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Abstract

The problem of Chern-Simons-like term induction via quantum corrections in four-dimensions is investigated in two different 
cases. In the first case, we consider two distinct approaches to deal with the exact fermion propagator of the extended QED 
theory up to the first order in the b-coefficient. We find different results for distinct approaches in the same regularization 
scheme. In the second case, we show that when we use a modified derivative expansion method and another regularization 
scheme, we obtain a result that exactly coincides with one of the results obtained in the former case. This seems to imply an 
ambiguity absence as one treats the fermion propagator and the self-energy tensor properly.
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Introduction

The induction of the Chern-Simons-like Lorentz and CPT 
violating term, given by  1 ,

2CS k F Aµνλθ
µ νλ θ   being kµ a 

constant vector characterizing the preferred direction of the 
space-time, is one of the most important results in the study 
of Lorentz symmetry violation [1,2]. This term which is 
known to have some important implications, such as 
birefringence of light in the vacuum [3], naturally emerges as 
a quantum correction in the theory suggested in Jackiw R [3] 
as a possible extension of QED:

  5 A ,QED i m b eψ ψ ψ γ ψ ψ ψ      (1)

Where bµ is a parameter introducing CPT symmetry 
breaking? Carrying out the integration over fermions, the 
relation between the coefficients kµ and bµ  could be 

obtained in terms of some loop integrals with some of them 
being divergent. Therefore, one has to implement some 
regularization scheme to calculate these integrals. Thus, the 
constant relating the coefficient kµ and bµ turns out to be 
dependent on the regularization scheme used [4,5]. Such 
dependence on the regularization scheme has been 
intensively discussed in Jackiw R [6] Chung M [7] Perez-
Victoria M [8]. However, there is an alternative study with 
absence of ambiguities put forward recently in Bonneau G 
[9].

Based on the theory (1), the purpose of our study is 
to investigate different possibilities of finding ambiguities 
inherent to generation of Chern-Simons-like term via 
quantum corrections in four dimensions. We do this by using 
derivative expansion method of the fermion determinant 
[10] and the imaginary time formalism.
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The work structure is organized as follows: In section 2 
we will investigate the induction of the Chern-Simons-like 
term via quantum corrections by using distinct approaches 
to deal with the exact fermion propagator. We find distinct 
relations between the coefficients kµ and bµ for different 
approaches, but with a same regularization scheme. 
Therefore, we conclude that different approaches to deal 
with the exact fermion propagator of the theory, we conclude 
that different approaches to deal with the exact fermion 
propagator of the theory leads to a new ambiguity for the 
problem of radiatively induced Chern-Simons-like term. 
In section 3 we develop another method to investigate the 
present issue. By modifying the derivative expansion method, 
we obtain a different self-energy tensor. We then use a 
specific regularization scheme to find a finite result identical 
to that obtained in section 2 by using another regularization 
scheme. This effect seems to imply ambiguity absence in our 
calculations. Finally, in section 4 we present our conclusions.

Inducing Chern-Simons-like Term: Two 
different Approaches

In this section, we focus on the induction of the Chern-
Simons-like term coefficient by expanding the self-energy 
and using two distinct approaches to deal with the exact 
fermion propagator up to the leading order in b . We find a 
new ambiguity because two different results appear.

The one-loop effective action [ , ]effS b A of the gauge field 
Aµ related to theory (1), can be expressed in the form of the 

following functional trace:

 5[ , ] ln AeffS b A iTr p m b eγ       . (2)

This functional trace can be represented as
[ , ] [ ] [ , ],eff eff effS b A S b S b A  where the first term 

 5[ ] lneffS b iTr p m bγ    does not depend on the gauge 
field. The only nontrivial dynamics is concentrated in the 
second term [ , ],effS b A which is given by the following power 
series:

1 5

1 1[ , ] A .
n

eff
n

S b A iTr e
n p m bγ





 
  

   
 (3)

To obtain the Chern-Simons-like term we should expand 
this expression up to the second order in the gauge field:

(2)[ , ] [ , ] ...eff effS b A S b A    . (4)

The dots in (4) stand for higher order terms in the gauge 
field. Here

2
(2)

5 5

1 1[ , ] .
2eff

ieS b A Tr A A
p m b p m bγ γ

 
 
         

(5)

Using the derivative expansion method [10] one can find 
that the one-loop contribution to (2)[ , ]effS b A reads

(2) 41[ , ( )]
2eff vS b A x d x F Aαµν

αµ  , (6)

where the one-loop self-energy αµν is given by

 
     

2 4

4 [ ],
2 2

b b b
ie d p tr S p S p S pαµν µ α νγ γ γ

π
    (7)

Where

 
5

b
iS p

p m bγ


 
(8)

is a bµ dependent exact fermion propagator of the theory.

