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Abstract

The virtual crystal approximation is used for numerical simulation of a polariton spectrum transformation in 1D photonic 
crystal, consisting of alternating silicon and liquid crystal layers and randomly included admixture layers. The character of 
dependence of the band gap width and the refractive index upon the concentration of admixture layers is discussed. It is shown 
that the energy structure of the imperfect superlattice can be significantly altered by implantation of appropriate defect layers.   
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Introduction

Propagation of electromagnetic waves in thin films 
and layered crystalline ambiences is currently drawing a 
close attention. Lourtioz JM, Belotelov VI, Lyubchanskii 
IL, Nau D [1-4] give the account of the related research 
carried out for photonic crystals, Rumyantsev VV [5] for 
composite materials based on silicon and liquid crystal. The 
interest towards these objects is on one hand due to their 
significance for electronics, and on the other hand due to the 
advance of technology allowing growth of ultrathin films and 
periodic structures with controlled characteristics. There 
are numerous theoretical and experimental studies (see e.g. 
Pokatilov EP [6]) on exciton-like excitations in ideal dielectric 
superlattices. A general theory of optical waves in anisotropic 
crystals, including those, formed of macroscopic layers, is 
discussed in Yariv A [7]. Lyubchanskii IL [8] investigates the 
dispersion of polaritons in a superlattice with two admixture 
layers. At the same time a considerable interest is focused 
on non-ideal superlattices with an arbitrary number of 
admixture layers as well as on dependence of the polariton 
spectrum on the concentration of corresponding defects. 
The further development of the theory of layered structures 
requires considering more complex models like superlattices 
with randomly included admixture layers of the variable 
composition. A better understanding of how the optical 

properties of such systems depend on concentration of 
admixture layers gives basis for modeling and constructing 
the layered materials with prescribed characteristics. 

The method applied for calculating polariton excitation 
spectra is rather similar to the ones, used in cases of 
other quasiparticle excitations, like electronic, phononic 
etc. In the present work we employ the virtual crystal 
approximation (VCA) [9,10], based on configurational 
averaging, for description of polariton excitations in a 
macroscopically inhomogeneous medium. It is a well-known 
method; however its use up to now [11] has been limited 
to microscopic calculating the quasiparticles excitations 
spectra in disordered systems. Mathematical posing of the 
problem is similar in these two cases.

VCA, proposed originally by Nordheim L and Parmenter 
RH in Parmenter RH [9], consist in replacing the exact one-
electron potential (appropriate to a given configuration 
of atoms of the alloy) by its average which is taken over 
all possible random configurations. This approximation 
is widely used in studies on disordered structures. For 
example, based on the pseudopotential scheme under the 
VCA in which the effect of compositional disorder is involved, 
the dependence of optoelectronic properties of GaAs x Sb1-x 
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on alloy composition x have been studied in [12]. Within this 
approximation the configurationally dependent parameters 
of the Hamiltonian are replaced with their configurationally 
averaged values. Description of transformation of a polariton 
spectrum in a sufficiently simple superlattice, using VCA, is 
the first step towards the study of imperfect systems. However 
investigation of properties of polariton spectra and the 
related physical quantities (density of elementary excitation 
states, characteristics of the normal electromagnetic waves 
etc.) in less simple systems requires application of more 
complex methods. Such are the method of the coherent (one- 
or many-site) potential [11], the averaged Т-matrix method 
[13] and their numerous modifications used for various 
particular problems.

In the paper a superlattice is modeled as a set of 
macroscopically homogeneous layers with randomly included 
extrinsic (with respect to the ideal super lattice) layers. 
Corresponding configuration-dependent material tensors 
in our model of an imperfect superlattice are represented in 
terms of random quantities. After configuration-averaging the 
translational symmetry of a considered system is “restored” 
that allows us obtain the system of equations which define 
normal modes of electromagnetic waves, propagating in 
one-dimensional (1D) “periodic” medium. Within the VCA 
we study of peculiarities of the dependence of the band gap 
width and refractive index upon concentration of admixture 
layers for the nonideal Si - liquid crystal system.

