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Abstract

Purpose: To evaluate how heterogeneity of the target dose affects cell survival in the target and biologically effective dose 
(BED) depending on the number of fractions ( ).
Methods: Effect of dose non-uniformity on the probability of cell survival in the target volume is studied by using the linear-
quadratic model. In this work we compare cell killing for different fractionation schedules under the assumption that the 
nominal biologically effective dose   is fixed.
Results: It is theoretically shown that in the case   the probability of cell survival in the target decreases with increasing   for 
an arbitrary ratio , where   denote variance and mean of the target dose, respectively. This result is valid for an arbitrary 
distribution of the target dose. To demonstrate dependence of BED on   and , we computed BEDs by using DVHs for 57 
clinical cases of early-stage, non-small cell lung cancer. The computed BEDs demonstrate potential increase in cell kill for the 
considered cases when  is increased from 5 to 20 for a fixed .
Conclusion: Small variations in the target dose (i.e., ) can significantly reduce BED in Stereotactic body radiation therapy 
(SBRT) and stereotactic radiosurgery (SRS). The magnitude of decrease in BED can be reduced by increasing . The obtained 
results indicate that moderate hypo fractionation with   can yield higher BED as compared to the frequently used SBRT 
schedules with five or fewer fractions.
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Abbreviations

TCP: Tumor Control Probability; LQ: Linear-quadratic; BED: 
Biologically Effective Dose; MU: Monitor Units; PTV: Planning 
Target Volume.

Introduction

Since the studies by Webb and Nahum [1], Webb, et al. 
[2], it has been established that uniform dose maximizes 

tumor control probability (TCP) if average dose in the target 
volume is fixed. According to a prior study by Brahme [3], 
heterogeneity of the target dose (measured by its standard 
deviation) should be within 3-5% of the mean dose to attain 
acceptable treatment outcome. The conclusions of the 
above-mentioned studies were obtained by using the linear-
quadratic model (LQ) for cell killing by radiation [4,5]. In 
the LQ model the probability of survival ( S ) is a function 
of several parameters including target dose, radiosensitivity 
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of irradiated cells and number of fractions ( fN ) (e.g., see 
[5,6]). To compare different fractionation regimens in the 
LQ framework, one can use biologically effective dose (BED). 
When the target dose D is uniform, the corresponding BED is 
defined as (e.g., [5-8])

                                    

2

( / )f

DBED D
N α β

= + ,                              (1)

where parameters α  and β characterize radiosensitivity of 
the irradiated cells. In turn, the probability of survival and 
tumor control probability can be expressed as 

        exp( )S BEDα= −  and 0exp( )TCP N S= − ,           (2)

where 0N denotes initial (i.e., before commencement of 
radiotherapy) number of malignant cells in the treatment 
target (e.g., [9-11]). 

Equation (2) implies that, in the case of uniform target 
dose, different fractionation schedules with the same BED 
are iso-effective (radiobiologically equivalent) because 
they yield the same S and TCP. Consequently, in order to 
transition from a reference regimen with refD and ,f refN  to 
another schedule with D and 

fN  while preserving TCP, one 
can use the following equation: 

               

2 2

, ( / ) ( / )
ref

ref ref
f ref f

D DBED D D
N Nα β α β

= + = +  .                 (3)

Since in practice target dose is always non-uniform due 
to the need to spare normal structures, different treatment 
schedules can be characterized by a nominal BED defined as 

                   

2

( / )nom
f

DBED D
N α β

= + ,                                  (4)

Where D denote the average target dose. Note that 
the probability of survival is dependent on both D and 
dose variations in the target volume. As a result, treatment 
regimen with the same nomBED  are not generally iso-effective 
when the target dose is non-uniform.

 
The main objective of this work is to establish how 

probability of survival depends on number of fractions for 
a given radiotherapy plan (including beam energy, gantry 
angles, monitor unit for each beam MLC leaves positions 
etc.) under the condition of fixed nomBED . The impetus for our 
study was twofold. First, it was previously shown that in the 
case of SBRT, small variations in the target dose can cause 
significant reduction in the corresponding BED and TCP (e.g., 
[12,13]). As a result of recent adoption of SBRT for different 
anatomical sites (e.g. [14-16]), it is clinically important to 
determine whether varying number of fractions can reduce 

the effect of dose non-uniformity on probability of survival 
and TCP for hypofractionated treatments. Second, because 
numerical calculations by Wiklund, et al. [12] indicate 
that increasing 

fN  can indeed lead to increased TCP for
nomBED const= , it is important to establish whether this result 

is dependent on the dose distribution in the target.
 
