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Abstract 

Autism is a prototypical form of pervasive developmental disorder (PDD), characterized by complex behavioural 

impairments detectable as early as 18-36 months of age with severe abnormalities in communications, social awareness 

and skills, and the presence of restrictive and stereotyped patterns of behaviors, interests, and activities. In addition to 

these core symptoms, there are few other behavior disturbances which are commonly seen in the autistic individuals, 

such as anxiety, depression, sleeping and eating disturbances, attention issues, temper tantrums, motor disabilities and 

aggression or self-injury. Propionic acid (PPA) on oral and intraventricular injection of PPA in rodents mimics the 

behavioural and biochemical abnormalities observed in autism patients. Increased PPA levels may interfere with overall 

cellular metabolism in tricarboxylic acid cycle where it interferes with the conversion of succinyl co-A to succinate for 

generation of FADH2 in electron transport chain complex II further impairs the ATP synthesis. Extracellular signals 

regulate various intracellular neuroprotective functions through secondary messenger’s cyclic AMP (cAMP) that 

subsequently activate target enzymes Protein kinase A (PKA) & activate cyclic AMP responsive element binding protein 

(CREB) which regulate and protects various toxic damage in brain. Forskolin (FSK) (also called Coleonol) Coleus 

forskohlii Briq. (Lamiaceae), major pharmacological mechanism of action is linked to its direct action on adenyl cyclase 

(AC) enzyme which results in the increase intracellular cAMP/PKA/CREB pathway further responsible for various 

neuroprotective mechanisms. It is first time designed to investigate the protective and therapeutic potency of FSK in 

AC/cAMP/PKA mediated CREB activation in intraventricular PPA induced autism in rats. 
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Abbrivations: PDD: Pervasive Developmental 
Disorders; GSH-Px: Glutathione Peroxidase; PPA: 
Propionic Acid; CREB: cyclic AMP responsive element 
binding protein; MDA: Malondialdehyde; SOD: Superoxide 
Dismutase; BDNF: Brain-Derived Neurotrophic Factor and 
PDD-NOS: Pervasive Developmental Disorder Not 
Otherwise Specified. 
 

Introduction 

     Autism is a severe and pervasive heterogeneous 
behaviorally neurodevelopment disorder, classified under 
the pervasive developmental disorders (PDDs). PDDs 
include Autism, Asperger’s syndrome, Disintegrative 
disorder of childhood, Rett’s syndrome [1,2]. It is 
characterized by impaired social interaction and 
communication, repetitive behavioral patterns, and 
restricted interests, hyperactivity, sensory disturbances, 
and sometimes self injury are also observed [3-5]. Clinical 
signs are usually present at the age of 3 years, but 
prospective studies of infants at risk have demonstrated 
that deficits in social responsiveness, communication, and 
play could be present early, at the age of 6–12 months [6]. 
Boys are three to four times more likely to have autism 
than girls with an overall incidence of 5/10,000 [7]. 
 
     Pathological hallmarks of autism associated with 
mitochondrial dysfunction, oxidative stress, neuro-
inflamamtion, neuro-excitation, abnormal synapse 
formation, over expression of glial cells in specific brain 
regions like cerebellum, cerebral cortex, amygdala and 
hippocampus [8-11]. In Autism patients, abnormalities in 
neurotransmitter systems like frequently decrease in 
gamma amino butyric acid, increase in glutamate leads to 
excitotoxicity, hyper level of dopamine and dysregulation 
of serotonergic system & oxytocin in several brain areas 
like cerebellum, parietal cortex, superior frontal cortex, 
hippocampus, amygdala have been reported [12,13]. 
There are several lines of evidence in previous studies 
which have demonstrated that patients with autism show 
the alterations in malondialdehyde (MDA), a lipid 
peroxidation product, together with decreased levels of 
main scavenger enzymes, such as catalase (CAT), 
superoxide dismutase (SOD), and glutathione peroxidase 
(GSH-Px), heat shock protein 70 (Hsp70), in serum [14]. 
Individuals with autism may show enlarged brain size in 
the first few years of life, with altered migration of 
cortical, amygdala and cranial nerve motor neurons, as 
well as cerebellar neurons [15]. Patients with autism are 
often reported to suffer from a variety of bowel 
dysfunctions and gastrointestinal disturbances [16]. 
 

     There has been a growing interest in the literature on 
possible environmental agents involved in the 
development of autism, such as chemical toxins, which 
could act during critical periods of pre- and early 
postnatal development [17]. For example there is 
increased risk of autism in children exposed prenatally to 
thalidomide, valproic acid, and ethanol, propionic acid 
[18]. A sedative or anti-vomiting medication 
(Thalidomide), during pregnancy which was not only 
associated with limb deformities but also an Autism-like 
behavioral disorder in the offspring [19]. Anticonvulsant 
valproic acid (VPA) indicates that not only has VPA 
teratogenic effects but also rats exposed to VPA during 
gestation show deficiencies similar to those of autism 
[20]. Propionic acid (PPA) is an intermediary in cellular 
fatty acid metabolism, it is a short chain fatty acid and 
found in high levels in the gut, along with a number of 
other short chain fatty acids, such as acetate and butyrate 
& all of these are a major metabolic end product of enteric 
bacteria [21]. The Clostridial, Desulfovibrio & 
Bacteriodetes species are PPA producing enteric bacterial 
species, have been isolated from patients with regressive 
autism [22]. PPA is commonly used as a food preservative 
in the dairy products, added to refined wheat and is also 
present naturally in a variety of foodstuffs [23,24]. 
Propionic acid (PPA) is a weak organic acid that can cross 
the lipid bilayer of neuronal membranes and cause mild, 
reversible intracellular acidification, which can produce 
wide spread effects on neurotransmitter release involving 
glutamate, dopamine, and serotonin, each of which can 
influence locomotion and other behaviors [24-27]. PPA 
through oxidative mechanisms inhibits Na+/K+ ATPase 
and increases glutamate receptor sensitivity which can 
enhance neural depolarization leading to neural hyper 
excitability in brain regions linked to locomotors activity 
[28,29]. It also promotes intracellular calcium release, 
excessive levels of Ca2+ in the mitochondria can affect the 
mitochondrial metabolism, increase the oxidative stress 
and plays a key role in synaptic transmission in the brains 
of individuals with autism [30]. Increased PPA levels may 
interfere with overall cellular metabolism in tricarboxylic 
acid cycle where it interferes with the conversion of 
succinyl co-A to succinate for generation of FADH2which 
was consumed by the complex-II and further impairs the 
ATP synthesis leads to mitochondrial dysfunction and -
interfere with overall cellular metabolism [31]. A number 
of studies recently have reported that over 30-50 percent 
of children with autism have biomarkers of abnormal 
mitochondrial function suggesting that a relatively high 
percentage of individuals with autism might have some 
degree of mitochondrial dysfunction. Mitochondrial 
dysfunction has been demonstrated to be associated with 
neuropsychiatric conditions [32]. In case of autism 
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abnormal mitochondrial function in the dorsal prefrontal 
cortex was measured that significantly correlated with 
the severity of language and neuropsychological deficits 
in the autism [33]. Some of the symptoms of 
mitochondrial dysfunction, such as neurological 
disabilities, mental retardation, learning disabilities, 
seizures and gastrointestinal disturbances, are also 
present in a subset of individuals with autism [34]. The 
mitochondrial dysfunction was also occurs in cerebellum, 
temporal lobe, anterior cingulate cortex and thalamus 
[35]. 
 
