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Abstract

The framework of canonical quantization of quantum field is given by Lagrangian (not Lagrangian density) formulation to avoid 
the problem of transfer physical quantities from 4–dimensional space–time to 3–dimensional position space (3–dimensional 
hypersurface with normal vector dt).
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Introduction

The canonical quantization of quantum field in curved 
space–time [1-3] is a good question when we want to develop 
the quantum field theory from flat space-time to curved 
one. There are well defined Klein–Gordon [3-5] and Dirac 
theory [6] in curved space–time. The Lagrangian density 
formulation of quantum field in curved space–time have to 
deal with the problem of transfer 4–dimensional space–time 
to 3–dimensional position space physical quantities when we 
use the Legendre transformation from Lagrangian density to 
Hamiltonian density, where 3–dimensional position space 
means 3–dimensional hypersurface with normal vector 
dt. There are lots of investigations of quantum field theory 
in curved space–times from the path integral method [5] 
and WKB approach [7], etc. The formal theory from sheaf 
quantization to path integral quantization hints us that 
we can just deal with 4–dimensional space–time physical 
quantities in the formulation of Lagrangian and Hamiltonian 
[8], which divides the space–time into 2 parts, position space 
and time. And we have to note that this paper avoids dealing 
with Lagrangian density, the Lagrangian density formulation 
divides the space–time to 4 parts, positions x, y, z and time 
t, this is the origination of intricate for some traditional 
canonical quantization scheme. Based on the Lagrangian and 
Hamiltonian formulation in local coordinates, the canonical 

quantization of Klein–Gordon, Dirac, Maxwell and Yang–Mills 
theories in local coordinates are self–consistently shown 
in this note. This formulation of canonical quantization of 
quantum field in curved space–time might enhance our 
understanding of quantum cosmology, Unruh effect and 
black hole entropy.

The second section gives us a formal framework of 
canonical quantization of quantum field in curved space–
time. The third section discusses the canonical quantization 
of Klein–Gordon theory in curved space–time. The fourth 
section deals with canonical quantization of Dirac theory 
in curved space–time. The fifth section shows the canonical 
quantization of Maxwell theory in curved space–time. The 
sixth section talks about canonical quantization of Yang–Mills 
theory, especially the ghost fields, in curved space–time. We 
end this paper by seventh section of discussion.

Framework of Canonical Quantization of 
Quantum Field

Hamiltonian and Lagrangian

The measurable quantities in quantum theory have the 
formalism
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0̂ ,ψ ψ′ (2.1)

where 0̂  is the operator of the corresponding measurable 
quantity, ψ is quantum state in Hilbert space. For any 
mechanical quantity, the average value of the measurable 
quantity is real

0̂ ,Rψ ψ ∈  (2.2)

the mechanical quantity corresponded operator is Hermitian

ˆ ˆ0† 0.= (2.3)

Further, the Hamiltonian as one of mechanical operator, has 
the formula

†,H aa≈


such that
0, .total totalH E E Rψ ψ = ≥ ∈



(2.5)

In quantum field theory (second quantized), the state 
vector of quantum field theory ψ  in huge–Hilbert space is 
evolved by Schrödinger equation

i H
t
ψ

ψ
∂

=
∂



(2.6)

where the Hamiltonian H


is function of canonical position 
κϕ and momentum kπ

( , ),k kH H ϕ π
 

= (2.7)

the Hamiltonian H


is mechanical quantity operator of 
energy. The position space V  is a 3–dimensional hypersuface 
of 4–dimensional space–time manifold M  with normal 
vector dt , νθ is volume density of manifold M′′ .

det ( ),a
ν µθ θ=  (2.9)

gµν  are components of metric tensor

2 ,d s g dx dxµ ν
µν= − ⊗  (2.10)

of manifold M  with signature ( , , , )    . The canonical 
position kϕ and momentum kπ are q–number valued field 
operators. The Hamiltonian and Lagrangian are related by 
Legendre transformation

(2.11)

There is Euler–Lagrange equation related with the 
Lagrangian L



0.
( )