Because replanting can be time consuming and labor 

intensive, it is interesting to consider plans which are 
different in two parameters only – number of fractions and 
total number of monitor units (MU). As number of fractions 
varies between the plans, MU must also vary if nomBED  
is fixed (see Eq. (4)). For a reference treatment plan with

,f f refN N= , let ( )reff D  and refD  denote the probability dose 
distribution and average reference dose in the target volume, 
respectively. Since only changes in total MU and fN  are 
allowed, the target dose distribution ( )f D  for an arbitrary 

fN  satisfies the following relationship:

                                ( ) ( )reff D cf cD= ,	                         (5)

where 

                                         
refD

c
D

=                                          (6)

Equations (5,6) and nomBED const=  are employed 
in this work to assess changes in the survival probability 
as a function of fN . The main result of this study is the 
analytical proof that for a realistic dose distribution in the 
target volume, the probability of survival of malignant cells 
averaged over the distribution of the target dose always 
decreases with increasing number of fractions.

The structure of our work is as follows. The employed 
radiobiological model is described in Sections 2.1 and 2.2. 
The analytical proof that for an arbitrary distribution of 
the target dose the corresponding probability of survival 
decreases with increasing fN , is contained in Section 2.3. 
Examples of numerically calculated BED for different fN  
and variance of the target dose are presented in Section III. 
Clinical implications of the obtained results and conclusions 
of our study are included in Section IV. 

Theory

Probability of Survival and BED in the Case of 
Non-Uniform Dose 

Consider first a course of radiotherapy with fN
treatment fractions, (uniform) dose per fraction d and total 
dose fD N d= . In the LQ model, the probability of survival 
for irradiated cells is (e.g., [5,6])

https://medwinpublishers.com/PSBJ
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2

exp( ) exp( )
f

DS D dD D
N
βα β α= − − = − −

                   
(7)

Suppose that PTVV denotes the planning target volume 
(PTV). In the case of heterogeneous target dose, let ( )V D

denote volume of the target that receives a dose equal to or 

greater than a given dose D. The ratio ( ) / PTVV D V  is a function 
of dose and is referred to as (cumulative) dose-volume 
histogram or DVH [17]. From the definition of DVH it follows 
that the difference d

( ) ( )
d
DVH

DVH D DVH D D D
D

− + ∆ ≈ − ∆ 
 
 

equals 

relative volume of the PTV with dose ranging between D  
and D D+ ∆ . Consequently, the probability of survival 
averaged over the dose distribution in the target is	

                     

,max

,min

2 dexp( ) d
d

tar

tar

D

fD

D DVHS D D
N D
βα= − − −∫

, 	          (8)

where 
,mintarD  and 

,maxtarD denote minimum and 
maximum doses in the PTV. Note that the minus sign 
before the integral in Eq. (8) is due to the fact that DVH is a 
monotonically decreasing function of dose. 

Computation of S requires knowledge of the entire DVH 
for the target volume. For the purpose of our discussion, it is 
convenient to rewrite Eq. (8) as

,max

,min

2

exp( ) ( )d
tar

tar

D

fD

DS D f D D
N
βα= − −∫                           (9)

 Where d( )
d
DVHf D

D
≡ −  represents density distribution 

of the target dose. The corresponding BED and TCP can be 
expressed as follows (e.g., [13,18-20])		

1 lnBED S
α

= −  and 0exp( )TCP N S= − .               (10)
Where 0N denotes initial number of clonogens in the 

target. 

