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Abstract

We introduce the scheme of compressed sensing based on tensor-network machine learning, which enables to compress and 

communicate information through the generative tensor-network states. The state Ψ   is first obtained by unsupervised 

learning of tensor network, which characterizes the set of training images. With  Ψ  and a small amount of pixels from a 

specific image that is to be sent, one can obtain a projected state Ψ  , from which the whole sent image can be reconstructed. 

The key problem of selecting pixels from a specific image is solved by investigating the entanglement in the state Ψ  .    
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Introduction

Compressed sensing [1] is a significant scheme for 
classical data compression by sampling. Consider the 
following scenario. Alice wants to send a piece of classical 
information {x}, e.g., an image of hand-written digit “3” 
consisting of N pixels, to Bob. She intends to send only very 
little M (M < N) pixels, denoted by {xsent}, to Bob by classical 
communication. They need to find a protocol so that, after 
receiving the M pixels, Bob can reproduce the hand-written 
image “3” as perfect as possible.

The tensor-network (TN) [2-6] is a powerful quantum-
inspired computational tool for machine learning [7]. The 
idea is first to map an image to a quantum state, by associating 
the n-th pixel xn (0 ≤ xn ≤ 1) of the image to a qubit state,

 ( ) ( ) ( )cos / 2 0 sin / 2 1 .n n n nx s x x xπ π→ = +

In this way, an image with pixels {x} = (x1, x2, · · · ) is 
mapped to a separable quantum state ( ) n ns xϕ = Π .

TN Machine Learning based Compressed 
Sensing

Now consider that we have a set of images in the training 
set. We would like to get a tensor network state Ψ  to represent 

this class of images, say, the hand-written images “3”.

Let ( ), ,i n is x nϕ = Π where ( ) ( ) ( ), ,, cos / 2 0 sin / 2 1 ,i i n i ns x n x xπ π= +
 

be the state with respect to the ith image in the training set. In 
the generative tensor network machine learning algorithm 
proposed in [7], the quantum state Ψ  is obtained by 
minimizing the negative log-likelihood defined by
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where the summation Σi goes over all the training images. 

The idea of compressed sensing based on tensor-
network machine learning is to encode and communicate the 
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information by implementing designed projections on the 
state Ψ  obtained by the unsupervised tensor-network 
machine learning algorithm [7]. Instead of sending all the 
pixels of a hand-written image “3”, Alice sends only the pixels 
{xsent} to Bob by classical communication. Although Bob does 
not have the information about the rest pixels, he knows that 
the image sent by Alice is a hand-written “3”, namely, it is 
characterized by the quantum state Ψ . In other words, the 

rest information of { } { } { } { }( )rest sent restx x x x=  is encoded in 

Ψ .

To recover { }restx , Bob projects Ψ according to { }sentx ,

{ }
( ) /

sent
n

n
x x

s x C
∈

Φ = Π Ψ  

with C a normalization constant. Here, { }sentx should be 
selected so that Bob can reconstruct the rest of the pixels 
{ }restx  from Φ  as perfect as possible by sampling on Φ  
in terms of tensor network machine learning.

Therefore, to send a given image, Alice first trains Ψ
by the unsupervised tensor network machine learning 
algorithm [7], so that Ψ  represents the probability 
distribution of a huge amount of information about the 
training set of images. Ψ  is called a Born machine since the 
probability of each piece of information is the square of the 
corresponding coefficient in Ψ  [8]. Then to send a specific 
piece of information (image), she chooses to send Bob the 
pixels, with which the uncertainty of the rest of the pixels 
in the probability distribution will be minimized. The full 
information { }x is efficiently compressed to a small part of 
the image { }restx  and the Born machine Ψ .

The key problem here is how to select the pixels { }sentx  
for given M. In the standard compressed sensing scheme, 
one may randomly choose M pixels from the N pixels of the 
image. The sampling can be compressed since the randomly 
selected pixels approximately lead to averagely distributed 
frequencies, while an image in the frequency space is 
normally sparse.

However, based on the tensor network machine learning, 
one can do better compressed sensing. The main idea is 
that, since the state Ψ  contains the information about 
the correlations (quantum entanglement) among the pixels, 
one may simply select only the representative pixels that are 
strongly correlated with the other ones, thus giving rise to a 
quantum inspired sampling protocol based on entanglement 
and the post-selections of measurements.

