neural Network (ANN), and Deep Neural Network 
(DNN). ANN is an AI system trained to function like the 
human brain by using interconnected nodes in an organized 
structure just like the human brain. ANN process is often 
referred to as deep learning. CNN is an ANN framework 
designed to recognize and process images based on pre-
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trained patterns. CNN models can find patterns in images for 
object recognition. DNN is a sophisticated ANN framework 
that contains some hidden layers to enhance the capability of 
the model to process very complex problems such as natural 
language processing and complicated image processing [11].

Data in ML Processes

Data is critical to the success of any ML model. Data 
identification is the first step in solving an ML problem. Over 
the years, machine learning models have been developed 
to handle different data types including; qualitative, 
quantitative, time series, controlled, and uncontrolled data. 
Qualitative data are either nominal (categorical) or ordinal 
(showing order) while quantitative data is based on set 
values such as body mass index (BMI). Furthermore, time 
series data is a type of data that is collected over some 
time with equal time intervals. Controlled data are data 
whose outcome can be determined by varying some sets of 
parameters while uncontrolled data is one whose outcome 
cannot be determined by any manual variation. Other 
types of data include historical data, experimental data, 
and simulated data [6]. Material science data are mainly 
quantitative but can be either controllable (such as the time 
of heat treatment) or uncontrollable (such as the depth of 
the impression of the indenter on a metal surface). It can also 
be experimental or simulated. The types of data generated in 
material science are presented in Table 1.

Data Name Data Type
Hardness Scalar (uncontrolled)

Temperature gradient Time series
lattice structure Categorical

SEM analysis Image
Density Uncontrolled

Thermogravimetric analysis Time series
x-ray diffraction analysis Spectral

Composition Categorical
Fatigue strength Scalar

Pyrometry Time series
Melting point Scalar

Table 1: Material Science data types [12].

Areas of Application of ML in Material 
Science

The use of machine learning and other computational 
techniques in material science has given rise to a sub-domain 

in material science called material informatics [13]. This 
becomes necessary because the analytical and experimental 
approach to material design is time-consuming, costly, and 
requires huge labour input. Several researchers have studied 
how ML tools and methods can be applied in material 
science. In this part of the review, several such works was 
highlighted.

Material Properties

Stergiou, et al. [7] reviewed how machine learning 
methods have been incorporated into material property 
prediction and optimization of processes. It was reported 
that ML methods can be used in predicting the thermal, 
mechanical, and optical properties of materials. Some of the 
techniques reported to have been used for thermal prediction 
include gradient boosting (GB) regression, Ridge regression, 
random forest (RF) regression, and support vector regression 
(SVR) techniques. Meanwhile, NN, ANN, and DNN techniques 
have been used to predict the mechanical properties of 
materials. Specifically, the study highlighted the use of the 
NN technique in determining the modulus of elasticity and 
rupture of wood with different moisture content [5,14].

Material Development

Picklum and Beetz [13] studied a novel machine-
learning algorithm that was designed to assist material 
scientists in the design and development of new materials. 
The ML model called MATCALO enables users to generate 
queries on certain requirements that should be met by the 
new material and search the framework based on this query. 
The framework then generates a hypothesis. The hypothesis 
generated is a processing chain that indicates the step-by-
step process required to synthesis the material with the 
desired properties as well as the parameters involved. The 
framework was designed to improve the turnaround time 
and reduce experimental costs associated with new material 
development.

Microstructure Identification

Microstructures are important pictographs in material 
science that are used to determine the phases present in 
a material. These phases are often associated with the 
material properties [15]. Oftentimes after microstructural 
examination, material scientists, most especially students 
may find it difficult to interpret the microstructure obtained. 
By training ML models with thousands of microstructural 
images, it is possible to use ML algorithms to interpret 
the phases present in a microstructural image. This was 
demonstrated in Figure 2 [16].
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Figure 2: Phase classification in steel using CNN framework [16].