Considered Dose Distribution in the PTV

In the derivations below, we show that under conditions 
in Eqs. (5) and (6) S  decreases with increasing fN  assuming 
fixed nomBED . Note that this conclusion is valid for all SBRT 
dose distributions in the target volume which we refer to as 
realistic. Specifically, we consider distributions of the target 
dose with 

 1nomBEDα > .                                 (11)

Since the initial number of malignant cells in the target 

is typically very large, the condition in Eq. (11) is necessary 
to attain TCP reasonably close unity (see Eq. (2)). Another 
feature of a realistic dose distribution in SBRT is that 
minimum dose ( minD ) in the PTV is of the same order of 
magnitude as the mean dose. For example, we examined 60 
SBRT plans with the treatment schedule 12 Gy 5 60 Gy× = and 
found min 30 GyD >  for each plan. In the following discussion 
we employ a condition for 

minD :

min refD rD>                                     (12)

Where refD is the mean dose in the PTV for a reference 
regimen ,ref f ref refd N D× =  and r is the real solution of the 

following equation: 
ln

1 nom
r BED
r

α−
=

−                                     (13)
Because ln 1r r≤ −  for 1r ≥ , the real solution of Eq. (13) for 

nomBEDα  > 1 satisfies 1r < . Eq. (13) can be numerically 
solved by iterations:

( )
( ) ( )

0 1 0

2 1 1

exp( ),  exp (1 ) ,

exp (1 ) ,..., exp (1 ) ,...
nom nom

nom n nom n

r BED r BED r

r BED r r BED r

α α

α α −

= − = − × −

= − × − = − × −
    (14)

Several examples are as follows: 5nomBEDα = ,
36.977 10r −≈ × ; 10nomBEDα = ,

54.542 10r −≈ × ; 100nomBEDα = ,
443.720 10r −×≈ . Note also that due to condition in Eq. (12), 

( )reff D  is zero in the interval 0, refrD   . 

Proof that S  Decreases with Increasing fN  if 

nomBED const=

The probability of survival averaged over the dose 
distribution ( )f D  can be expressed as follows (see Eqs. (4) - 

(6)): 
( )22

2
0 0

exp( ) ( )d exp ( )dnom
ref

f ref ref

x BED DD DxS D f D D f x x
N D D

αβ αα
∞ ∞  −

= − − = − −  
 

∫ ∫ , (15)

where refD D
x cD

D
= =  In turn, the derivatives S

D
∂
∂

 and 
2

2
S
D
∂
∂

are 

( )22

2 2
0

exp ( )dnom
ref

ref ref ref ref

x BED DS x x Dx f x x
D D D DD

ααα
∞    −∂

= − − −     ∂    
∫     and   (16)

( )22 22

2 2 2
0

exp ( )dnom
ref

ref ref ref ref

x BED DS x x Dx f x x
D D D D D

αα∞    −∂
= − − −     ∂    
∫

.      (17)

It is apparent that 
2

2
S
D
∂
∂

>0. Consequently, S
D
∂
∂

 is an 

increasing function of D . If we can show that S
D
∂
∂

 is negative 
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for nomD BED= , then S
D
∂
∂

 is negative for all nomD BED< . From 

the condition nomBED const=  (see Eq. (4)), it follows that D  

increases as fN increases. Consequently, if 0S
D
∂

<
∂  we can then 

conclude that 
f

S
N
∂
∂ is negative for all fN . 

Let 1nomBEDλ α= > . Since the mean dose for the 

distribution ( )reff D  is refD , we have for nomD BED=  (see 

Eq.(16))
2

2
0

2

2

exp ( )d

                     exp ( 1)exp( ) ( )d

                    
       

ref

nom
ref

ref ref ref

ref
ref ref ref refrD

BED xS x x f x x
D D DD

x x x x f x x
D D D D

α
α

λ λ

∞

∞

    ∂
= − −       ∂      

    
= − − − − −            

∫

∫

         

      (18)	

By using / 1refs x D= − , we have 
( ) ( )

1

1

exp( ) 1 exp 1 ( ( 1))d

exp( ) ( ) ( ( 1))d

ref ref ref
r

ref ref ref
r

S D s s s f D s s
D

D sQ s f D s s

λ λ
α

λ

∞

−

∞

−

∂
 = − + − − + ∂

≡ − +

∫

∫

   (19)

where ( ) ( )( ) 1 exp 1Q s s sλ= + − − . To show that S
D
∂
∂

 is less 

than zero, it is sufficient to show that ( ) 0sQ s <  for all 1s r≥ − . 
To accomplish this, we will show that ( )Q s  is negative for all 

(0, )s∈ ∞  and positive for all ( 1,0)s r∈ − . 
Clearly, (0) 0Q = . Note that derivative 