     cAMP is recognized as universal cell regulator function. 
cAMP is produced from its precursor, ATP, through the 
catalytic activity of the ACs [36]. The balance of cAMP 
signaling is essential to multiple cellular processes, 
including immune function, growth, differentiation, gene 
expression and metabolism [37]. A member of 
neurotrophin family, BDNF (brain-derived necrosis 
factor), initially identified as a survival factor for 
peripheral neurons, has emerged as a critical factor that 
regulates synaptic development and plasticity in the 
central nervous system [38], where cAMP seems to be 
important for signaling & biological function of BDNF. 
Moreover, the survival of retinal ganglion cells by brain-
derived neurotrophic factor (BDNF) is dependent on 
cAMP [39]. cAMP can activate the cAMP dependent 
protein kinase (cAK or PKA), which in turn phosphorylates 
the cAMP responsive element binding protein (CREB) 
[40]. cAMP dependent PKA mediated activation of CREB 
which is a constitutively expressed transcriptive agent in 
the nuclei from hippocampal neurons, in the inner 
mitochondrial compartment as well as in the nucleus [41]. 
Elevation of cAMP causes both short and long-term 
increase in synaptic strength [42]. CREB was play a 
critical role in the neuronal survival and function 
including formation and retention of memory [43]. 
cAMP/PKA/CREB activation has too been reported to 
induce long term memory (LTP) potentiation and inhibit 
apoptotic and necrotic cell death [44,45]. Conversely, 
preclinical and clinical findings now suggest that impaired 
CREB phosphorylation may be a pathological component 
in neurodegenerative disorders [46]. 
 
     Forskolin a major diterpenoid isolated from the roots 
of Coleus forskohlii, directly activates the enzyme 
adenylcyclase thereby increasing the intracellular level of 
cAMP and leading to various physiological effects. There 
are several researches for neuroprotection but treatment 
options for autism are still limited to supportive care and 
the management of complications. At present many drugs 
are available but they provide only symptomatic relief, 
not stop progression of this typical disease. Thus, the 

development of new therapeutic strategies remains an 
unmet medical need. Failure of current drug therapy may 
be due to their action at only one of many 
neurotransmitters involved or their inability to up 
regulate signaling messengers reported to have important 
role in neuronal functioning, neurotransmitter 
biosynthesis and release neuronal growth and 
differentiation, synaptic plasticity and cognitive 
functioning. Mitochondrial dysfunction was occurs mostly 
in the autistic individuals, due to which there is decreased 
level of cAMP responsible for low production of ATP. 
Therefore, as already mentioned above, one of the 
alternatives to enhance the levels of cAMP secondary 
messengers or to enhance CREB phosphorylation can be 
achieved directly through a specific phytochemical 
Forskolin (FSK) obtained from Coleus Forskohlii which 
activates these cyclic nucleotides and further performed 
extensive neuroprotective functions in autism related 
disorders.  
  
     Based on important and versatile role of 
cAMP/PKA/CREB signaling in regulation of neuronal 
functioning, the present study was designed to investigate 
the role of cAMP mediated CREB activation in propionic 
acid (PPA) induced experimental Autism disease in rats 
and to find out if cAMP mediated CREB pathway is equally 
implicated in the disease pathogenesis or progression. 
Further the studies were extended to understand the 
disease pathogenesis and to investigate and discuss the 
various possible central mechanisms involved in the 
effect of such targets using behavioral paradigms and 
biochemical markers of neurodegeneration. 
 

Autism 

     Autism is the prototypical form of pervasive neuro 
developmental disorders (PDDs), characterized by 
complex behavioural impairments detectable as early as 
18–36 months of age. The slippages or shortfalls are 
frequently exhibits in province such as social interaction, 
communication, and are also associated with stereotypic, 
repetitive and restrictive behaviour and interests [1]. The 
disorder is commonly go along with sensory processing 
abnormalities, sleep problems, anxiety and depression , 
hyperactivity, aggression & self-injurious behaviours , 
seizures and eating or digestive problems, surrounded by 
others [47]. Autistic disorder was classified in the 
category of ‘pervasive developmental disorders’, which 
included 4 other disorders: (a) Asperger’s syndrome, 
which was distinguished from autism by the absence of 
language and cognitive delay, (b) disintegrative disorder 
of childhood, characterized by a period of normal 
development of 2–4 years followed by the onset of autistic 
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symptoms, (c) Rett’s syndrome, the genetic etiology of 
which is known and which affects only Girls, (d) pervasive 
developmental disorder not otherwise specified (PDD-
NOS) [48]. The conceptualization of these disorders has 
changed dramatically over the past 10 years, which is 
reflected in the DSM-5, the new edition of the DSM 
manual published in May 2013, which leading to the 
collapse of the earlier diagnostic categories of pervasive 
developmental disorders into a single category of autism 
spectrum disorder or ASD [49]. It is not surprising that 
the etiology of autism is thought to be similarly 
heterogeneous and multifaceted in nature. The broad 
spectrum in the definition of autism suggests that the 
disease may result from exposure to certain 
environmental agents instead of primarily a genetic 
disorder [50]. Imaging and neuropathological studies of 
autism patients have noted increased brain size, white 
matter abnormalities as well as increased neuronal 
density in neocortical, limbic and cerebellar areas [51]. 
Post-mortem studies have shown a reduction in neuron 
number in the amygdala, fusiform gyrus, and cerebellum, 
and signs of persistent neuroinflammation and also show 
the alterations in corpus collasum, hippocampus grey 
matter & white matter. In autism, altered immune 
processes affect a wide array of neuro developmental 
processes (eg, neurogenesis, proliferation, apoptosis, 
synaptogenesis, and synaptic pruning), with persistent 
active neuroinflammation, increased concentrations of 
pro-inflammatory cytokines in serum and cerebrospinal 
fluid, and altered cellular immune functions [52]. In 
autism, alterations in both serotonin and γ-aminobutyric-
acid (GABA) systems have been reported quite 
consistently, such as hyperserotonaemia and an altered 
developmental trajectory of brain serotonin synthesis 
capacity, and reduction in the expression of GABA 
synthetic enzymes and receptors [53,54]. 
 