L L
µ

µ κ κϕ ϕ

          
 (2.12)

For bosonic field, there is canonical commutation relation 
between canonical position and momentum

'[ ( , ), ( , )]K x t x t ikκ κκϕ π δ 

 , (2.13)

for fermionic field, there is canonical anti–commutation 
relation

 ' '( , ), ( , )k x t x t ik κκκ
ϕ π δ 

 , (2.14)

where k is the number of components of bosonic or fermionic 
fields. For example, the fermionic Dirac spinnor ψ in 4–
dimensional space–time has 4 components, then

4.k  (2.15)

Schrödinger and Interaction Pictures

In Schrödinger picture, the Hamiltonian can be chosen 
as time free operator, and the canonical position κϕ  and 
momentum κπ can be chosen as function of position

( ), ( ).k k x xκ κϕ ϕ π π 
  . (2.16)

The time evolution matrix in Schrödinger picture can be 
derived from Schrödinger equation

0( )
0( , ) .iH t tS t t e 



 (2.17)

For interaction quantum field, the Hamiltonian can be written

0 int ,H H H 
  

(2.18)

where 0H


is free Hamiltonian gathered by kinematic terms, 
the intH



is interaction Hamiltonian and gathered by 

interaction terms of Lagrangian

int intH L 
 

. (2.19)

The effects of kinematic terms and interaction terms can 
be divided by interaction picture, and the wave function in 
interaction picture is defined as follow

0
0( ) ( ) .iH tt e tΨ ψ É




(2.20)

Then, the evolution equations of operator and wave 
function in interaction picture are
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0[ , ]dO i H O
dt






 (2.21)

( ) ,I
Ii H t

t
Ψ

ΨÉ








(2.22)

where
0 0

int( ) ( ) ,iH t iH tH t e H t eÉ


 

 

 (2.23a)

0 0
0 0

iH t iH tH e H e
 

 

, (2.24b)

with
I .H LΙ

 

   (2.25)

The time evolution matrix in interaction picture 0( , )U t t  is

   0 0( , ) ,t U t t tÉ ÉØ Ø (2.26)

and
0 0( , ) ( ) ( , ).i U t t H t U t t

t É







(2.27)

The time evolution matrix U satisfy the relations as follow
0 0( , ) ,U t t I (2.28)

1 0 1 0( , ) ( , ) ( , )U t t t t U t t , (2.29)

1
0 0 0( , ) ( , )† ( , )U t t U t t U t t   . (2.30)

The Dyson series expansion of evolution matrix U is [9]




0

0 0

0

2

1 1 1 2 1 2

( , ) exp ( )

( )1 ( ) ( ) ( ) ( ) ...
2!

t
It

t t
I I It t

U t t T i dt H t

ii dt H t dt dt T H t H t



  

      


   



 
 (2.31)

where T  is time ordered operator. The relation between S  
and U  time evolution matrix is

0 0 0 0 0( ) ( ) ( )
0 0( , ) ( , )iH t t iH t t iH t tU t t e S t t e e    . (2.32)

Canonical Quantization of Klein–Gordon 
Theory in Curved Space–time

Klein–Gordon equation describes the relativistic scalar 
particles (spin–0). The Lagrangian of Klein–Gordon theory 
in 4–dimensional curved space–time M is

3 2 2( )
2KGL d x g mµνν

µ ν
θ

φ φ φ   


, (3.1)

where g µν are components of inverse metric. The indices µ, 
ν and a, b here are coordinate and orthogonal frame indices

, 0,1, 2,3 , , , ,t x y zµ ν    (3.2a)

, 0,1, 2,3.a b   (3.2b)

The Lagrangian (3.1) hints that the energy–momentum–
mass of Einstein relation in curved space–time should be 

2 ,g p p mµν
µ ν   (3.3)

where the pµ is 4–momentum

( , , , ) ( , ) ( , ).t x y z t t qp p p p p p p p pµ   
  (3.4)

with
1,2,3 , , .q x y z  (3.5)

The canonical positions of Klein–Gordon theory in curved 
space–time are

 , ,k a
µϕ φ θ  (3.6)

the corresponding canonical momentums are

 3 ,0t
k d x g µ

ν µπ θ φ    (3.7)