Formation of Multi-Component Alloys

The formation of multi-component alloys (MCA) is 
aimed at optimizing specific properties of the components 
of the alloys thereby making such alloys more suitable for 
specific areas of application. Usually, in conventional alloys, 
there is a trade-off in certain mechanical properties. For 
example, to improve the strength of mild steel, there might 
be a reduction in its ductility [17]. Conversely, MCAs have 
superior mechanical properties in comparison with the 
conventional alloy formation process. While the conventional 
alloy involves a solid solution, MCA can occur in different 
phases such that the target property is improved without 
negatively impacting other properties. Furthermore, the 
conventional method involves parametric phase selection, 
however, due to the complexity of MCA formation, parametric 
phase selection which is hinged on Hume-Rother rule may 
not be a perfect fit. Choudhury, et al. [16] reported the use 

of a CALPHAD model to predict phase formation for an MCA 
system. With this, it was posited that ML algorithms can be 
vital in developing multi-component alloys [18].

Other Areas

Several other areas of application of machine learning 
can be found in the literature. This includes; additive 
manufacturing process [19], material design [20,21], process 
optimization [22], prediction of material quality [23], metal 
forming processes [24], nanomaterials [25,26], and heavy 
production process.

Contemporary Studies

This section tabulates contemporary studies on the 
application of machine learning to material science as 
presented in Table 2.

Author ML Technique Area of application Type of Study
Vasudevan, et al. [27] Material design Review

Sparks, et al. [18] CALPHAD* Structural materials Review
Schmidt, et al. [28] Support vector machine model Solid-state materials Review
Jennings, et al. [4] Genetic algorithm Material discovery Experimental

Ramprasad, et al. [29] Probabilistic models Materials informatics Review
Penumuru, et al. [30] Support vector machine/ machine vision Material classification Experimental

Cruz, et al. [24] ANN, FEM** Process of metal bending Experimental and 
simulation

Stoll and Benner [31] Small punch test Mechanical properties prediction Experimental

Table 2: Previous works on the application of ML techniques in material science.
*Calculated Phase Diagram, **Finite element methodology
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Challenges and Future Directions

Limited Data Availability: the backbone of machine 
learning is the availability of data. Training a model usually 
involves the use of a large dataset to enable the model to 
identify the pattern in the dataset and understand minute 
variations in the different data samples. This is to ensure that 
when new data is brought to the model to identify, the model 
can predict the outcome correctly. This becomes the main 
limitation of the application of machine learning to material 
science as there is no sufficient data on the over 300,000 
materials known Sun, et al. [32]. Future works should focus 
on creating repositories for material scientists all over the 
world to archive data from various experimental works. The 
data can be kept in silos capturing various process points 
in material science. This data collated over time can be 
large enough to train models that can be helpful in material 
synthesis, processing, and characterization [33].

MCA-Based Models: as discussed earlier, several 
challenges have been identified in the synthesis of multi-
component alloys despite their huge benefits in material 
science and engineering. One of which is the non-suitability 
of the use of parametric phase selection. The use of a machine 
learning algorithm which will be based on the material 
properties of the component elements can be a solution to 
the synthesis of MCAs. Further research can be conducted to 
develop deep learning models that can be used to predict the 
properties of MCAs based on those of their components.

Furthermore, more experimental and simulation-based 
studies on the application of machine learning to material 
science are needed as most of the reviewed works are 
reviews. Some of the studies have explained the theories that 
can assist in the development of machine learning models 
that can be used in material science. The actual development 
of such models is needed to affirm the benefits of machine 
learning to material science [29].

Conclusion

Machine learning is a growing field globally and has gained 
application across different industrial verticals including 
health, sports, agriculture, defense, and governance. The 
application of machine learning to material science will cut 
down the time, cost, and labour associated with laboratory 
experiments. Machine learning can be applied to all aspects 
of material science including material synthesis, processing, 
treatment, and characterization. However, the major pitfall 
is the insufficient availability of material science data that 
can enable the development of machine learning models. It 
is recommended that harmonization of experimental works 
by material scientists and archiving in data repositories can 
help forestall this shortcoming. 
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