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Abstract

To explore the reducibility of non-trivial generalized syllogisms with the quantifiers in Square {not all} and Square {most}, 
this paper first gives the formalization of generalized syllogisms on the basis of set theory, and then proves the validity of the 
generalized syllogism EMO-3 by first-order logic and generalized quantifier theory; Finally, with the help of some reductive 
operations, the other 20 valid generalized syllogisms are deduced from the syllogism EMO-3. In other words, there are the 
reducible relationships between/among the 21 valid syllogisms. The reason for this is that any quantifier in a square can 
define the other three quantifiers. This research method is applicable to the study of syllogisms with quantifiers in other 
squares.
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Introduction

Syllogism reasoning characterizes the semantic and 
reasoning nature of the quantifiers it involves, playing a 
significant part in natural language and human thinking 
[1]. Various kinds of syllogisms are frequently used in 
natural language, such as categorical  syllogisms [2], 
generalized syllogisms [3,4], Aristotelian modal syllogisms 
[5,6], generalized modal syllogisms [7], and so forth. In 
generalized quantifier theory, a modern square consists of 
a quantifier and its three negation quantifiers [8]. Let Q be 
a generalized quantifier, and ØQ, QØ, and ØQØ respectively 
stand for its outer, inner and dual negative quantifier. Square 
{Q} = {Q,ØQ,QØ,ØQØ} shows the square composed of the four 
quantifiers. For example, Square {not all} = {not all, all, some, 
no}, and Square {most} = {most, at most half of the, fewer than 
half of the, at least half of the}. This paper concentrates on 
studying the reducibility of the generalized syllogisms which 
include at least one quantifiers in Square {not all} and Square 

{most}. 

Preliminaries

Let g, t and y be the lexical variables in a generalized 
syllogism, and the sets composed of the three variables are 
G, T, and Y, respectively. Let D be the domain of the lexical 
variables, G∩Ybe the cardinality of the intersection of the set 
G and Y, and b, l, s and t be well-formed formulas (noted as 
wff). ‘⊢l’ means that the wff l is provable, and ‘b=defl’ that b 
can be defined by l. 

The generalized syllogisms discussed in this paper only 
involves eight quantifiers in Square {not all} and Square 
{most}, which correspond to the following eight propositions: 
‘Not all gs are ys’, ‘All gs are ys’, ‘Some gs are ys’, ‘No gs are ys’, 
‘Most gs are ys’, ‘At most half of the gs are ys’, ‘Fewer than 
half of the gs are ys’, ‘At least half of the gs are ys’. They are 
abbreviated as not all(g, y), all(g, y), some(g, y), no(g, y), 
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most(g, y), at most half of the(g, y), fewer than half of the(g, y), 
at least half of the(g, y), respectively. And they can be denoted 
by Proposition O, A, I, E, M, H, F, S, respectively. 

Example 1:
Major premise: No penguins are flying animals.
Minor premise: Most penguins are animals living in 
Antarctica.
Conclusion: Not all animals living in Antarctica are flying 
animals. 

Let t, y, and g be variables representing a penguin, a 
flying animal and an animal living in the domain, respectively. 
Thus, this syllogism can be formalized as no (t, y)  most (t, g) 
® not all (g, y) and abbreviated as EMO-3. In fact, there are 
countless instances of natural language corresponding to the 
generalized syllogism EMO-3. 

Formal System of Generalized Syllogisms

The formal system of generalized syllogisms generally 
includes primitive symbols, basic axioms, formation rules, 
deductive rules, etc.

Primitive Symbols

Brackets: (, )
operators: ¬, ® 
quantifiers: not all, most
lexical variables: g, t, y

Basic Axioms

A1: If b is a valid formula in first-order logic, then ⊢b.
A2: ⊢no(t, y)∧most(t, g)®not all(g, y) (namely, the syllogism 
EMO-3).

Formation Rules 

1.	 If Q is a quantifier, g and y are lexical variables, then Q(g, 
y) is a wff. 

2.	 If b is a wff, so is Øb.
3.	 If b and l are wffs, so is b®l. 
4.	 Only the formulas generated by the above three rules are 

wffs.