History of Autism 

     A biological origin for autism was proposed even in the 
first scientific account of autism, which was followed by 
the first neurobiological account that dispelled some 
myths about autism [55]. Researchers observed similar 
behaviours in autism and in frontal lobe damaged 
patients. They found an impaired dentato-thalamocortical 
pathway, which plays a critical role in language and 
higher cognitive functions in autism. A decade later, using 
positron emission tomography (PET), found a global 
increase in resting glucose metabolism in adults with 
autism, which provided indirect support for autism being 
linked to abnormal brain activity .Furthermore, genetic 
studies starting from the 1980s have also helped 

emphasize the biological origin of autism by providing 
strong evidence of heritability [56]. 
 

Prevalence 

     Over the last 3 decades, a substantial increase in the 
prevalence of autism has been reported, from 4 to 5 per 
100,000 in the 1960s to around one in 45 children today. 
In the past decades, the prevalence of autism has shown 
rapid growth. The first prevalence estimate of autism, was 
4.5 per 10,000 (about one out of 2222) children aged 8 to 
10 in the southeast of England [57,55]. Autism was once 
thought to be relatively rare, but recent population-based 
studies in developed countries have reported a rise in 
prevalence estimates when the broader definition of 
autism (i.e. Autism Spectrum Disorder) is used to 
ascertain cases. The most recent reported highest 
prevalence estimate of autism in the US was 200 per 
10,000 (about one out of 50 people), in UK was 157 per 
10,000 (about one out of 64 people), and in Asia was 264 
per 10,000 (about one out of 38 people) an increase in 
prevalence has also been found in Sweden [58,59]. Hence, 
the increasing prevalence of autism appears to be a 
worldwide phenomenon. The prevalence of autism in 
children with epilepsy is higher than in the general 
population; with an estimated frequency varying from 5% 
to 32%.Previous studies consistently report a sex 
difference in the prevalence of autism of 4.5:1 males to 
females. Males with autism are more likely to exhibit 
repetitive and stereotyped behaviors, whereas females 
with autism have higher rates of severe cognitive and 
developmental delays [55]. Prevalence of autism has been 
reported to be two times higher in cities where many jobs 
are in the information-technology sector than elsewhere; 
parents of children with autism might be more likely to be 
technically talented than are other parents. 
 

Symptoms of Autism 

     Autism is associated with abnormalities in various 
brain regions such as the neocortex, hippocampus, 
amygdala, and basal ganglia, which mediate social 
interaction, communication and repetitive behaviors. 
From the original description of autism, repetitive 
behavior has been a defining feature of autistic disorder 
[60]. A wide range of specific forms of abnormal 
repetition has been identified in association with autism 
including stereotypy, rituals, compulsions, obsessions, 
insistence on sameness, echolalia, self-injury, tics, 
dyskinesia, akathesia, and perseveration. Such behaviors 
can be observed across individuals with autism, and 
multiple categories of abnormal repetition can occur 
within the individual with autism [61,62]. 
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Motor Symptoms: A growing body of research supports 
the presence of diverse motor impairments in persons 
with autism including motor anticipation, clumsiness, 
impaired postural control, dyspraxia, and impaired gross 
and fine motor movements. The motor deficits tend to be 
debilitating, since they can interfere with daily activities 
and academic achievement. 
 
Dyspraxia: The various forms of dyspraxia can exist 
together or separately in autism. Praxis is the ability to 
conceptualize, plan, and successfully complete motor 
actions in novel situations [63]. Developmental dyspraxia, 
that is, failure to have acquired the ability to perform 
appropriate complex motor action. Developmental 
dyspraxia is categorized around problems related to 
transitive gestures (pantomimed tool use), intransitive 
actions (symbolic gestures such as waving goodbye), 
imitative actions (such as imitating meaningless hand or 
body postures), motor planning, and difficulty 
conceptualizing novel ways to interact with objects 
[64,65]. 
 
Gait and Gross Movements: Within a decade, however, 
there was growing recognition that individuals with 
autism experience motor difficulties. Unusual gait, 
including slower pace, decreased step length, increased 
knee flexion, and unusual upper extremity positions 
during walking, were described in individuals with 
autism. Gross motor development (supine, prone, rolling, 
sitting, crawling and walking) and movement 
abnormalities were examined in the home videos of 
infants later diagnosed with autism [66,67]. 
 
Non-Motor Symptoms 
Repetitive behaviors: Repetitive behaviors appear in 
many other neuro developmental and neuropsychiatric 
disorders. Repetitive behavior refers to a broad class of 
responses characterized by their repetition, rigidity or 
inflexibility, and frequent lack of obvious function. 
Repetitive behaviors described in individuals with autism 
include stereotyped motor movements, repetitive 
manipulation of objects, repetitive self-injurious behavior, 
specific object attachments, compulsions, rituals and 
routines, an insistence on sameness, repetitive use of 
language, and narrow and circumscribed interests 
[68,61]. 
 
Anxiety: Anxiety is a real difficult for many adults with 
autism or Asperger syndrome. It can affect a person 
psychologically and physically. Anxiety, a behavioral 
symptom of autism, is characterized by psychological 
symptoms like easily losing patience, difficulty 
concentrating, difficulty sleeping, depression and thinking 

constantly about the worst outcome. The physical 
symptoms include excessive thirst, stomach upsets, loose 
bowel movements, frequent urinating (going to the loo), 
periods of intensely pounding heart, periods of having 
gas, muscle aches, headaches, dizziness, pins and needles 
and tremors. 
 
Cognitive dysfunctions: Cognition refers to the mental 
processes involved in perceiving, attending to, 
remembering, thinking about, and making sense. Autism 
are thought to have a specific profile of cognitive 
strengths and weaknesses - difficulties appreciating 
others' thoughts and feelings, problems regulating and 
controlling their behavior, and an enhanced ability to 
perceive details [69].  
 