In quantum field theory, the scalar field is spanned by 
annihilation and creation operators locally

 
3

. † .
3

1( )
(2 ) 2

ip x i p x
p p

p

d px a e a eφ φ φ
π ω

     
 

 



 (3.8)

and the orthogonal frame coefficients still with the usual c–
number valued

, .a
a
µ

µθ θ  (3.9)

To satisfy the canonical commutation relation between 
canonical position and momentum of Klein–Gordon theory

' '[ ( ), ( )] ,k x y iκ κκϕ π δ 

  (3.10)

the commutation relation between creation and annihilation 
operators of scalar field should be defined

† 3 3[ , ] (2 ) ( ),p pa a p pπ δ   

  (3.11)

and the energy of particle.

The Hamiltonian of Klein–Gordon theory can be derived 
from Legendre transformation of Lagrangian (3.1) 

 3 2 2 .
2

tt qq
KG t t q qH d x g g mνθ φ φ φ φ φ 

        


(3.12)

The Hamiltonian of Klein–Gordon theory can be 
represented by annihilation and creation Operators as

 
3

† †
3

1 .
4 (2 ) p pKG t p p

d pH p a a a a
π

  
 

 



 (3.13)
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The field operator of scalar (3.8) can rotate to interaction 
picture

 
 

 

3

3

. † .

1
22

,

KG

t
KG

iH t

p

iHip x ip x
p p

d px e

a e a e e

Ιφ ωπ







   

 








 (3.14)

and
 

   
3

. † .
3

1 .
22

ip x ip x
p p

p

d px a e a eΙφ ωπ
 
   

 



 (3.15)

The scalar field as follow is written in interaction picture, 
and the interaction picture index I is omitted, by default.

Proof: Prove equation (3.10).

The equation (3.10) gives us that

 
3 3[ ( ), ( )]

[ ( ), ( )] [ ( ), ( )]

t td y g x y d y g

x y x y

µ µ
ν µ ν

µ µ

θ φ φ θ

φ φ φ φ   

  

  

 

   

     (3.16)

The label (3.17) should follow the equation (3.17), and the 
equation (3.17) is

3 3
3 3 3

3 3

3
( . . ) 3 .( )

3

3 3

1 1[ ( ), ( )]
(2 ) (2 ) 2 2

[ , ]
2(2 )

( ) ,
2 2

t

p p

qt
qqt i p x p y ip x y

q p p
p

qt qt
q q

p p

d p d pd y g x y d yd p

ig pd pg ip a a e d y e

ig p ig p
d y x y

µ
ν µ

ν
ν

ν ν

θ φ φ
π π ω ω

θ
θ

ωπ

θ θ
δ

ω ω

 



   


  

    

  

 

      

 



 

 

 

(3.17) similarly, we have

3 [ ( ), ( )] .
2

qt
qt

p

ig p
d y g x y νµ

ν µ

θ
θ φ φ

ω
   



   (3.18)

The rotation
0 0

0 0
iH t iH tH e H e
 

 

can reveal the interaction picture of fields. Then for Klein–
Gordon theory the commutation relation (3.10) between 
canonical position and momentum is proved. □
Proof: The Hamiltonian can be written as (3.13).
The Hamiltonian of Klein–Gordon theory is

3 2 2 3

2

[ ( )(
2 2

)] ( )( ) ( )( ),

tt qq tt
KG t t q q t t t

qq
t q q q q

H d x g g m d x g

g m

ν νθ θ
φ φ φ φ φ φ φ φ

φ φ φ φ φ φ φ φ φ

     
  

        
  

           

        



  

(3.19) where

 
3

. † .
3( ) ,

(2 ) 2
q ip x ip x

q p p
p

ipd px a e aφ
π ω

   
   

 



  (3.20)

 
3

. † .
3( ) ,

(2 ) 2

ipt
ip x ip x

t p p
p

d p px a e a eφ
π ω


   
   

 



  (3.21)

At first, we choose the terms to analyze

 

   

3 2

3 3 3
2 ( ).