Approach I: Fermion Propagator Rationalized

Firstly, we use the approximation developed in Ebert D, 
et al. [11], where the exact propagator (8) is rationalized in 
the form

   
   

 
55

22 2 2 2

2 .
...b

mb b p p mp m b
S p i

p m p m

γγ
         

  
.(9)

Substituting (9) into (7), we can calculate the trace of 
gamma matrices, resulting in the following expression for 
the self-energy tensor [4]:

       



4
2 2 2

4 32 2

12 3 [ 2 . ]
2

2 [ ] ,

r
d pie b p m p b p

p m

p p p p p p

µαν αµνθ
θ θ

βµνθ α αβνθ µ αµβθ ν
θ β β β

ε
π

ε ε ε

    


  

  (10)

Where r
µαν means self-energy tensor is rationalized up 

to the first order in -coefficient. In Equation (10), we turn 
the Minkowski space to a Euclidean space by performing 
the Wick rotation 4 4

0 0 0 0 0 0, , ,x ix p ip b ib d x id x     
and 4 4d p id p . Note that by power counting, the 
momentum integral in (10) involves a finite term and 
terms with logarithmic divergences. In order to regularize 
such divergence, we use a scheme which we implement 
translation only on space coordinates of the momentum pρ  
[12-14]. Hence, we have

0 0p p pρ ρ ρδ 
  . (11)

We use the covariance under spatial rotations which 
allows us to carry out the following replacement

 
2

0 0
pp p
D

σ σ σ
ρ ρ ρδ δ δ 



   . (12)

Thus,
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2 2

2
0 0 0

2 2
2

0 0 0

2 . 2 ,

2 2 .

p pp b p b b p
D D

p pp p p
D D

ρ ρ ρ

α α α
β β β

δ

δ δ δ

  
        

  
        

 

 

(13)

We have that only the terms above can contribute to 
the Chern-Simons structure. Therefore, we can split the 
expression (5) into a sum of two parts, “covariant” and 
“noncovariant”, i.e.,

 cov 4
12eff

i
S d xI b F Aαµνβ

β αµ νε


  ,(14)

With

   

2 2 2
02

1 0 32 2 2
0

41
3
2 2

D

D

p p m
ie d p DI dp

p p mπ π



  
          
   
 

 






, (15)

And

0 0
0 0

0 0
0 0

4
2

,

[ (

]

3

)
2

ncv
eff

iS b F A b F

A

d x

F F A

I Aεαµν µνθ
αµ ν θ µ ν

α νθ αµ θ
α ν αµ

ε

ε ε



 

 

 

(16)

With

   

2
2

2 0

2 0 32 2 2
0

.
2

D

D

p pie d p DI dp
p p mπ π





 
 
   
  
  

 







(17)

The integrals 1I and 2I over 0p are finite and can be calculated 
by residues theorem. Hence, we have

 
 
 

2 22

1 5
2 2 2

2 33
8 2

D

D

D p Dmie d pI
D p mπ

 
  

  
   








 , (18)

And

 
 
 

2 22

2 5/22 2

3
8 2

D

D

D p Dmie d pI
D p mπ

 
    

  








 . (19)

Now, we can integrate over the spatial momentum in 
D-dimensions [15], and we find,

 

, (20)

where 3 D  . The integral 2I presents a value identically 
equal to zero. Therefore, the effective action Equation (14) in 
the limit 3D   can be written in the form

cov 41
2effS d x F Aαµνβ

β αµ νκ   , (21)

Where
2

216
e bβ βκ
π

 , (22)

that coincides with the resulted of work Chan [16] in the 
Schwinger constant field approximation.

Approach II: Fermion Propagator Expansion

Now we use the approximation developed in Jackiw R, et 
al. [13] to expand the exact propagator (8) up to the first 
order in b  coefficient

   5 ...b
i i iS p ib

p m p m p m
γ   

    
. (23)

In this case, we have our self-energy tensor in the form 
[5,17] :

   
   

4
2

4 32 2

2 2

12
2

[ 3 4 . ],

e
d pie

p m

b p m p b p

µαν µανρ

ρ ρ

π
   



  


(24)

Where e
µαν means the expanded self-energy tensor. In 

Equation (24), we also change the Minkowski space to 
Euclidean space. Note that by power counting, the integral in 
the momentum space Equation (24) also present a finite 
term and another that diverges logarithmically. Thus, we use 
the same regularization scheme adopted in the rationalized 
fermion propagator approach. In this way, we obtain the 
following effective action in the limit of 3D  ;

cov 41 ,
2effS d x F Aαµνβ

β αµ νε κ

   
(25)

Where
2

2 .
4
e bβ βκ
π

 (26)

Here, we also have the absence of “noncovariant” part. 
The result (26) is equivalent to the obtained in Andrianov 
AA, et al. [18] where one uses a physical cutoff for fermions. 
According to the results (22) and (26), we found that the 
use of different approaches to deal with the exact fermion 
propagator leads to distinct relations between the coefficient

https://medwinpublishers.com/PSBJ
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µκ and bµ for the Chern-Simons-like term. Our results 
establish the following relation:

2

2

3
16

ek bβ β βκ
π

  , (27)

that means
2

2

3
16

ek bβ βπ
  . (28)

The result (28) corresponds to variation between 
the results (22) and (26), that is identical to the result of 
References. Mariz T, et al. [17] originated from the self-energy 
(24), in another regularization scheme. The same result has 
been found in the literature Fraser [13], Vainshtein, et al. 
[14].