Theoretical Background

Dielectric ( )ˆ rε 

 and magnetic ( )ˆ rµ 

 permeability, 
which determine optical characteristics of a 1D photonic 
crystal, must satisfy the periodic boundary conditions:

( ) ( )ˆ ˆ, , , ,x y z x y z dε ε= + ,

( ) ( )ˆ ˆ, , , ,x y z x y z dµ µ= + , (1)

where ∑
=

=
σ

1j
jad  is the period of the superlattice, σ is the 

number of layers per elementary cell, ja  are the thicknesses 
of the layers which form a 1D chain of elements oriented 
along the z-axis. The material tensors ε̂  and µ̂  of the 
crystalline structure with an arbitrary number of layers σ 
have the following form in the coordinate representation:
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In Eq. (2) ( )zθ  is the Heaviside function, 1, 2, ...n = ± ±  

is the number of a one-dimensional crystal cell, index 
1, 2,...,α σ=  designates the elements of the cell. Below we 

consider an imperfect system, in which disordering is 
connected with variation of the composition (rather then of 
the thickness) of admixture layers, so that αα aan ≡ . Within 

our model, the configurationally dependent tensors 
αα µε nn ˆ,ˆ  are expressed through the random quantities ν

αηn
 

( ν
αηn =1 if the ( )ν α -th sort of layer is in the ( )nα -th site of the 

crystalline chain, ν
αηn =0 otherwise):
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Calculation of a polariton spectrum for the imperfect 1D 
photonic crystal is realized within the VCA (similarly to the 
solid quasi-particle approach) through the following 
replacement: µµεε ˆˆ,ˆˆ →→  (angular parentheses 

designate the procedure of configuration averaging). In 
addition, from Eq. (3) and Parmenter RH [9] we have:
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= ∑ ,     (4)

where ( )αν
αC  is the concentration of the ( )αν -th sort of 

admixture layer in the α -th sublattice. There is a 

normalization condition ( )

( )
∑ =
αν

αν
α 1C . It follows from Eq. (2) 

that the Fourier-amplitudes ll µε ˆ,ˆ  and the averaged 

dielectric αε nˆ and magnetic αµnˆ  permeabilities of 

layers (4) are related as
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Since the configurational averaging “restores” the 
translational symmetry of a crystalline system, in the 
considered case of imperfect superlattice the “acquired” 
translational invariance of the 1D chain allows us to present 
Maxwell equations (for harmonic dependency of the electric 
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and magnetic field strengths ( ) ( )ωω ,,, rHrE 







 on a time) 
in the form:
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Hence, according to the Floquet theorem, Fourier-
amplitudes ),(

,
HE

pKf
  of the electric and magnetic field 

strengths satisfy the following relation:
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Here β


 is an arbitrary planar (in the XOY plane) wave 

vector, ze  is a unit vector along the z-axis, ),0,0( KK =


 is 
the Bloch vector. The system (7) defines normal modes of 
electromagnetic waves, propagating in the considered 
“periodic” medium. Below, for simplicity, we shall restrict 
our study to the case of light, propagating along the z-axis (

0=β


) in a nonmagnetic lattice ( Îˆ =µ  is a unit matrix); the 

liquid-crystal layers we shall treat (like in Rumyantsev VV 
[5]) as uniaxial ( jzzizzjyyiyyjxxixxij δδεδδεδδεε ++= ; 

obviously, that for zK ||


, zz-components of the tensor ε̂  do 

not appear in final formulas, and εεε ≡= yyxx ). 

Furthermore, we shall (like in Yariv A [7]) assume, that K  is 
close to the value, defined by the Bragg’s condition: 

K
d

K ≈−
π2 , 0

222 εω≈Kc . This case corresponds to a 

resonance of plane waves between the components ),(
,
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at 0, 1p = −  (these terms dominate in the system (7)). After 

eliminating the ( )Hf


 variables, Equations (7) with respect 

to ( )Ef
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 take the form: 

( )

( )

( )

( ) 0
2 1,

0,

)0(
2

22

2

12

2

12
)0(

2

2
2

=




























−





 −−

−−

−
− E

K

E
K

f
f

cd
K

c

cc
K

εωπεω

εωεω

, (8)

Where ( ) ( )1
1

0
0 , ±

±== ≡≡ εεεε ll . Putting the determinant 

of the system (8) equal to zero we obtain the dispersion 
relations ( )Kωω =±

. Two roots of this equation 
±ω  define 

the boundaries of the spectral band: at frequencies 
( ) ( )KK +− << ωωω  (band gap) the roots are complex and 

electromagnetic waves decay (Bragg’s reflection); 
frequencies +− >< ωωωω ,  correspond to propagating 

waves. 