3 3

3
3 2

3 3.22

( )
2

(2 ) 2 (2 ) 2 2

0.
2 2(2 )

tt qq
t t q q

tt qq i p p x
t t q q p p

p p

tt qq
t t q q p p

p

d x g g m

d p d p d x g p p g p p m a a e

d p d x g p p g p p m a a

ν

ν

ν

θ
φ φ φ φ φ φ

θ
π π ω ω

θ
ωπ

  

 

 

 



      
 

   
  






       

    


    


Similarly, we have

3 2( 0.
2

tt qq
t t q qd x g g mνθ φ φ φ φ φ φ      

          (3.23)

And

 

 

3 2

3 3 3
2 † ( ).

3 3

3
3 †

3 3.24

(

( )
2

2 ) (2 ) 2 2 2

,
2 2(2 )

tt qq
t t q q

tt qq i p p x
t t q q p p

p p

tt
t t

p p
p

d x g g m

d p d p d x g p p g p p m a a e

g p pd p d x a a

ν

ν

ν

θ
φ φ φ φ φ φ

θ
π π ω ω

θ
ωπ

  

 

 

 



      


   
 

       

   





 

then the Klein–Gordon Hamiltonian is

 
3

3 † †
3 .

2.2(2 ) p

tt
t t

KG p p p
p

g p pd pH d x a a a aνθ
ωπ

 


  





(3.25)

The Hamiltonian also can be written

 3 2 2 ,
2

t q
KG t qH d x g g mµ µν

µ µ
θ

φ φ φ φ φ      


 (3.26) 

and

 
   

3
† †

3

33 † †

2.2(2 )
1 2 .
4

p

p

t
t

KG p p p
p

t p p p

g p pd pH a a a a

d p p a a a a

µ
µ νθ

ωπ

π

  

 





  



  



□ (3.27)

Proof: From equation (3.14) prove equation (3.15).
The commutation relation

 † † ,
p pKG KG tH a H p a 
 

 

 (3.28)

 22 † † ,
KG p KG t pH a H p a 





 

 (3.29)
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  (3.30)

n + n +
KG p KG t pH a =(H +p ) a , 

 

 (3.31)

and the Taylor expansion of the unitary transformation


  

KG-iH t 2 2 3 3
KG KG KG

1 1
e =1-iH t- H t -i H t +...

2 3!

gives us that

† †
-iH t -iH t ip tKG KG te = e e ,p pa a
 

   (3.32)

such that

† †KG KG t-iH t -iH t ip t
p pe a e =e a .

 

   (3.33)

Similarly, we have

KG KG t-iH t -iH t -ip t
p pe a e =e a .

 

   (3.34)

Then, from equation (3.14) we can derive the scalar field in 
interaction picture (3.15)

3
. † .

3

1( ) .
(2 ) 2

ip x ip x
I p p

p

d px a e a eφ
π ω

 






 
    
 

  (3.35)

Canonical Quantization of Dirac Theory in 
Curved Space–time

As another kind example, we choose the Dirac theory in 
4–dimensional curved space–time M to analyze

µ
µ νψγ ψ θ ψ ψ θ3L̂ ( ) ,a

Dirac ad x i m = ∂ − ∫ (4.1)

where ψ is Dirac fermions (spin–1/2) in curved space–time. 
The canonical positions are

{ , , },k a
µφ ψ ψ θ= , (4.2)

the corresponding canonical momentum are

3
ˆ

{ ,0,0}.a tDirac
k a

k

L
i d x νπ ψγ θ θ

φ


  


 (4.3)

Theψ  can be expanded by creation and annihilation 
operator as follow

 
 

 

3

1,23

. † .