Based on the entanglement of Ψ , { }sentx  should be so 

selected such that the uncertainty of { }restx  will be minimized 

from the probability distribution given by the Born machine. 
Given { }sentx , the conditional probability distribution of 

{ }restx  is 

{ } { }( ) { }
( ) 2| | |

rest
n

rest sent
n

x x
P x x s x

∈
= Π Φ

The task is to find the M pixels { }sentx that minimize the 
Shannon entropy,

{ } { }( )
{ }

{ } { }( )| |
rest

rest sent rest sentShan

x

S P x x InP x x= − ∑
Consider the single-site entanglement entropy with respect 
to the n-the qubit state

ˆ ˆlnent
n n nS Trρ ρ= −

ent
nS  quantifies the information of the rest of the system that 

will be gained if one has the information of the nth qubit. 
Now Alice chooses the n th pixel, where n  =arg maxn ent

nS so 
that Bob will gain as much information as possible from one 
sent pixel. In this way, one has the so called entanglement-
ordered sampling protocol in selecting [ ]{ }sentx [9]: i) 
calculate the single-site entanglement entropy ent

nS of all 
qubits from the N-qubit state ( )NΨ  and find the qubit that 
has the maximal ent

nS , i.e., n  = arg maxn ent
nS , ii) calculate its 

dominant eigenstate ns


 from the reduced density matrix 
of the n th qubit, ˆnρ  ; iii) project the n -th qubit of ( )NΨ  
to obtain the (N −1)-qubit state, ( ) ( )1 /nN s N CΨ − = Ψ



with C the normalized constant; iv) record the positions of 
these qubits if M qubits have been projected, and transfer 
the pixels at these positions of the image to Bob. Note that 

( )N MΨ − = Φ . Otherwise, go back to Step i) with 
( )1NΨ − .

In short, one selects the pixels in the order of 
entanglement. To obtain better accuracy for reconstructing 
gray-scale images, the pixels [ ]{ }restx  are generated by 
locating the separable state with maximal probability,

[ ]{ } { }
( )

2
arg maxrest

nnx
x s x= Π Φ ,

i.e., each projective basis ( )ns x  is the dominant eigenstate 
of the corresponding single-site reduced density matrix 
of Φ . Here, it should be emphasized that the order of 
projections in such entanglement-ordered sampling protocol 
is solely determined by the entanglement properties of the 
generative matrix product states. It does not depend on the 
specific images to be sent.
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As a simple example of such entanglement-ordered sampling 
protocol, let us consider the following four-qubit state,

2 2 1 3( 01 10 ) ( 01 10 )
2 2 2 2
2 6 2 60101 0110 1001 1010 .

4 4 4 4

Ψ = + ⊗ +

= + + +

Such a state can describe a dataset of four images (0, 1, 0, 
1), (0, 1, 1, 0), (1, 0, 0, 1) and (1, 0, 1, 0), with the probabilities 
P = 1/8, 3/8, 1/8 and 3/8, respectively. If Alice wants to send 
two pixels and encode the rest two in the state, the pixel 
that Alice should firstly choose is obviously the first (or 
the second) pixel, since the first two qubits are maximally 
entangled, namely, one of the pixels can be determined by 
knowing the other pixel. The second pixel Alice chooses 
should be the third or the forth one. These two qubits are 
entangled but not maximally entangled. Hence, knowing one 
of them will gain certain, but not the full, information of the 
other. Any way, the best choice for Alice is to send the first (or 
second) and the third (or the forth) pixels to Bob.

From the view of entanglement-ordered sampling 

protocol, one has that Sent 1 2 ln 2 0.693ent entS S= =  , and 
 

3 4
1 1 3 3 0.562.
4 4 4 4

ent entS S In In= = − −  Therefore, Alice chooses 

the first or the second pixel. Since the reduced density 
matrices 1 2ˆ ˆ 2Iρ ρ= =  with I the 2 × 2 identity, Alice decides 

to measure the first qubit by the measurement operators 
0 0  or 1 1 . In either case, the resulting three-qubit state 

will be ( ) 1 33 ( 01 10 )
2 2

xΨ = ⊗ +  with x = 0 or 1. In the 

second iteration, Alice has 2 0entS = and 3 4 0.562ent entS S=  . 

Hence, she decides to send the third (or forth) pixel.

Conclusions

We have introduced a novel compressed sensing 
approach by combining the ideas of compressed sensing, 
quantum communication and unsupervised tensor network 
machine learning. One key step is to train the state Ψ
by the unsupervised tensor network machine learning 
algorithm, so that the targeted piece of information can be 
encoded with minimal distance to the state Φ  obtained 
by projecting Ψ  in a designed way. Another key step is 
to select the pixels in the order of entanglement from Ψ . 
These results provide new possibilities for processing real-
life data by secure quantum communications.
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