( )d ( ) 1 ( 1) exp( )
d
Q s s s

s
λ λ= − + −

                        (20)
 is negative for 0s ≥ . Consequently, ( ) 0Q s <  and 

( ) 0sQ s < for 0s > . Note also that equation ˆd ( ) 0
d
Q s

s
=  has a single 

root ˆ 1/ 1s λ= − . From the definition of r in Eq. (12) it follows 
that 

 	  ( )( 1) exp ( 1) 1 0Q r r rλ− = − − − = .                (21)

Does ( )Q s have zeroes in the closed interval [ 1,0]r −  

besides its endpoints? If ( )Q s had another zero, then by the 

Rolle’s Theorem 
d ( )

d
Q s

s would have at least two zeroes in the 

open interval ( )1,0r −  which is impossible. Consequently, ( )Q s

is either positive or negative on ( 1,0)r − . Note that since 
d ( ) 0 at 0

d
Q s s

s
< =

, ( )Q s  is positive on ( )1,0r − . As a result, we 

conclude that the product ( )sQ s  is negative for ( )1,0s r∈ − . 

This, in turn, implies that 0S
D
∂

<
∂

 . Since 0
f

D
N
∂

>
∂

 , S  decreases 

with increasing fN . The proof is complete. 
It should also be realized that since S decreases with 

increasing
fN , 1

lnBED S
α

= − increases with increasing 

number of fractions. 	

Elucidation of the Dependence of S on fN

The previous Section contains a rigorous proof that S

decreases with increasing fN if nomBED const=  for a realistic 

dose distribution and uniform radiosensitivity in the target. 
Unfortunately, this proof doesn’t easily yield a qualitatively 

clear explanation of the claimed dependence of S on fN . 

Here, we consider a simpler and more intuitive approach 
previously outlined in [21], which leads to the same 
conclusion. 

By expanding 
2

exp( )
f

DD
N
β

α− +  in a power series around D , 

we obtain 

2 2 2

2
( , ) ( ) ( , )exp( ) ( , ) ( ) ...

2f

D S D D D S DD S D D D
N D D
β α αα α ∂ − ∂

− + = + − + +
∂ ∂

.     (22)

In the case whenσ is small (i.e., / 1Dσ << ), we can 

restrict series expansion in Eq. (22) to the second order term. 

Substituting expression for 2exp( / )fD D Nα β− +  from 

Eq. (22) into Eq. (9) and considering the fact that the average 
value of D D−  is zero, we obtain the following equation for 

S :                          

2 2

2

2
2

2

( , )
( , )

2

2 2
                  1  exp( )

2 ( / )
1 nom

f f

S D
S S D

D

D
BED

N N

σ α
α

σ β
α α

α β

∂
= + =

∂

+ − × −
   
  +        

.       (23)

One can verify that under the condition 1Dα >> , we 

have 
2

22 21
( / )f fN

D
N

β α
α β

 
<< +  

 
 . Consequently, expression for the 

probability of survival in Eq. (23) is reduced to 
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2
2 2 2

1 exp( )
2 ( / )

1 nom
f

D
S BED

N
σ α

α
α β

= + × −
  
 +      

.                    (24)

In the case nomBED const= , from Eq. (4) it follows that 

dose per fraction f

D
N

d =
 decreases with increasing fN

. 

Consequently, Eq. (24) implies that S decreases with 

increasing fN
. Unfortunately, truncation of the infinite series 

for S (which leads to Eq. (24)) is difficult to justify rigorously. 
Note that the proof in Section 2.3 doesn’t use series expansion 

for S . As a result, it is free of limitations inherently present 
in the intuitive but non-rigorous derivation of Eq. (24) 
presented above. 