1
22

,s

s

s s ip x s ip x
p p

d px
p

b u e d v e

ψ ψ ψ
ωπ

   

 





 




  



 
 (4.4)

the anti–commutation relation is defined

   † † 3 3, , (2 ) ( ) .r s r s rs
p p p pb b d d p pπ δ δ   

 

    

then the anti–commutation relation of the canonical position 
and momentum (2.14) for Dirac theory in curved space–time 
can be derived

' '( ), ( )} 4 ,{ x y iκ κ κκφ π δ 

  (4.5)

The free Hamiltonian 0H


of Dirac theory is derived from 
Legendre transformation

  .3 a q
Dirac a qH = d x i m νψγ θ ψ ψ ψ θ


    (4.6)

Similar with Klein–Gordon theory in curved space–time, the 
free Hamiltonian of Dirac theory in curved space–time can be 
expressed by creation and annihilation operators

 † †3 s s s s
Dirac t p p p ps

1H = d p p b b d d ,
2

   



   (4.7)

and the (4.4) can rotate into interaction picture

 
 

 

3

1 1,23

. † .

1
22

.

s

s s ip x s s ip x
p p

d px
p

b u e d v e

ψ
ωπ

 

 







 
 (4.8)

Proof: The reason why (4.5) and (4.6) are written should be 
proved.
The Lagrangian of Dirac theory in curved space–time is

3ˆ ( ) ,a
Dirac aL d x i mµ

µ νψγ ψ θ ψ ψ θ = ∂ − ∫  (4.9)

The Euler–Lagrange equation of Lagrangian (4.9) is the Dirac 
equation in curved space–time when we choose canonical 
position { }k iφ ψ=

i ( )a
a mµ

µγ ψ θ ψ∂ =  (4.10)

Substitute the right and left parts of equation (4.4) to 
equation (4.10) give us that

   
. .

0,
. .

s sm p m p
u p v p

p m p m
σ σ

σ σ
                 

(4.11)

the solutions of equation (4.11) are

σξ ση
ν

σξ ση

. .
( ) , ( ) ,

. .

s s
s s
i is s

p p
u p p

p p

   
   = =
   −   

(4.12)

where
1 2 1 21 0 1 0

, , , .
0 1 0 1

n nξ ξ
       
                 
       

 (4.13)

Proof: Please prove the anti–commutation relation (4.5) of 
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canonical position and momentum of Dirac theory in curved 
space–time

{ ( ), ( )} 4 .k k kkx y iφ π δ′ ′=
 

 (4.14)

The anti–commutation relation of fermions creation and 
annihilation operators gives
us that

    
    

    

3

3

,

,

, .

t a
a

t a
a

a

i d y x y

i d y x y

x y

ν

ν

θ θ ψ ψ γ

θ θ ψ ψ γ

ψ ψ γ

 

 








 

 

 

   (4.15)

We choose the first part to analyze

    

   
  

   
     

     

3

3 3
3

3 3

. .†

,

3 3
3

3 3

. .†

,

3
3

3

,

1 1
2 22 2

,

1 1
2 22 2

,

. 2
22

t a
a

i p x p yt s s r r a
a p p

s

i p x p yt s r s r a
a p p

s

t b av
a b

p

i d y x y

d p d pi d y
p p

b u b u e

d p d pi d y
p p

b b tr u u e

d pi d y tr p eip x y

ν

ν
γ

ν
γ

µ
µ

θ θ ψ ψ γ

ω ωπ π

θ θ γ

ω ωπ π

θ θ γ

θ
θ γ θ γ

ωπ

 













 













   

 

   

 



 

 

 

   .i

Similarly, we have

    3 , 2 ,t a
ai d y x y iνθ θ ψ ψ γ    

and

    3 , 4 .t a
ai d y x y iνθ θ ψ ψ γ   



Canonical Quantization of Maxwell Theory 
in Curved space–time

  In Feymann gauge, we deal with the Maxwell Lagrangian 
terms with gauge fixing condition as follow

µν µ
µν µ νθ

3 2
ax

1 1
L̂ ( ) ,

4 2M well d x F F A = − − ∂  ∫ (5.1)

where ìA is electro–magnetic 4–vector potential (spin–1) 
and the gauge strength tensor

.F A Aµν µ ν ν µ= ∂ − ∂  (5.2)

The Euler–Lagrange equation for canonical position νA of 
Maxwell Lagrangian is

0.A Aµ ν ν µ
µ µ∂ ∂ − ∂ ∂ =  (5.3) 