Genetics in Autism 
     The heritability of a phenotype gives an indication of 
the extent to which it is controlled by genetic factors and 
can be calculated from concordance rates. Thus, the 
heritability of ASDs has been estimated to be 90%, 
making ASDs the most heritable of the childhood onset 
neuropsychiatric disorders. Syndromic autism, with a 
single gene etiology and co-occurring with other physical 
features in addition to autism, accounts for approximately 
10% of cases [70,71]. Non-syndromic ASDs represent the 
larger percentage of cases. The proposed genetic 
alterations are copy number variants (CNV’s), which 
cause gene dosage effects, and common genetic variation, 
such as single nucleotide polymorphisms (SNP’s).It has 
demonstrated that there is a direct correlation between 
the autism phenotype and the number of CNVs, with the 
number of CNVs in the parents of autistic children being 
intermediate between the pro bands and the controls. 
Hence, an increase in the number of CNVs increases the 
probability of developing autism. The copy-number 
variants (CNVs)—that are small gain or loss of genomic 
DNA—are robustly detected. De novo CNVs are present in 
4–7% of the patients with ASD compared with 1–2% in 
unaffected siblings and controls [72]. The most common 
CNV occurred at 15q11–q13.3. This region encompasses 
the UBE3A gene, deficiency of which we have shown in a 
mouse mutant specifically alters the hippocampal 
mitochondrial morphology and brain complex II/III 
specific activity. It is also found increase in the percentage 
of de novo CNVs in families with one affected child and 
implicated post-synaptic density genes such as SHANK3, 
NLGN4 and NRXN1, as well as other genes encoding 
proteins in the synaptic complex, such as DPP10 [73]. 
Several factors support a role for the dopamine b-
hydroxylase (DBH) gene, which has been mapped to 
9q34, in the etiology of autism. The DBH gene encodes a 
protein that catalyzes the conversion of dopamine to 
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norepinephrine [74]. The activity of the mitochondrial 
inner membrane calcium regulated aspartate/glutamate 
carrier (AGC) gene, SLC25A12, and/or its expression have 
also been reported to be increased in autistic patients, at 
least in part due to elevated levels of calcium in the brains 
of autism patients [75,76]. Glutamic acid decarboxylase 1 
(GAD1) gene and the distal-less homeo box (DLX) genes 
are attractive candidates based on their biological 
functions. These combinations of functional mutations in 
GAD1 and DLX genes may alter the inhibition/excitation 
ratio in some parts of the brain [77]. Human genetic 
studies have found a link between a short variant of the 
serotonin transporter allele (SERT) and autism [73]. Mice 
with targeted disruption of the Sert locus evidence 
marked decreases in brain serotonin levels, as well as 
decreased aggression, increased anxiety, and increased 
depression-related responses, including longer 
immobility in a forced swim task. The regulation of gene 
expression may be of importance in ASDs in keeping with 
GWAS and candidate gene studies [78]. 
 

Neurochemistry of Autism 

Serotonin in Autism: Serotonin, as a monoamine 
neurotransmitter and hormone, plays numerous roles and 
is a critical modulator of neuronal interaction that 
supports diverse behaviors and physiological processes, 
and acts via different specific transporters, receptors, and 
intracellular signaling pathways. Multiple lines of 
evidence implicate abnormal serotonergic signaling in 
psychiatric and neuro-developmental pathogenesis [79]. 
Serotonin reduces neural activation of inferior frontal and 
striatal inhibitory control regions and increases activation 
of cerebellum, temporal and parietal lobes. In autism 
decreased activation in right inferior frontal and 
increased activation in left inferior frontal cortices 
observed [80,81]. In autism abnormal activation in 
classical inhibition areas [82] of inferior frontal cortex, 
basal ganglia, thalamus and cerebellum; in frontal cortex, 
caudate and thalamus this was correlated to the severity 
of restricted, stereotypical and repetitive behavior. 
Individuals with autism have abnormalities in the 
serotonergic system including physiology, neurobiology 
and genetics [83]. Deregulation of the developing 
serotonergic system could occur by various mechanisms, 
including mutations in genes encoding transcription 
factors involved in specification and patterning of 5-HT 
receptors or neurons [84].  
 
     The disruption of the serotonergic system is one of the 
most consistent observations associated with autism [85]. 
Brains of individuals with ASD display significantly lower 
concentrations of serotonin compared with the brains of 

non autistic individuals [86]. A developmental peak in 
serotonin synthesis occurs in the brain before puberty 
and is thought to play a role in growth and differentiation 
of neurons during brain development. This peak fails to 
occur in children with autism [87]. Several studies have 
reported that approximately 1/3rd of all autistic 
individuals have elevated levels of whole blood (or 
platelet) serotonin [88]. Hyperserotonemia, which is 
believed to be caused by abnormal maturation of the 
serotonin system, is also suggested to be either directly or 
indirectly responsible for the immune abnormalities 
observed among autistic subjects [89,90]. The high 
serotonin concentrations in peripheral blood cells from 
individuals with autism have been suggested to be the 
result of increased serotonin synthesis in the gut; 
however, the cause of the elevated serotonin production 
in the gut [91]. In individuals with autism, further 
decreasing their brain serotonin by acute depletion of 
tryptophan exacerbates symptoms such as repetitive 
behaviors and facial recognition patterns revealing a 
continuing requirement for serotonin in modulating these 
behaviors. These data suggest that disruption in serotonin 
levels are linked to autism, although no underlying 
mechanism has been identified [92,93].  
 
Oxytocin in Autism: Oxytocin (OT) is a nanopeptide 
produced in the magnocellular neurosecretory cells in the 
supraoptic nucleus and the paraventricular nucleus (PVN) 
of the hypothalamus. It is released into the blood from the 
posterior lobe of the hypophysis, as well as directly from 
the perikarya, dendrites or axon collaterals of 
magnocellular neurons. OT fibers have endings in a 
variety of different brain areas, including the thalamus, 
the hippocampus, the amygdala, the pineal gland and the 
cerebellum [94]. In humans, OT regulates social 
interactions, social cognition, social behavior and fear 
[95-97]. Rodents with abnormal OT have been proposed 
as potential animal models for autism [98,99]. Studies 
done in autistic children have shown decreased plasmatic 
OT [100]. More recently it has been reported that mean 
plasma oxytocin levels do not differ between autism and 
comparison groups; rather, levels were observed to be 
positively associated with social functioning across 
groups [101]. 
 
Melatonin in Autism: Sleep problems in autism might 
occur as a result of complex interactions between genetic 
and social/environmental factors [102]. Proposed 
hypotheses of sleep dysregulation in autism include 
abnormalities in the hypothalamic–pituitary–adrenal axis 
regulating circadian rhythms and alteration in 
hormone/neurotransmitter (melatonin/serotonin) 
production [103]. It was hypothesized that abnormalities 
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in melatonin secretion may play a role in the development 
of autism [104]. The biosynthesis and molecular action of 
melatonin (5-methoxy-N-acetyltryptamine) have been 
thoroughly studied. Melatonin is mainly synthesized by 
the pinealocytes in the pineal gland [105]. Sleep problems 
in children with autism spectrum disorders are common, 
with a prevalence of 44–83% [106] and contribute to 
significant morbidity in children and to familial stress. It 
is produced by the conversion of serotonin to N-
acetylserotonin (NAS) by the rate-limiting enzyme AA-
NAT (arylalkylamine N-acetyltransferase), followed by 
the conversion of N-acetylserotonin to melatonin by 
ASMT (acetylserotonin methyltransferase), and also 
known as HIOMT (hydroxyindole O-methyltransferase) 
[107]. Levels of acetylserotonin methyltransferase, an 
enzyme necessary for the production of melatonin, have 
been found to be significantly lower in individuals with 
autism compared with control subjects [108]. NAS is 
intermediate metabolite it is an agonist of the TrkB 
receptor and may therefore share the neurotrophic 
properties of brain-derived neurotrophic factor, the 
canonical TrkB ligand [109,110]. The intermediate NAS 
might also be altered, which causes the alterations of the 
serotonin-NAS–melatonin pathway which might 
constitute a possible biomarker for a subgroup of 
individuals with autism [111]. 
 

