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Abstract

In the present investigation the effect of heavy metal stress on photosynthetic performance of Spirodela polyrhiza was studied. 
The photosynthetic activity was measured by using chlorophyll a fluorescence analysis. S. polyrhiza were treated with various 
concentrations of HgCl2 (0, 0.2, 0.4 and 0.6 µM). After 48-hour, various fluorescence parameters (Fm. Fv/Fm and PIcsm) and 
chlorophyll a content were measured. Results show that with increasing the metal concentration, fluorescence parameters and 
chlorophyll a content were decreased. The study reveal that heavy metal decreased the photosynthetic activity of S. polyrhiza.

Keywords: S. polyrhiza; Fm; Fv/Fm; Chlorophyll a fluorescence; Performance index

Abbreviations: Fm: Maximum fluorescence; Fv/Fm: 
Quantum yield; PIcsm: Photosynthetic performance index 
per cross section; Chl a: Chlorophyll a; Hg: Mercury; PSII: 
Photosystem II

Introduction

In nature plants are contentiously faced with biotic 
and abiotic stresses. Through industrialization and other 
anthropogenic activities heavy metals such as, Hg, Cu, Zn, Pb, 
Cd, Co, Ni, Fe, As etc. are introduced into environment [1]. 
In plants heavy metal stress disturb function of important 
enzymes and proteins. Heavy metal stress also interferes 
with various physiological and metabolic functions of plants 
such as photosynthesis, respiration etc. [2]. On the other 
hand, increased level of heavy metals enhance the reactive 
oxygen species amount which trigger oxidative stress [3]. 
Mercury (Hg) is a highly toxic element for the plants without 
any beneficiary effect [4] and it is five to ten time more 
toxic than Cu [5]. The decrement in Chlorophyll and other 
pigments is one of the major effect of heavy metal stress [6]. 

At multiple sites including the OEC, the PS II reaction center 
and the antenna of PSII, Mercury hinders photosynthesis 
electron transport [7]. 

Chlorophyll a fluorescence is an important tool to 
study the effects of various environmental stresses on 
photosynthesis [8]. It is a key approach to analysing PSII 
function and its response to environmental changes and 
other growth conditions [9].

Duckweeds is a group of small aquatic plant species 
found in all around the globe and mainly reproduces by 
vegetative budding found on frond [10]. Duckweed is 
monocotyledon and placed in family Lemnaceae [10]. The 
Lemnaceae family comprises four genera, Lemna, Spirodela, 
Woiffia, and Wolffiella [11]. Duckweeds have a great ability 
to tolerate adverse condition. Therefore, species having high 
potential for phytoremediation [12].

Some chlorophyll parameters such as Fv/Fm, Fm 
and PIcsm and Chlorophyll a content was analysed in the 
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Spirodela polyrhiza grow under various concentration Hg.

Materials and Methods

S. polyrhiza used in this investigation were collected 
from a freshwater pond in Udaipur City, India. The fronds 
were acclimatized in 10 % Hoagland’s growth medium in 
laboratory condition as per OECD 221(6500–10000 lux 
light irradiance, 14-h photoperiod, and 25/20°C day/night 
temperature [12]. After 1 week of acclimatization of plants 
in medium, healthy, similar-sized fronds (about 3 g) were 
treated with Hg+2 treatment was induced by incorporating 
the various concentrations of HgCl2 (0, 0.2, 0.4, 0.6 µM) in the 
medium (Figure 1).

Figure 1: Fronds of S. polyrhiza under normal (a) and Hg 
stress (b) condition.

Chlorophyll a fluorescence was measured using plant 
efficiency analyser (Handy PEA fluorimeter, Hansatech 
instruments Ltd. England) after 48 hrs. of heavy metal 
treatment. Before measurement duckweed fronds were dark-
adapted for 50–60 min at 26°C. Thereafter, Chl a fluorescence 
signals were analysed with the Biolyzer v.3.0.6 software 
(developed by Laboratory of Bioenergetics, University of 
Geneva, Switzerland) [13]. Appropriate numbers of replicates 
were taken and the experiment was repeated three times to 
ensure the results. Abbreviations, formulas, and definitions 
of the JIP-test parameters used in the current study are Fv/
Fm, Fm and PIcsm.

Results and Discussion

Chlorophyll fluorescence often represents the function 
of photosynthetic complex [14,15]. A decline in PSII quantum 
yield represented by Fv/Fm was observed during the heavy 
metal treatments at successive concentrations. When plants 
grow under a favorable environment, Fv/Fm is kept in a 
stable range but it decreases, under the adverse environment 
[16].

The rapid decline in Fm (Figure 2a) would suggest a 
change in the ultrastructure of the thylakoid membrane, 
affecting the electron transport rate. The reduction in PSII 
photochemical efficiency could be partially attributed to the 
destruction of antennae pigments [17]. With the decline in 
quantum yield and, therefore, reduction in electron transport 
rate, a gradual increase in the pH will become established 
across the thylakoid membrane, as a result of the heavy 
metal impact on the photosynthetic apparatus. Maximum 
fluorescence, defines the maximum number of reaction 
centers reduced or closed by a saturating light pulse. In 
general, the greater the plant stress, the fewer open reaction 
centers available, and the Fv/Fm ratio is lowered [18]. 
Maximum Fluorescence level decreased with the increase 
in Hg concentration and found to be minimum in case of 0.6 
µM Hg, 0.4 and 0.6 µM Hg concentration almost showed the 
same pattern.

 Quantum yield (Fv/Fm) decreased with increase of 
Hg concentration having no significant difference between 
the 0.4 and 0.6 treatments but with comparatively lower 
values from control (Figure 2b). Exposure of S. polyrhiza 
to Hg concentration decreased the Fv/Fm ratios, which 
characterize the functional activity of the photosynthetic 
apparatus. The inactive reaction center of PSII that can result 
in photoinhibition might have resulted in lower Fv/Fm under 
different concertation [19].

Figure 2: Effect of Hg stress on maximum fluorescence 
(Fm)(a) and quantum yield (Fv/Fm) ;(b).
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Photosynthesis performance rate of the S. polyrhiza 
fronds decreased rapidly with the successive Hg 
concentration but it is minimum in plants treated with 0.6 
µM Hg as compared to control (Figure 3a). Performance 
index (PI) is considered to be a good indicator of stress, 
which is the combined measurement of the density of RC, 
maximum energy flux reaching PSII reaction centres and the 
electron transport. The significant decreases in PI in heavy 
metal stress reflect an inefficient performance of PSII [20]. 
Our experiment showed that chlorophyll a content was 
reduced with successive concertation (Figure 3b), which was 
primarily caused by fast reduction in the reaction centers 
than LHC of PSII. Changes in Chl a content are also considered 
an indicator for relative photosystem stoichiometry that help 
us determine the changes in the size of the light-harvesting 
antenna of PSII and the PSII amount [21].

Figure 3: Effect of Hg stress on performance index (PIcsm); 
(a) and chlorophyll a content (b).

Conclusions

In conclusion, Heavy metal decreased the florescence 
yield due to restrictions of electron flow at oxidizing 
side of PS II. Increasing concentrations of Hg decreased 
the photochemical efficiency (Fv/Fm), photosynthetic 
performance index (PIcsm) and Chlorophyll a concentration. 
Thus, Hg stress significantly inhibit the photosynthetic 
function of S. polyrhiza.
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