Finally, in the case 

2
2 2 21
2 ( / )

1
f

D
N

σ α
α β

 
+  

 
<<

 , we have
2

2 2
2nom

f

DBED BED
N

σ βα
α

 
= − +  

 

                       (25)

Eq. (25), in turn, indicates that for fixed / Dσ , reduction 
in BED due to dose heterogeneity rapidly increases in 
magnitude with increasing dose and/or dose per fraction:

nomBED BED−  ~ 2 2( 2 )
f

DD
N

α β+ .                   (26)

Effect of non-uniform Radiosensitivity on Cell 
Survival

The discussion in the preceding Sections is focused on 
the effect of target dose heterogeneity on BED while 
radiosensitivity of malignant cells is assumed to be uniform. 
It is potentially clinically important to incorporate the effect 
of heterogeneous radiosensitivity in the analysis of BED 
dependence on number of fractions. In this Section we 
employ the following assumptions: (a)α  and β  are 

independent random variables with probability density 

functions ( )fα α  and ( )fβ β ; (b) the joint probability for 

alpha and beta is described by the Gamma probability density 

function; i.e., , ( , ) ( ) ( )f f fα β α βα β α β≡  is given by 

( ) ( )

11 exp( )
,    0  and 0( , )  

( ) ( )

0,                otherwise

tt

t tf
t t

βα

α β

α β

α β α β

α βα β
θ θ

α βα β
θ θ

−− − −
 > >=  Γ Γ



        (27)

In Eq. (27) Γ denotes the so-called Gamma function [18]

1

0

( ) t xt x e dx
∞

− −Γ = ∫ ,                                   (28)

where 0t > . It should be mentioned that parameters 
, ,  and t tα β α βθ θ  are defined by the mean values of alpha (

α ) and beta ( β ), and their variances 
2 2( ) and ( )α βσ σ  

[18]; i.e., 
222 2

2 2,  ,   and t t βα
α β α β

α β

σσα β θ θ
σ σ α β

= = = = .         (29)

Note that ( , )f α β in Eq. (27) is normalized so that 

0 0

( , ) 1f d dα β α β
∞ ∞

=∫ ∫  . 

In the case of non-uniform dose and non-uniform 
radiosensitivity in the target, the probability of survival 
average over the distributions of the target dose and 
radiosensitivity is (see Eq. (8) for comparison)

 
2 dexp( ) ( , )d d d

df

D DVHS D f D
N D
βα α β α β = − − −  

 ∫ ∫ ∫ .     (30)

By using substitutions (see Eq. (27)) 

1 1
fN d

α αθ θ
= +

′
 and 21 1

fN d
β βθ θ
= +

′                       (31)

and integrating over alpha and beta, we can reduce the 
triple integral in Eq. (30) to a single integral 

 
max

min

2 d1 1 d
d

ttD

fD

D D DVHS D
t t N D

βα

α β

α β
−−     = − + +          

∫ .                (32)

Note that biologically effective dose for non-uniform 
radiosensitivity is defined as [19]

1 lnBED S
α

= − .                                     (33)

Results

To demonstrate dependence of BED on number of 
fractions, we computed BEDs by using DVHs for 57 clinical 
cases of early-stage, non-small cell lung cancer. The locations 
of the treated lesions are shown in Table 1. The analyzed 
radiotherapy plans were created in the Eclipse treatment 
planning system (v. 11, Varian Medical Systems, Palo Alto, 
CA, USA) by using 6MV flattening-filter free photon beams 
and volumetric modulated arcs. Dose distribution for each 

https://medwinpublishers.com/PSBJ
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treatment plan was computed by using 2 mm 2 mm 2 mm× ×  
dose grid and Analytical Anisotropic Algorithm (AAA). The 
mean target dose in the PTV, dose per fraction and number of 
fractions for each plan were 60 Gy, 12 Gy and 5, respectively. 
The radiosensitivity of malignant cells was characterized 

by 10.35 Gyα −=  and / 10 Gyα β = . The employed value 
of α  was approximately equal to the average value of this 
parameter determined by analyzing tumor control for almost 
3000 SBRT patients [20]. The corresponding, nominal BED 
for each considered plan was 132 Gy. 

Location of Lesions Number of Cases
  N %

RUL 18 31.6
RLL 10 17.5
RML 4 7
LUL 18 31.6
LLL 7 2.3

Table 1: Lesion locations: RLL = right lower lobe; RML = 
right.

For each case, two DVHs for the PTV were analyzed. The 
first DVH corresponded to the original plan with 5fN = , 
dose per fraction of 12 Gy, total dose of 60 Gy and 

132 GynomBED = . The second DVH was created by multiplying 

monitor units for each volumetric arc by a factor 4.54/12= 
0.3783 to produce a new plan with 20fN = , dose per fraction 
of 4.54 Gy, total dose of 90.8 Gy and the same 132 GynomBED = . 