 

Figure 1: Chemical Structure of the Melatonin. 
 
     At a metabolic level, NAS is an inhibitor of 
tetrahydrobiopterin synthesis, a cofactor of several 
pathways such as nitric oxide formation and 
tyrosine/bioamine synthesis. Thus, in addition to the 
possible consequences of alterations of serotonin and 
melatonin, NAS accumulation may have implications for 
the pathophysiology of autism [112-114]. ASMT is also an 
excellent candidate for susceptibility to ASD because it 
encodes the last enzyme in the melatonin biosynthesis 
pathway [115]. Melatonin has been reported to have 
many actions in humans, including effects on sleep, 
regulation of circadian rhythm, oxidation of free radicals, 
augmentation of immune responses, and inhibition of 
reproductive processes, as well as antiaging properties 
[116,117]. Autistic disorder is signalized by 
communication and social interaction impairments 

associated with repetitive interests and behaviors, 
improvement of communication, social withdrawal, 
stereotyped behaviors and rigidity or anxiety was 
reported in children with autism using melatonin [118-
121]. Although melatonin is best known for its role as a 
key regulator of the circadian rhythm, it is also a potent 
antioxidant, has anti-inflammatory properties, is involved 
in the immune response, and helps regulate synaptic 
plasticity [105]. It have shown that blood melatonin and 
nocturnal excretion of 6-sulphatoxymelatonin (6-SM), the 
predominant metabolite of melatonin, are reduced in 
children with autism [122], due to genetic abnormalities 
influencing the enzyme necessary for the production of 
melatonin. 
 
Dopamine in Autism: Dopamine (DA) is a catecholamine 
that is synthesized from the dietary amino acid tyrosine. 
Once ingested, tyrosine is hydroxylated (by tyrosine 
hydroxylase) into L-dihydroxyphenylalanine (L-DOPA). 
This is the rate-limiting step of the synthesis of dopamine. 
L-DOPA is then converted to dopamine via the enzyme 
DOPA decarboxylase [123]. In general, the dopaminergic 
system is thought to affect a wide range of behaviors and 
functions, including cognition, motor function, brain-
stimulation reward mechanisms, eating and drinking 
behaviors, sexual behavior, neuroendocrine regulation, 
and selective attention [124]. Dysfunction in 
dopaminergic signaling may be an underlying cause of 
autism [125]. The dopamine (DA) transporter (DAT) 
plays a critical role in regulating the strength of 
dopaminergic tone by clearing extracellular DA [126]. The 
neurobiology of repetitive and stereotyped behaviors is 
only partially understood but the basal ganglia—frontal 
lobe circuitry plays an important role [127]. Part of this 
circuitry is regulated by the dopamine system, which may 
explain the high prevalence of motor rigidity and 
cognitive rigidity in ASD. It has been reported that 
dopamine is increased in frontal cortex (FC) [128]. Hyper 
activation of the DA system in people with autism has 
been suggested by several clinical reports [129]. Maternal 
stress and its resulting increase in corticosteroid levels 
elevates DA activity and is a major risk factor for 
numerous neuro developmental disorders, including 
autism [130,131]. Three sets of findings comprise the 
main evidence that over-activation of DA systems 
represents the most characteristic brain dysfunction in 
autism. They are: (1) the link between 
hyperdopaminergic activity and the various behaviors 
characteristic of at least high-functioning autism; (2) the 
relation between autistic deficits and right-hemispheric 
dysfunction; and (3) pharmacological evidence, including 
assays of DA activity and efficacy of anti-DA treatments 
[132]. An autistic patient is a characterized by 
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impairments in communication and social interaction as 
well as patterns of restrictive, repetitive interests and 
behaviors during early childhood. All of these 
disturbances can be traced, in varying degrees, to DA 
over-activation. Use of medications during pregnancy was 
identified byas being one of the prenatal factors most 
frequently related with autism. DA is highly vulnerable to 
a variety of direct and indirect prenatal influences, and 
the prenatal-DA link in autism is precisely accentuate by 
the finding that mothers of autistic children are twice as 
likely to have two missing alleles for the dopamine-beta-
hydroxylase (DBH) enzyme, thereby dominant to 
chronically high maternal DA levels because of the failure 
to follower DA to NE by means of the DBH enzyme 
[133,134]. 
 
Glutamate in Autism 
     Glutamate is the most prominent excitatory 
neurotransmitter. Glutamate modulates synaptic 
plasticity, vital to memory, learning and regulation, and 
modulates gene expression. Overstimulation of glutamate 
receptors leads to excitotoxicity, creating oxidative stress, 
mitochondrial damage and ultimately may play a role in 
neurodegeneration [135]. Glutamate receptors are 
divided into metabotropic and ionotropic receptors are 
further classified into the following three families: N-
methyl-D-aspartate (NMDA), α-amino-3-hydroxy-5-
methyl-4-isoxazolepropionic acid (AMPA), and Kainate. 
Several researchers have postulated that glutamate 
dysfunction may play a role in autism [136]. It was 
suggested that hyperglutamatergia in the brain is 
involved in the pathophysiology of autism. Levels of GAD 
65 kDa and GAD 67 kDa proteins, both of which are 
involved in converting glutamate to GABA, are reduced in 
the brains of individuals with autism, resulting in 
increased levels of glutamate in the brain substrate [137]. 
According to previous studies, in autism the involvement 
of glutamate levels in four brain regions which are 
bilateral anterior cingulate, left striatum, left cerebral 
hemisphere, and left frontal lobe. As cerebellum is 
involved in several processes that include cognitive, 
affective and sensory functions in addition to motor tasks. 
Attention related cerebellar function is usually reduced in 
autistic individuals [138]. Another study relates anterior 
cingulate dysfunction to deficits in joint attention and 
social orienting in autism [139], and different parts of the 
striatum may participate in different types of memories 
[140]. In addition, the frontal lobe is central to many 
functions that are associated with autism, such as 
language and executive functions such as working 
memory, inhibition, planning, organizing, set-shifting, and 
cognitive flexibility [141]. An excess of extra neuronal 
glutamate can interfere with neuronal migration patterns, 

differentiation and synaptic development, resulting in 
varying degrees of abnormal brain architecture and hence 
differing severities of autistic features [142]. The 
increased probability of epilepsy in patients with autism 
suggests enhanced glutamatergic signaling with positive 
correlation between plasma levels of glutamate and the 
severity of autism and increased expression of mRNAs 
encoding the AMPA 1 receptor in the cerebellum of 
autistic patients [143,144]. The mRNA levels of genes, 
including excitatory amino acid transporter 1 (EAAT 1) 
and AMPA-type glutamate receptor, are significantly 
increased in the brain of autism, suggesting abnormalities 
of glutamatergic neurotransmission in the pathogenesis 
of this disorder [145]. Activation of ionotropic glutamate 
receptor, AMPA, kainite and NMDA opens ion channels for 
sodium ions and Ca2+. Overstimulation of NMDA 
receptors is one of the mechanisms for Ca2+ overload in 
neurons and glutamate neurotoxicity [146,147]. Excessive 
activation of the NMDA receptors increase intracellular 
Ca2++ concentrations, triggering a series of cell signaling 
systems, which can cause an increase in cellular ROS, RNS, 
and LPP, and activate the inflammatory prostaglandin 
reactions. By increasing the activity of inducible nitric 
oxide (NO) synthetase, glutamate increases intracellular 
NO, which in the presence of increased levels of 
superoxide can generate high levels of peroxynitrite. 
Peroxynitrite is very toxic to mitochondria energy-
producing enzymes. Reducing cellular energy production 
has been shown to greatly magnify excitotoxicity to a 
degree where even physiological levels of glutamate can 
become excitotoxic [148]. 
 