Deductive Rules 

Rule 1 (subsequent weakening): From ⊢(lÙs®t) and 
⊢(t®b) infer ⊢(lÙs®b).
Rule 2 (antecedent strengthening): If ⊢(b®l) and 
⊢(lÙs®t), then ⊢(bÙs®t). 
Rule 3 (antecedent strengthening): If ⊢(b®s) and 
⊢(lÙs®t), then ⊢(lÙb®t).
Rule 4 (anti-syllogism): From ⊢(lÙs®t) infer ⊢(¬tÙl®¬s).

Rule 5(anti-syllogism): From ⊢(lÙs®t) infer ⊢(¬tÙs®¬l).

Relevant Definitions 

D1 (conjunction): (lÙs) = defØ(l®Øs);
D2 (bi-condition): (l«s) = def (l®s)Ù(s®l);
D3 (inner negation): (Q¬)(g, y) = def Q(g, D-y); 
D4 (outer negation): (¬Q)(g, y) = def It is not that Q(g, y);
D5 (truth value): all (g, y) = def GÍY; 
D6 (truth value): some (g, y) = def G∩Y¹Æ;
D7 (truth value): no (g, y) = def G∩Y=Æ; 
D8 (truth value): not all (g, y)=def G⊈Y;
D9 (truth value): most (g, y) is true iff G∩Y>0.5G is true;
D10 (truth value): at most half of the (g, y) is true iff G∩Y£0.5G;
D11 (truth value): fewer than half of the (g, y) is true 
iffG∩Y<0.5G is true;
D12 (truth value): at least half of the (g, y) is true iff G∩Y³0.5G 
is true.

Relevant Facts 

Fact 1 (inner negation):
(1.1) ⊢all(g, y)«noØ(g, y); 
(1.2) ⊢no(g, y)«allØ(g, y);
(1.3) ⊢some(g, y)«not allØ(g, y); 
(1.4) ⊢not all(g, y)«someØ(g, y);
(1.5) ⊢most(g, y)«fewer than half of theØ(g, y);
(1.6) ⊢fewer than half of the(g, y)«mostØ(g, y); 
(1.7) ⊢at least half of the(g, y)«at most half of theØ(g, y); 
(1.8) ⊢at most half of the(g, y)«at least half of theØ(g, y).

Fact 2 (outer negation): 
(2.1) ⊢Øall(g, y)«not all(g, y); 
(2.2) ⊢Ønot all(g, y)«all(g, y); 
(2.3) ⊢Øno(g, y)«some(g, y); 
(2.4) ⊢Øsome(g, y)«no(g, y);
(2.5) ⊢Ømost(g, y)«at most half of the(g, y); 
(2.6) ⊢Øat most half of the(g, y)«most(g, y);
(2.7) ⊢Øfewer than half of the(g, y)«at least half of the(g, y); 
(2.8) ⊢Øat least half of the(g, y)«fewer than half of the(g, y).

Fact 3 (subordination):
(3.1) ⊢all(g, y)→some(g, y); 
(3.2) ⊢no(g, y)→not all(g, y);
(3.3) ⊢all(g, y)→most(g, y); 
(3.4) ⊢most(g, y)→some(g, y);
(3.5) ⊢at least half of the(g, y)→some(g, y); 
(3.6) ⊢all(g, y)→at least half of the(g, y);
(3.7) ⊢at most half of the(g, y)→not all(g, y);
(3.8) ⊢fewer than half of the(g, y)→not all(g, y);
(3.9) ⊢no(g, y)→fewer than half of the(g, y).

Fact 4 (symmetry): 
(4.1) ⊢some(g, y)«some(y, g); 
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(4.2) ⊢no(g, y)«no(y, g).

The above facts are elementary knowledge in generalized 
quantifier theory [9,10] and first-order logic [11], so their 
proofs are omitted.

The Validity and Reducibility of Generalized 
Syllogisms Based on EMO-3

It is necessary to prove the validity of the generalized 
syllogism EMO-3 before discussing its reducible relationships 
between/among other syllogisms.

Theorem 1 (EMO-3): The generalized syllogism no(t, 
y)∧most(t, g)®not all(g, y) is valid.