Then the equation is derived

0,Aµ
µ ν    (5.4)

the equation (5.4) tells us that the free photon in curved 
space–time is mass free

µp 0.µp   (5.5)

The second quantized canonical positions of quantum 
electrodynamics in curved space–time are

{ , },k aA µ
µφ θ=  (5.6)

the corresponding canonical momentums are

3{ ,0}.t
k d x Aµ

νπ θ    (5.7)

The gauge 4–potential of electro–magnetic field Aµ  can be 
expanded as

3

3

, . , * † .
1,2 , ,

1
(2 ) 2

( ),
p

r ip x r ip x
r p p r p p r

d pA (x)=A A

a e a e

µ µ µ

µ µ

π ω

ε ε



   

   

  




 

 


 (5.8)

where

µ
ν νµΑ Α=g , (5.9)

and the commutation relation between creation and 
annihilation operators of gauge 4–potential Aµ should be 
defined

π δ δ 

 3 3
, ,[ , ] (2 ) ( ),p r p r rra a p p+

′ ′ ′ ′= − (5.10)

The canonical commutation relation between canonical 
position and momentum of Maxwell theory

φ π δ 

[ ( ), ( )] 2 ,k k kkx y i′ ′= (5.11)

gives us that

µ
µ ν

µ µ
µ ν µ ν

θ

θ θ

 

   

3

3 3

[ ( ), ( )]

( ), ( )] [ ( ), ( )] .

t

t t

A x d y A y

A x d y A y A x d y A y

+

− + + −

− ∂ =

− ∂ − ∂

∫
∫ ∫ ∫

(5.12)
We choose the first term to analyze

https://medwinpublishers.com/PSBJ
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µ
µ ν

ν

µ
µ

θ

θ
ωπ

ε ε



  

 

 3

3
3

3

, * .( )
,

[ ( ), ( )]

2(2 )

.

t

t

p

r r ip x y
r p p

A x d y A y

d p p
i d y

e i

− +

− −

− ∂ =

−

=

∫

∫

∑

(5.13)

Then, we have

3[ ( ), ( )] 2 .tA x d y A y iµ
µ νθ− ∂ =∫
 

 (5.14)

The gauge 4–potential can rotate to interaction picture

µ µ µε ε
π ω

   





3
, . , * .

1,2 , ,3

1
( ) ( ).

(2 ) 2
r ip x r ip x

r p p r p p r

p

d p
A x a e a e− +

== ∑ +∫  

(5.15)

Canonical Quantization of Yang–Mills 
Theory in Curved Space–time

  The Lagrangian of Yang–Mills theory in curved space–
time is

3 1ˆ ( ) ,
4

a a
YM aL = d x F F i g t mα µνα α α µ

µν µ µ νψ γ γ Α θ ψθ
 
     
  

  

(6.1)
where the α is gauge group index, αt are generators of 
SU(N) group. After the R(î ) gauge fixing term being added

21
( ) ,

2
Aµ α
µξ

− ∂  (6.2)

the ghost fields αc and αc− should be added to cancel the 

effects of gauge fixing term, the total Lagrangian of Yang–
Mills theory in curved space–time should be BRST (Becchi, 
Rouet, Stora and Tyutin) invariant [10-12]

µ α
µ

µ α α αβγ µ α β γ
µ µ ν

ξ
θ

3 21ˆ ˆL [ ( )
2

( ) ( ) ]

YM T YML d x A

c c gf c A c

−

− −

= + − ∂ +

∂ ∂ + ∂

∫ (6.3)

αβγf  is the structure constant of SU(N) group.