Gaba in Autism 
     Gama amino butyric acid acts as an inhibitory 
neurotransmitter, during the perinatal period it 
depolarizes targeted cells and triggers calcium influx. 
GABA-mediated calcium signalling regulates a number of 
important developmental processes which include, cell 
proliferation, differentiation, synapse maturation, and cell 
death [149]. A dysfunction of the GABAergic signaling 
early in development leads to a severe 
excitatory/inhibitory (E/I) imbalance in neuronal circuits, 
a condition that may account for some of the behavioral 
deficits observed in patients with autism [150]. There is 
abundant evidence of GABAergic dysfunction in autism 
including: (1) Gene association studies with linkage to a 
number of genes for GABAergic signaling molecules with 
increased risk of autism; (2) Reduction of GABA binding 
sites; (3) Reduced expression of glutamic acid 
decarboxylase (GAD) 65 and 67 kDa proteins and Mrna 
which are responsible for the conversion of glutamate to 
GABA; and (4) Altered expression of GABAA and GABAB 
receptor subunits in brains of subjects with autism [151-
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159]. An increasing body of evidence suggests that a 
down regulation of GABAergic function is critical in 
autism associated epilepsy. Quantitative autoradiographic 
studies examining the density and distribution of 
GABAergic receptor subunits indicated a down regulation 
of GABAergic function in the hippocampus of autism 
patients with seizures [160].  
 
The 50% reduction in GAD65/67protein levels was 
reported in the cerebellum and parietal cortex of ASD 
patients [156]. Reduced levels of GAD67 and GAD65 
mRNAs were also detected in Purkinje cells and dentate 
nuclei neurons in the cerebellum from ASD [161]. 
 

 

Figure 2: Neurotransmitters in Autism. 
 
     The level GABA, glutamate/GABA and 
glutamine/glutamate ratios are significantly lower in 
patients with autism compared to normal controls, thus 
suggesting a possible abnormality in the regulation 
between GABA and glutamate that might lead to 
excitotoxicity [162,163]. 
 
Acetylcholine and Cholinergic Receptors: Acetylcholine 
(ACh) is implicated in various neurological processes such 
as plasticity, cognition, memory, release of other 
neurotransmitters and so on, especially in the central 
nervous system [164,165]. The receptor binding (M1) and 
nicotinic receptors subunits are low in autistic subjects, 
which indicate a specific abnormality in cholinoceptive 
function, since the M1 receptor is located post 
synaptically. The binding abnormality reflected a low 
number of receptors. This could be related to epilepsy, 
which occurs in up to 40% of autistic children [166]. 
Along with, decreased choline peak was observed in the 
gray matter and temporal lobe of autistic patients. All of 

these studies implicate that ASD patients may have 
dysregulated cholinergic system in the brain [167]. 
 

Brain regions & Neuropathophysiology in 
Autism 

Cerebellum & Autism: The cerebellum comprises 10% of 
total brain volume, termed the “little brain,” but contains 
more neurons than the rest of the brain and has the 
highest cell density of any brain area, approximately four 
times that of the neocortex [168]. Although many regions 
have been found to be abnormal in the postmortem 
autistic brain, one of the most consistently described 
abnormal structures has been the cerebellum and regions 
related to it [169]. Histopathological changes in the 
cerebellum have been observed in almost all postmortem 
brains of autistic individuals. The most consistent 
neuropathological finding in autism is the loss of Purkinje 
cells (PCs) [170,171]. Reduced packing density of PCs and 
reduced PC size [172], have been reported in autistic 
brains. Further observed cerebellar pathology in ASD 
includes a reduction of GCs and hypertrophy and atrophy 
of cerebellar nuclei [173,174]. Cerebellar involvement in 
coordinated movements has been well described [175], 
and previous studies indicates that the cerebellum plays 
an important role in non-motor functions as well [176]. 
The cerebellum is central in a wide range of functions 
sometimes found to be impaired in autism, including 
timing and coordination of movement, motor learning, 
evaluation of the match between intention and action, 
predictive learning, environmental exploration, 
behavioral inhibition, attention, and visual orienting. In 
particular, the cerebellar vermis is associated with 
modulation of limbic functions including emotion, sensory 
reactivity, and salience detection. The cerebellar 
hemispheres have been linked to several higher order 
cerebral functions including language, working memory, 
planning, and behavioral sequencing [177]. Numerous 
imaging studies have reported cerebellar hypoplasia in 
autism, specifically smaller cerebellar vermal lobules VI 
and VII which is associated with ASD symptoms, including 
reduced exploration and increased stereotyped and 
repetitive movements. Voxel-based morphometry studies 
have reported both increases and decreases in cerebellar 
grey matter and white matter [178-180]. Further analysis 
of brain alterations seen in patients with autism reveal 
changes to the acetylcholine (ACh) system in both the 
cerebellum and forebrain [181]. In addition, there was a 
65–73% reduction in nicotinic receptor binding in the 
frontal and parietal cortical areas that receive 
connections from the cerebellum [182]. Taking into 
consideration that about 30–40% of autistic patients have 
been diagnosed with a seizure disorder, perhaps these 
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alterations in cerebellar and/or forebrain 
neurophysiology are responsible for the stereotyped 
behaviors as well as the seizures seen in autism spectrum 
disorders [183]. Some studies demonstrate that 
cerebellar lesionsalone, without accompanying lesions of 
the basal forebrain cholinergic system, alter the 
exploration behavior of adult rats, this reduction of 
exploration behavior is due to reductions in 
intracerebellar inhibition that is mediated via Purkinje 
cells, leading to decreases in inhibitory behavioral control 
[184]. 
 