Results and Discussion

We shall confine ourselves to the case of propagation of 
electromagnetic radiation in a nonmagnetic super lattice 
with the two layers-elements (Si-layer and liquid crystal 
layer) per elementary cell. Concentration and dielectric 
permeability of the base material in the first and the second 
sub lattice are denoted by ( ) ( )1

1
1

1 , εC  and ( ) ( )1 1
2 2,C ε  ( (1)

1 11.7ε =

, (1)
2 5.5ε = ) respectively. For admixture this quantities are 

denoted by ( )2
1

)2(
1 , εC  and ( ) ( )2

2
2

2 , εC . Simple transformations 

(with the account that ( ) ( )11 εε =− ) lead to the following 

relations for the refractive index ω/cKn ≡  of the studied 

system:
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( )02 2
1( ) / 2 /n n ε ω ω+ −− ≅ ∆ , −+ −=∆ ωωω1  - is the lowest 

band gap width. It follows from Eq. (9) that the quantity 
1ω∆  is determined by the corresponding coefficient of the 

Fourier expansion (5), which in this case is ( )1ε . In 

Rumyantsev VV, Yariv A [5,7] it was shown that the band gaps 
of higher orders are as well determined by corresponding 
Fourier-coefficients of the dielectric permeability.
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The   functions ( )
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 depend on the concentration of admixture layers and their 

relative dielectric permeability.

	       

      a)                                                                                         b)

Figure 1:  Refractive index ±± ≡ ω/cKn  of the composite super lattice (with alternating silicon and liquid-crystal layers) 

vs. the concentrations of admixture layers: a) ( ) ( )2 1
1 1/ 0.1ε ε = , ( ) ( )2 1

2 2/ 0.2ε ε = ; b) ( ) ( )2 1
1 1/ 20ε ε = , ( ) ( )2 1

2 2/ 0.2ε ε = ; 1 2/ 1a a = .

Figure 1 shows the concentration dependence of the 
refractive index ±± ≡ ω/cKn  of the studied composite 

superlattice. It is readily seen, that the form of the 
corresponding surfaces has a non-monotone character if the 
dielectric permeability of both admixtures is 

( ) ( ) ( )2 1/ 1 1, 2i i iε ε =
 (case a) or ( ) ( ) ( )2 1/ 1 1,2i i iε ε =

. The 

dependence of n+  and n− on ( )2
1C  and ( )2

2C  becomes 
monotonous in another cases (b). The latter fact determines 
the behavior of the lowest band gap. 

a) b)

Figure 2:  Relative width of the lowest band gap 1 /ω ω∆  of the composite superlattice (with alternating silicon and liquid-

crystal layers) vs. the concentrations of admixture layers. Surface a) for the case ( ) ( )2 1
1 1/ 0.1ε ε = , ( ) ( )2 1

2 2/ 0.2ε ε = ;surface b) for 

the case ( ) ( )2 1
1 1/ 20ε ε = , ( ) ( )2 1

2 2/ 0.2ε ε = ; 1 2/ 1a a = .
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In Figure 2 the lowest energy gap width is plotted vs. the 
concentrations (2)

1 ,C  ( )2
2C  of admixture layers for a 

superlattice with alternating silicon and liquid-crystal layers. 
The energy gap 1ω∆  vanishes at ( ) ( )1 1

1 1 2 2f fε ε=  for the case a) 

in Figure 2. 

Conclusion

Our present study shows that optical characteristics of 
an imperfect 1D photonic crystal may be significantly altered 
as a result of transformation of its polariton spectrum due to 
presence of admixture layers. The developed theory is a basis 
for phenomenological description of a wide class of optical 
processes in nonideal multilayered systems. Formulas (2-5, 
7) allow a numerical calculation of the concentration 
dependence of relevant optical characteristics. The essential 
quantities governing the propagation of electromagnetic 
waves through the studied media are the refractive indices, 
the photon gap width and the directly measured quantities, 
which they define (for example, the light transmission 
coefficient). Graphic representation of ( ) ( )( )2

2
2

1 ,/, CCn ωω∆±
 

(Figs. 1 and 2) shows, that for the considered binary systems 
the character of the concentration dependence is different in 
different concentration intervals. The case of nonideal 
multilayered systems with bigger number sublattices and 
components of alien layers (see Rumyantsev VV [5]) allows 
even for a greater variety in behavior of the refractive index 
and the gap width. This circumstance considerably widens 
the opportunities for modeling composite materials with 
prescribed properties, it also creates prerequisites for 
solving the problem of finding polariton modes (necessary 
for calculating, for example, gyrotropic characteristics 
[14,15]) in spatially dispersed superlattices. 
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