F A A gf A Aα α α αβγ β γ
µν µ ν ν µ µ να= ∂ − ∂ +  (6.4)

The total Lagrangian of Yang–Mills theory can devide into 
kinematic and interaction parts

0 0
ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ

YM-T Dirac,i Maxwell FP Gluon FPIL =L +L =(L +L )+(L +L +L ),α α
É  (6.5)

where ˆ
GluonL describes the three and four gluon self-

interactions in curved space–time, the Lagrangian

3ˆ ( )FPI vL g d xf c A cαβγ µ α β γ
µ θ−= ∂∫  (6.6)

describes the ghost–boson–anti–ghost interaction in curved 
space–time. The canonical quantization of Dirac theory and 
Maxwell theory in curved space–time are shown, except that 
Dirac Lagrangian with index i and Maxwell Lagrangian with 
index α . The free Lagrangian of ghost fields is

3
0

ˆ ( )FP vL d x c cµ α α
µ θ    (6.7)

Ghost fields are Grassmann number valued, to exchange 
the adjacent ghost fields a minus symbol should be added. 
Then the expansion formulation of ghost fields is

 
   

3
. † .

3

1 ,
22

ip x ip x
p p

d pc x d e d e
p

α α α

ωπ
   



(6.8)

 
   

3
. † .

3

1 .
22

ip x ip x
p p

d pc x e e e e
p

α α α

ωπ
 



    (6.9)

The canonical momentum of ghost fields is
3 3

3 . .

3
( ) ( ),

(2 ) 2

t
t ip x ip xv

v p p

p

d xd p ip
d x c x d e d e

w
α α αθ

θ
π

− − +−
∂ = −∫ ∫  



3 3
3 . .

3
( ) ( )

(2 ) 2

t
t ip x ip xv

v p p

p

d xd p ip
d x c x e e e e

w
α α αθ

θ
π

− − +−
∂ = +∫ ∫  



The anti–commutation relations between canonical positions 
and momentums are found

3{ ( ), ( )}t
vc x d x c y iα β αβθ δ−∂ =∫

 

 (6.10)

3{ ( ), ( )}t
vc x d x c y iα β αβθ δ− ∂ = −∫

 

 (6.11)

The free Hamiltonian of ghost fields is
3

3
† †

3

) ( ) ]

( ).
(2 )

t q
FPO t q

t p p p p

H = d x[( c c c c

d p p e d e d

α α α α

α α α α

π
  

       






 (6.12)

There are commutation relations
0FP p t p[H , e ]= -p e ,α α

 



 (6.13)

0FP p t p[H ,d ]=-p d ,α α
 



 (6.14)

and
† †

0FP p t p[H ,e ]=p e ,α α
 



 (6.15)

† †
0[ , ] .FP p t pH d p dα α

 



  (6.16)

https://medwinpublishers.com/PSBJ


Physical Science & Biophysics Journal8

De-Sheng Li. Canonical Quantization of Yang-Mills Theory in Curved Space-time. Phys Sci & 
Biophys J 2023, 7(1): 000247.

Copyright©  De-Sheng Li.

The equations (6.13), (6.14), (6.15) and (6.16) derive that

0 0 ,
tiH t iH t ip t

p pe e e e eα α
 

 

 

0 0
ˆ† ,

tiH t iH t ip t
p pe e e e eα α



 

 

0 0 ,
tiH t iH t ip t

p pe d e d eα α
 

 

 

0 0
ˆ ˆ† ,

tiH t iH t ip t
p pe d e d eα α
 

 

Discussions and Conclusion

Yang-Mills theory is the theoretic framework of 
Standard Model (SM) of particle physics with gauge group 

LSU(3)×SU(2) ×U(1) . The general relativity is geometry 
theory of gravity with curved space-time. The second 
quantized Yang-Mills theory with classical gravity theory 
gives us the quantum field theory in curved space-time. 
The canonical quantization of Yang-Mills theory in curved 
space-time has interesting theoretical meaning and maybe 
experimental insights. The canonical quantization of Klein–
Gordon, Dirac, Maxwell and Yang–Mills theories based on 
Lagrangian and Hamiltonian in local coordinates gives us 
self–consistent canonical quantization framework. From 
local analysis to the global analysis of quantum field theory 
is interesting. The behaviors of quantum field behind the 
black hole event horizon and singularity are theoretically 
important to probe the self–consistency of quantum field 
in curved space–time. The relations between quantum field 
theory, simplistic geometry and quantum statistic should be 
researched further.
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