Cerebral Cortex & Autism: Several studies showed that 
impaired maturation of the GABAergic circuitry results in 
an immature structure and function of the cerebral cortex, 
that remains more plastic and sensitive to alterations in 
sensory inputs [184,185]. A 50% reduction in GAD65/67 
protein levels was reported in the cerebellum and parietal 
cortex of autism patients [186]. GABAB receptors were 
also reduced in restricted regions of the cerebral cortex in 
autism patients [187]. Some have demonstrated 
reductions in functional connectivity [188]. There were 
weaker connectivity reported in most of the studies was 
between the prefrontal cortex and relatively posterior 
brain areas. Poor prefrontal-posterior coordination can 
affect higher-level processing, and may underlie the 
difficulty in cognitive, social and language processing 
witnessed in autism [190]. There were significantly 
higher microglial densities in the subjects with autism 
compared to the control subjects, and that this change in 
microglial density is widespread throughout the cerebral 
cortex in autism [191]. In autism there are significantly 
increased cytokines in frontal cortex and elevated levels 
of cytokines in the cerebrospinal fluid compared to 
control subjects and there is evidence for immune system 
dysfunction in the development of autistic children 
[191,192]. 
 
Hippocampus & Autism: Emerging evidence especially 
implicates the hippocampus as being involved in 
modulating contextually adequate emotional behavior, 
social behavior, and aggression in addition to its role in 
cognitive functions [193-195]. Systematic survey of the 
forebrain in infantile autism has shown reduced neuronal 
cell size and increased cell packing density confined to the 
limbic system [196]. There are several neuropsychiatric 
disorders are associated with altered social 
endophenotypes, these findings raise the possibility that 
CA2 dysfunction may contribute to behavioral changes. 
This possibility is supported by findings of a decreased 
number of CA2 inhibitory neurons in hippocampus and 
altered vasopressin signalling in autism [197].The 
GABAergic system has emerged as a potential candidate 

because some studies have found a statistically significant 
reduction in the density of benzodiazepine binding sites 
and GABAA receptors in the hippocampus. The 
neuropathological findings of the decreased numbers of 
GABAergic Purkinje cells and altered cerebellar nuclei 
suggest that this deficit in the GABAergic system may be 
widespread in the autistic brain [198]. 
 
     Recently, an increasing number of reports support the 
hypothesis that immune dysfunction plays a role in 
autism [199]. It was determined IgA affects the synaptic 
plasticity of rat hippocampal slices. The results show that 
LTP decreases are observed in hippocampus isolated 
from both normal rats perfused with this antibody and 
hippocampus isolated from animals previously inoculated 
with this autoantibody and perfused with artificial 
cerebrospinal fluid (ACSF) alone [200]. 
 
Oxidative Stress & Autism 
     Oxidative stress is known to be associated with 
premature aging of cells and can lead to inflammation, 
damaged cell membranes, autoimmunity, and cell death. 
The brain is highly vulnerable to oxidative stress due to 
its limited antioxidant capacity, higher energy 
requirement, and high amounts of unsaturated lipids and 
iron [201].  
 

 

Figure 3: Role of oxidative stress in Autism. 
 
     The brain makes up about 2% of body mass but 
consumes 20% of metabolic oxygen. The oxidative stress 
in autism could result from (1) the exposure to high levels 
of environmental pro-oxidants such as pesticides or 
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mercury (Hg), (2) the inability to metabolize and clear 
toxicants such as heavy metals from the system, (3) 
decreased internal antioxidant defense mechanisms, or 
(4) increased sensitivity to oxidative stress [202-211]. 
The hypothesis that reactive oxygen species (ROS) play an 
important role in autism as well as other psychiatric 
disorders remains speculative and there have been 
studies to test this hypothesis [212]. ROS including 
superoxide anion radical (O2 ), hydroxyl radical (SOH), 
hydrogen peroxide (H2O2), singlet oxygen (1O2) and 
nitric oxide (NOS) may lead to cellular injury when they 
are generated extremely or the antioxidant defense 
systems are destructed [213]. It was reported that lipid 
per-oxidation is increased in the plasma of children with 
autism as compared to their developmentally normal, 
non-autistic subjects. Malonyldialdehyde (MDA) is an end 
product of peroxidation of polyunsaturated fatty acids 
and related esters, and is, therefore, used as a marker of 
lipid peroxidation [214]. Methylation has an important 
role in the synthesis of myelin basic protein, an essential 
component that confers compactness to myelin. This is a 
critical step because the correct synthesis and assembling 
of myelin are fundamental in the development of the 
central nervous system [215]. In addition, decreased DNA 
methylation increases expression of genes under the 
negative influence of methylation, disrupting epigenetic 
silencing of chromosomal regions linked to autism and 
leading to developmental delay, deficit in attention, and 
neuronal synchronization, which are typical hallmarks of 
autism [216]. Several lines of evidence have 
demonstrated that patients with autism show the 
decreased levels of main scavenger enzymes, such as 
superoxide dismutase (SOD), catalase (CAT) and 
glutathione peroxidase (GSH-Px), in serum. In addition, 
oxidative stress levels in the cortex and the cerebellar 
vermis are also elevated. A proposal has been made that 
an elevation of oxidative stress in parts of the brain can 
impair or disturb brain development resulting in the 
clinical manifestation of autism [14]. 
 

Immune Dysregulation & Neuroinflamation in 
Autism 

     A common finding is an elevated number of auto 
antibodies that react against the brain and central 
nervous system in children diagnosed with autism when 
compared to suitable controls [217]. Maternal immune 
activation (MIA) is regarded a principal nongenetic cause 
of autism. Animal models of MIA exhibit strong face and 
construct validity for human autism. Importantly, 
offspring of immune-activated mothers exhibit the 
cardinal diagnostic symptoms of autism; in mice, MIA 
offspring exhibit decreased number and quality of 
ultrasonic vocalizations, as a primary mode of 

communication, in addition to altered olfactory 
communication, impaired social interactions, and 
elevated repetitive marble burying and self-grooming, 
among other autism-related behavioral abnormalities 
[218]. It is also reported that MIA induces activation of 
microglia in the fetal brain and alters neurogenesis [219]. 
There are several immune-related environmental and 
genetic risk factors found to increase autism risk, 
emerging evidence highlights a role for postnatal immune 
dysfunction in the clinical manifestation of autism 
symptoms. Striking immune abnormalities are seen in the 
brains and periphery of autistic individuals [220]. It was 
reported that a histologic analysis of the brain tissue of 
children diagnosed with autism showed signs of classic 
inflammation in the areas where excessive growth was 
registered, thus demonstrating an involvement of 
astroglial and microglial cells with no lymphocyte 
infiltration or immunoglobulin deposition in the central 
nervous system (CNS) [221,222]. A relatively well-
replicated pathology observed in postmortem brains from 
autism patients is increased microglial abundance and 
activation [223]. It is of great interest that a numbers of 
studies have demonstrated abnormalities in innate 
immune function in autism. Significant findings include 
alterations in natural killer (NK) cell activity [223]. In 
circulation, the numbers of NK cells are 40% higher in 
children with autism compared with controls [224]. 
Dendritic cells serve a central role in many immune 
functions [225]. They are highly phagocytic and express 
many innate pattern-recognition receptors that capture 
pathogen associated molecular pattern molecules 
(PAMPs) on microbes or damage-associated molecular 
pattern molecules (DAMPs) of endogenous tissues. 
Dendritic cells undergo maturation steps, after binding of 
these ligands/antigens, that increase mobility for 
migration, express chemokine receptors for homing to 
lymphoid organs, produce chemokines to recruit other 
immune cells, up regulate MHC class II molecules and co-
stimulatory molecules for priming of naïve T cells or 
stimulation of effectors T cells and secrete large 
quantities of cytokines that polarize or modulate 
neighboring immune cells [226-228]. The release of 
cytokines such as TNFa from dendritic cells may also 
reduce mitochondrial function that has been associated 
with autism [229]. Data from the current study shows 
that there are increased circulating frequencies of blood 
myeloid dendritic cells in young children with autism 
[230]. There are also several lines of indirect evidence 
that suggest altered B-cell dysfunction is present in 
individuals with autism. The primary role of B-cells is the 
production of immunoglobins against pathogens [231]. In 
autism, lower circulating levels of IgA have previously 
been reported [232]. Reduced production of the IgM and 
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IgG classes of immunoglobins has been reported, with 
lower levels found to correlate with more aberrant 
behaviors [233]. 
 