Proof: Suppose that no(t, y) and most(t, g) are true, then 
T∩Y=Æ and T∩G>0.5T are true in terms of Definition D7 
and D9, respectively. Thus it  can  be  concluded  that G⊈Y is 
true. This can be proven by reductio ad absurdum. Assuming 
G⊈Y is not true. That is to say, GÍY is true. Because we have 
obtained T∩Y=Æ, it follows that T∩G=Æ, which conflicts with 
T∩G>0.5T. So GÍY is not true. It means that G⊈Y is true. 
Hence not all(g, y) is true in virtue of Definition D8, just as 
expected. If the validity of one syllogism can be deduced 
from that of another one, it is said that there is a reducible 
relationship between the two syllogisms. Taking (2.1) in 
Theorem 2 as an example, it illustrates that the validity of 
generalized syllogism EMO-4 can be inferred from that of 
the syllogism EMO-3. In other words, there is a reducible 
relationship between syllogism EMO-3 and EMO-4. On these 
grounds, one can obtain Theorem 2 as follows.

Theorem 2: At least the following 20 valid syllogisms can be 
inferred from EMO-3:
(2.1) ⊢EMO-3®EMO-4
(2.2) ⊢EMO-3®AEH-2
(2.3) ⊢EMO-3®AEH-2®AEH-4
(2.4) ⊢EMO-3®AMI-1
(2.5) ⊢EMO-3®AMI-1®MAI-4
(2.6) ⊢EMO-3®AMI-3
(2.7) ⊢EMO-3®AMI-3®MAI-3
(2.8) ⊢EMO-3®AEH-2®EAH-2
(2.9) ⊢EMO-3®AEH-2®EAH-2®EAH-1
(2.10) ⊢EMO-3®AEH-2®EAH-2®EMO-1
(2.11) ⊢EMO-3®AEH-2®EAH-2®EMO-1®EMO-2
(2.12) ⊢EMO-3®AEH-2®EAH-2®EAH-1®AAS-1
(2.13) ⊢EMO-3®AEH-2®EAH-2®EAH-1®AAS-1®AFO-2
(2.14) ⊢EMO-3®AEH-2®EAH-2®EAH-1®AAS-1®FAO-3
(2.15) ⊢EMO-3®AEH-2®AEO-2
(2.16) ⊢EMO-3®AEH-2®AEH-4®AEO-4
(2.17) ⊢EMO-3®AEH-2®EAH-2®EAO-2
(2.18) ⊢EMO-3®AEH-2®EAH-2®EAH-1®EAO-1

(2.19) ⊢EMO-3®AEH-2®EAH-2®EAH-1®AAS-1®AAI-1
(2.20) ⊢EMO-3®AMI-1®MAI-4®AAI-4

Proof: 

[1] ⊢no(t, y)Ùmost(t, g)®not all(g, y) (i.e. EMO-3, Axiom A2)
[2] ⊢no(y, t)Ùmost(t, g)®not all(g, y) (i.e. EMO-4, by [1] and 
Fact (4.2))
[3] ⊢Ønot all(g, y)Ùno(t, y)®Ømost(t, g) (by [1] and Rule 4)
[4] ⊢all(g, y)Ùno(t, y)®at most half of the(t, g) (i.e. AEH-2, 
by [3], Fact (2.2) and (2.5))
[5] ⊢all(g, y)Ùno(y, t)®at most half of the(t, g) (i.e. AEH-4, 
by [4] and Fact (4.2))
[6] ⊢Ønot all(g, y)Ùmost(t, g)®Øno(t, y) (by [1] and Rule 5)
[7] ⊢all(g, y)Ùmost(t, g)®some(t, y) (i.e. AMI-1, by [6], Fact 
(2.2) and (2.3))
[8] ⊢all(g, y)Ùmost(t, g)®some(y, t) (i.e. MAI-4, by [7] and 
Fact (4.1)) 
[9] ⊢allØ(t, y)Ùmost(t, g)®someØ(g, y) (by [1], Fact (1.2) 
and (1.4))
[10] ⊢all(t, D-y)Ùmost(t, g)®some(g, D-y) (i.e. AMI-3, by 
[9] and D3)
[11] ⊢all(t, D-y)Ùmost(t, g)®some(D-y, g) (i.e. MAI-3, by 
[10] and Fact (4.1))
[12] ⊢noØ(g, y)ÙallØ(t, y)®at most half of the(t, g) (by [4], 
Fact (1.1) and (1.2)) 
[13] ⊢no(g, D-y)Ùall(t, D-y)®at most half of the(t, g) (i.e. 
EAH-2, by [12] and D3)
[14] ⊢no(D-y, g)Ùall(t, D-y)®at most half of the(t, g) (i.e. 
EAH-1, by [13] and Fact (4.2))
[15] ⊢Øat most half of the(t, g)Ùno(g, D-y)®Øall(t, D-y) 
(by [13] and Rule 4)
[16] ⊢most(t, g)Ùno(g, D-y)®not all(t, D-y) (i.e. EMO-1, by 
[15], Fact (2.1) and (2.6))
[17] ⊢most(t, g)Ùno(D-y, g)®not all(t, D-y) (i.e. EMO-2, by 
[16] and Fact (4.2))
[18] ⊢allØ(D-y, g)Ùall(t, D-y)®at least half of theØ(t, g) 
(by [14], Fact (1.2) and (1.8)) 
[19] ⊢all(D-y, D-g)Ùall(t, D-y)®at least half of the(t, 
D-g) (i.e. AAS-1, by [18] and D3)
[20] ⊢Øat least half of the(t, D-g)Ùall(D-y, D-g)®Øall(t, 
D-y) (by [19] and Rule 4)
[21] ⊢fewer than half of the(t, D-g)Ùall(D-y, D-g)®not 
all(t, D-y)