Figure 1a displays comparison between BEDs for two 
treatment regimens 60 Gy=12 Gy 5×  and 
90.8 Gy=4.54 Gy 20× , and 132 GynomBED = . All BEDs displayed 
in this figure were computed by using planned DVHs (see 
Eqs. (8) and (10)) under the assumption of uniform 
radiosensitivity in the tumor. To assess the effect of 
heterogeneous radiosensitivity on the dependence of BED on 

fN , we also computed BEDs for non-zero values of 

/  and /α βσ α σ β . The results are displayed in Figure 1b and 
1c. 

     

Figure 1: Comparison between BEDs calculated for different treatment schedules (5vs20 fractions), the same 132 GynomBED =

, 
10.35 Gyα −= and / 10 Gyα β = . The results in Figs. 1a-1c confirm the following: 

•	 BED decreases with increasing variance of the target dose 
•	 BED increases with increasing number of fractions if.  
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Discussion

As mentioned previously, the objective of this work is to 
establish how BED in the target varies with 

fN under the 

condition of fixed nomBED . The main finding of our study is 

that for a realistic distribution of the target dose and uniform 
radiosensitivity in the target, the corresponding BED always 
increases with increasing number of fractions if nomBED is 

fixed. The developed proof that BED increases with increasing 

fN
 doesn’t employ a truncated power series for S

(discussed previously in [12,13,21]) which is difficult to 
rigorously justify. Specifically, in contrast to our recent study 

[21], the current approach doesn’t require that Dσ  be much 
smaller than the mean target dose. The obtained results rely 
on several radiobiological assumptions considered below. 

Radiobiological Assumptions 

The LQ model for cell killing forms the foundation of our 
work. The applicability of this model for hypofractionation 
has been disputed in several studies which described a 
number of alternative models (e.g., [22-25]). The main 
feature of the proposed non-LQ models is that on the log-
linear plot the survival curve becomes linear at high doses. 
By analyzing tumor control data for SBRT and SRS, recent 
studies, however, concluded that the LQ model fits the clinical 
TCP data best [20,26,27]. It is important to realize that our 
model doesn’t consider the effect of accelerated (i.e., faster 
than before commencement of radiotherapy) repopulation 
of malignant cells which begins after a delay 

kT  following 

the first fraction of radiation (e.g., [28,29]). Since reported 

kT  for non-small cell cancer of the lung ranges between 14 

and 35 days [29], the effect of accelerated repopulation can 
be neglected in the case 20fN ≤ considered in our study 

(see Section III). 

Dependence of BED on the Variance of the 
Target Dose and 

fN  

As shown in Figure 1, small variance of the target dose 
(i.e., 0.1D Dσ ≤  ) can cause a significant reduction in BED. In 
this work it is analytically shown that for a given ratio /D Dσ  

and uniform radiosensitivity BED always increases with 
increasing fN if nomBED is fixed. It is important to establish 

whether this increase can be significant for clinical cases. 
 
The results in Figure 1a demonstrate that transitioning 

from a frequently used SBRT schedule 12 Gy 5 60 Gy× =

with 5 fractions [16] and =132 GynomBED  to a schedule 

 Gy 20 90.8 Gy4.54 × = with 20 fractions and the same nomBED  
can lead to 7-8% increase in the corresponding BED. Unlike 
our previous study [13], these results were obtained by 
considering clinical cases of SBRT without making additional 
assumptions regarding the dose distribution in the target. 

Effect of Non-Uniform Radiosensitivity on 

Dependence of BED on fN

The analytically derived conclusion in Section 2.3 that 
BED increases with increasing number of fractions doesn’t 
consider variations in radiosensitivity. To study the effect of 

small variations in α  and β  in the tumor on the dependence 

of BED on fN
, we assumed (in contrast to our previous 

study [21]) that these variations were uncorrelated. This 
assumption can be justified as follows. In the LQ model, alpha 
term describes lethal damage produced on the nanometer 
level. Conversely, beta term relates to damage caused by 
interactions of double-strand breaks on a significantly larger 
scale [30]. Another assumption employed in this study is that 
joint probability distribution of alpha and beta can be 
approximated by the Gamma density probability function 
(see Eq. (27)). The rationale for Gamma distribution is 
threefold: 
•	 Gamma distribution is a smooth, bell-shaped distribution 

which, in contrast to Gaussian distribution, doesn’t allow 
negative values of alpha and beta; 

•	 Gamma distribution approaches Gaussian distribution 
when ασ α<<  and βσ β<< [18]

•	 Recently, Gamma distribution was successfully employed 
to model tumor control in almost 3000 patients [20]. 