Other Aspects on Induced Chern-Simons-
Like Term

In this section, we present an alternative method to 
compute induced Chern-Simons-like term that is independent 
of the approach used to deal with the exact fermion propagator. 
Let us rewrite the Equation (3) in the form,

5
1

1 1[ , ] .
A

n

eff
n

S b A iTr b
n p m e

γ




 
  

   


 
(29)

To obtain the Chern-Simons-like term we should expand this 
expression up to the leading order in b . Thus, for 1n  , we 
have

(1)
5

1[ , ] b .γ
 
 
   

effS b A iTr
p m eA  

(30)

Using the relation

1 1 1 1 1 1 1 ...B B B
A B A A A A A A

   
  

, (31)

For pA m   and A,B e  we find

(1) 2
5

1 1 1[ , ] ,effS b A ie Tr b A A
p m p m p m

γ
 
 
        

(32)

where one was considered the cyclic property of the 
trace in the product of the γ -matrices. By using derivative 
expansion method, we find the following effective action:

 (1) 41, ,
2effS b A x d x F Aαµν

αµ ν
     

 
(33)

where the one-loop self-energy αµν is given by

   
  



4
2 2 2

4 32 2

12
2

2 .

d pie b p m
p m

b p p p p

αµνθµαν
θ

ανθ β µ ανθ β ν
θ β β

ε
π

ε ε

   


   

 (34)

Note that in the self-energy tensor (34) there exists a 
convergent contribution and the remaining term diverges 
logarithmically. However, differently of the previous 
situations, in this case the calculation of the divergent 
integrals is very delicate. Calculating this self-energy tensor 
by using the same regularization scheme of the section 2, we 
find a null result, and in turn, the absence of the Chern-Simons 
term. On the other hand, there also exists the possibility of 
using in Equation (34) the relation

       
4 4

2 2 2
4 4 ,

42 2

gd p d pp p f p p f pµν
µ ν

π π
  (35)

that naturally removes the logarithmic divergence. As a 
result, we have only the finite contribution

2

216
e bµαν µανθ

θε
π

  . (36)

In this case, we find

 (1) 41,
2effS b A x d xk A Aµανβ

β α µ νε     
 
, (37)

Where
2

216
ek bβ βπ

 . (38)

Note that the result (38) is the same as the result found 
in (22) where the exact fermion propagator was rationalized 
up to the first order in the b -coefficient. Thus, we have here 
another surprising effect: The result 2

216
ek bβ βπ

  given in 

(22) as result of dimensional regularization and also given in 
(38) as result of the Lorentz preserving regularization (35), 
appears to be independent of the regularization scheme used 
by properly carrying out the self-energy tensor. The result 
(38) was also obtained in the work by Perez-Victoria M [14] 
using massless exact fermion propagator. We observe that 
the factor 2 2/16 ,e π  is exactly the same as found in the 
well-known Adler-Bell-Jackiw anomaly [19-21].

Conclusion

We have investigated the induction of Chern-Simons-like 
term via quantum corrections in two different situations. 
Firstly, we use a same regularization to different approaches 
to deal with the exact fermion propagators up to the leading 
order in the b -coefficient. In this case, our results are finite 
and agree with other results in the literature, but they do not 
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agree with each other, because they are different depending 
on the approach used. Moreover, it generates values whose 
difference is exactly:  2 23 /16 ,k e bβ βπ  which agrees 
with the result of References. Mariz T, et al. [17] found in 
another context. We conclude that this is due to the different 
approximation of the exact fermion propagator of theory. 
The problem was also investigated in a context independent 
of the approaches used to deal with the exact fermion 
propagator. In this case, we modify the derivative expansion 
method and obtain a new self-energy tensor for the effective 
action. The momentum integrals were calculated by using 
another regularization scheme. As a result, we obtained 
a relation between the coefficients kβ  and bβ identical to 
the one obtained in the case where it was used the fermion 
propagator expansion. We also observed that the parameter 
of proportionality between these two coefficients is exactly 
the same as the one found in the well-known Adler-Bell-
Jackiw anomaly. In our calculations, we also observed that 
the “noncovariant” contributions for the Chern-Simons-like 
term are absent, as was anticipated in Gomes M, et al. [4,22-
32] in the finite temperature context. Therefore, we insist 
that a complete comprehension of this question will require 
further investigations.
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