(i.e. AFO-2, by [20], Fact (2.1) and (2.8))
[22] ⊢Øat least half of the(t, D-g)Ùall(t, D-y)®Øall(D-y, 
D-g) (by [19] and Rule 5)
[23] ⊢fewer than half of the(t, D-g)Ùall(t, D-y)®not 
all(D-y, D-g)

(i.e. FAO-3, by [22], Fact (2.1) and (2.8))
[24] ⊢at most half of the(t, g)®not all(t, g) (by Fact (3.7))
[25] ⊢all(g, y)Ùno(t, y)®not all(t, g) (i.e. AEO-2, by [4], [24] 
and Rule 1)
[26] ⊢all(g, y)Ùno(y, t)®not all(t, g) (i.e. AEO-4, by [5], [24] 
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and Rule 1)
[27] ⊢no(g, D-y)Ùall(t, D-y)®not all(t, g) (i.e. EAO-2, by 
[13], [24] and Rule 1)
[28] ⊢no(D-y, g)Ùall(t, D-y)®not all(t, g) (i.e. EAO-1, by 
[14], [24] and Rule 1)
[29] ⊢at least half of the(t, D-g)®some(t, D-g) (by Fact 
(3.5))
[30] ⊢all(D-y, D-g)Ùall(t, D-y)®some(t, D-g) (i.e. AAI-1, 
by [19], [29] and Rule 1)
[31] ⊢all(t, g)®most(t, g) (by Fact (3.3))
[32] ⊢all(g, y)Ùall(t, g)®some(y, t) (i.e. AAI-4, by [8], [31] 
and Rule 3)

It can be seen that the above 14 valid generalized 
syllogisms be deduced in line with the validity of the 
generalized syllogism EMO-3 from Step 1 to Step 23. Due 
to the fact that Aristotelian syllogisms are special cases of 
generalized syllogisms [12], the above 6 valid Aristotelian 
syllogisms also can be derived from Step 24 to Step 32 
in terms of subsequent weakening rule and antecedent 
strengthening rule. So far, a total of 20 valid syllogisms have 
been obtained from the syllogism EMO-3. If one similarly 
continues the above reductive operations, the other valid 
syllogisms can be deduced from the syllogism EMO-3.

Conclusion and Future Work

To explore the reducibility of non-trivial generalized 
syllogisms with the quantifiers in Square{not all} and 
Square{most}, this paper first gives the formalization of 
generalized syllogisms on the basis of set theory, and then 
proves the validity of the generalized syllogism EMO-3 by 
first-order logic and generalized quantifier theory; Finally, 
with the help of some reductive operations, the other 20 
valid generalized syllogisms are deduced from the syllogism 
EMO-3. In other words, there are the reducible relationships 
between/among the above 21 valid syllogisms. The reason 
for this is that any quantifier in a square can define the other 
three quantifiers. This research contributes to breaking 
through the existing research paradigms in linguistics and 
logic, integrating the latest research methods and findings, 
and providing macro-level ideas and concrete approaches for 
constructing a truly automated natural language processing 
system, as well as enhancing interpersonal dialogue and 
human-computer interaction. Any quantifier and its three 
negation quantifiers can form a modern square. Can the 
research method in this paper be applied to study other 
generalized syllogisms with quantifiers in other squares? 
These questions are meaningful and worthy of further 
exploration.
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