The results from Figures 1b and 1c indicate that BED 

increases with increasing fN
 for non-zero  and . This 

conclusion was confirmed by computing BED for a Gaussian 
(joint) distribution of alpha and beta. The resulting values of 
BED (not shown here for brevity) were within 1% of those in 
Figures 1b and 1c. The observed good agreement between 
BEDs computed for Gamma and Gaussian distributions is not 
surprising because, as mentioned above, Gamma distribution 
approaches Gaussian distribution for relatively small values 

of ασ  and βσ . 

https://medwinpublishers.com/PSBJ
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Clinical Implications

Reduction in BED Due to Dose non-uniformity: 
According to the obtained results, for SBRT regimens with

5fN = , the corresponding BED can decrease by about 
30% while σ varies between zero and 8% of the mean dose 
(see Figure 1a). Such significant changes in BED can present 
a problem for radiobiological comparison of different 
hypofractionation regimens because clinical reports do not 
normally contain variance of the target dose for each case. 
For example, consider two regimens 12 Gy 5 60 Gy× = and 

y204.54 Gy 90.8 G× = characterized by the same 
132GynomBED = . In the case / 0.08Dσ = , the former 

regimen with 5 fractions can yield BED of 90Gy while the 

regimen with 20 fractions achieves BED of 97Gy (see Figure 
1a). As shown in this work, in the case of uniform 
radiosensitivity in the tumor, reduction in BED due to 
inhomogeneity of the target dose is always smaller for a 

schedule with a number of fractions ,1fN as compared to 
that for a treatment schedule with ,2 ,1f fN N<  for the same 
ratio / Dσ  and nomBED . 

One possibility to decrease discrepancy between BEDs 
for different clinical cases is to limit acceptable dose non-

uniformity to less than 5% (i.e., 0.05D Dσ ≤ ) as proposed 
in [13,21]. However, our clinical experience indicates that in 
some cases this condition is difficult to accomplish. The 
results of this work suggest that increasing number of 
fractions can be radiobiologically beneficial for small, well-
perfused lung lesions which are frequently targeted in lung 
SBRT. Specifically, in the case 0.05Dσ >  and small variances 

of alpha and beta, moderate hypofractionation with 20fN =  
can yield higher BED (and associated TCP) as compared to 
treatment schedules with five or fewer fractions used for 
SBRT of non-small, early-stage lung cancer. 

Clinical Protocols

A recent study [31] concluded that SBRT for early-stage, 
non-small lung cancer delivered with a relatively low 

nomBED  (i.e., 100-129 Gy) was characterized by 3 and 5 
year overall survival (OS) of 60% and 26%, respectively. 

Conversely, regimens with higher nomBED  (i.e., >130 Gy) 
achieved higher 3 and 5 year OS of 64% and 34%, respectively. 
Due to dose heterogeneity in the PTV, a treatment regimen 
with a higher nomBED  and higher ratio / Dσ  can result in 
actual BED lower than that achieved for a regimen with a 
lower nomBED and lower ratio / Dσ  [13]. These findings 
indicate the need to report both mean target dose and its 

variance for the analysis of local control and OS for different 
SBRT protocols.

Conclusion

The main results of this work can be summarized as 
follows:
•	 It is theoretically shown that in the case of uniform intra-

tumor radiosensitivity and nomBED const=  the probability 

of cell survival ( S ) in the target decreases with increasing 
fN  for an arbitrary ratio / Dσ . 

•	 The performed computations confirm that S also 
decreases with increasing 

fN  in the case of small 

variations in the radiosensitivity of malignant cells (i.e., 

ασ α<<  and βσ β<< ). 

•	 The results indicate that moderate hypofractionation 
with 15 20fN = −  can yield higher BED as compared to 
the commonly employed SBRT schedules with 5fN ≤ . 
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