     It also suggests that inflammation of the CNS may be 
important in autism. This is supported by a study finding 
evidence of neuroinflammation in the post-mortem brain 
including activated microglia astrocytes. In autism 
neuroinflammation is observed, these findings include 
prominent microglia activation and, increased 
inflammatory cytokine and chemokine production, 
including interferon (IFN)-c, IL-1b, IL-6, IL-12p40, tumor 
necrosis factor (TNF)-a and chemokine C–C motif ligand 
(CCL)-2 in the brain tissue and cerebral spinal fluid 
[220,223]. Cytokines are proteins that control the 
intensity, duration, and type of immune response. 
However, cytokines are also involved in brain 
development and synaptic functions including processes 
of differentiation, migration, proliferation, and behavioral 
impairments [229,234]. Poor communication and 
impaired social interaction seems associated with 
elevated levels of cytokines [235]. Many of these 
cytokines are induced by the activation of the NF-κB 
transcription factor, a critical factor in inflammation and 
apoptosis, which is found at increased levels in peripheral 
blood mononuclear cells in autism. Increased levels of 
TNF-α and its capacity to block synaptic communication 
are the most consistent and typical finding in autism 
brain, cerebrospinal fluid and blood cells. Increased TNF-
a production was also associated with increased 
stereotypical behaviors a hallmark symptom of autism 
[235,236]. A higher number of monocytes and increased 
plasma concentrations of IL-8, which indicates abnormal 
inflammatory activity in children with autism [237]. 
 
Amygdala & Autism: Amygdala is sensitive to 
environmental signs of emotional and social significance. 
The social status has been found to be linked to the 
degree of amygdala activation [238]. Dysfunction of the 
amygdala has been found to be related to disorders of fear 
processing, anxiety, and even social behaviors [239,240]. 
There has been particular interest in the role of the 
amygdala in the development of autism. Emotion and 
facial processing has also been noted in autistic individual 
due to altered amygdala activation [241]. Structural MRI 
studies have provided evidence for abnormal amygdala 
development in autism. In young children with autism, 
ages 2–5 years, there is substantial evidence for abnormal 
amygdala enlargement relative to typically developing 
controls [242]. Postmortem have reported an increased 
cell packing density and smaller neuronal size in limbic 
regions including the amygdala in autism [243]. 
Physiological activation of the basolateral nucleus of the 

amygdala (BLA) in rats, by either blocking tonic 
GABAergic inhibition or by enhancing glutamate or the 
stress-associated peptide corticotropin releasing factor 
mediated excitation, causes reductions in social behaviors 
[244]. Previous studies reported both amygdala 
hyperactivation and hypoactivation triggered by faces 
[245,246]. It was hypothesized that individuals with 
autism would show reduced eye movements toward the 
eyes along with decreased amygdala activity when 
starting fixation on the mouth (in accordance with 
reduced orientation) and/or enhanced eye movements 
away from the eyes accompanied by increased amygdala 
activity when starting fixation on the eyes (in accordance 
with avoidance), compared with controls [247]. Grey 
matter density in the junction area between the amygdala, 
hippocampus and entorhinal cortex on the medial aspect 
of the rostral temporal lobe was found to correlate with 
ratings of autistic behavior. One potential mechanism is 
decreased amygdala habituation. Habituation refers to 
decreased neural response with the repeated 
presentation of a stimulus [248,249]. The ventromedial 
prefrontal cortex (vmPFC) is thought to be involved in 
amygdala habituation. Animal models have shown that 
the vmPFC regulates amygdala activity by signaling 
inhibitory interneuron’s in the amygdala [250]. In 
humans, stronger vmPFC amygdala connectivity predicts 
greater amygdala habituation [251]. Moreover, the 
density of serotonin receptors in the medial PFC, part of 
the pathway providing negative feedback to the amygdala, 
correlates with amygdala habituation in healthy adults 
[252]. Therefore, abnormal functioning of this circuit may 
relate to decreased amygdala habituation in autism. Using 
eye-tracking methodology, some studies have found 
reduced eye contact in autism [253]. Individuals with 
autism have also been shown to have abnormal amygdala 
activation when fixating the eyes of faces [246], 
buttressing the hypothesis that one of the key neural 
structures responsible for impaired eye gaze in autism is 
the amygdala. The extensive projections from the basal 
and accessory basal nuclei of the amygdala to the ventral 
striatum also provide further theoretical rationale for an 
amygdala involvement in restricted repetitive behavior 
(RRB) [254]. 
 
Basal Ganglia & Autism: There is increasing evidence 
that autism is associated not only with impairments in 
development of social and communicative skills but also 
with impairments in motor skill development, including 
clumsy gait, poor muscle tone, and imbalance [255,256]. 
There is some evidence that the basal ganglia are 
important for postural changes necessary to initiate and 
maintain locomotion [257]. The basal ganglia surround 
the diencephalon and are made up of five subcortical 
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nuclei: globus pallidus, caudate, putamen, substantia 
nigra, and the subthalamic nucleus (STN) of Luys [258]. 
The finding that motor dysfunction may underlie some of 
the core features of autism [259]. Some findings are also 
particularly interesting as the basal ganglia are implicated 
in cognitive and motor control and have been linked 
specifically to repetitive and restricted behaviours in 
autism [260]. 
 
Mitochondrial Dysfunction & Autism: Most neuronal 
ATP is generated by mitochondrial oxidative 
phosphorylation (OXPHOS), neurons critically depend on 
mitochondrial energy metabolism and oxygen supply to 
execute the complex processes of neurogenesis, 
neurotransmission and synaptic plasticity [261]. By 
generating energy and regulating subcellular calcium and 
redox homoeostasis, mitochondria play an important role 
in controlling fundamental processes in neuroplasticity, 
including neural differentiation, neurotransmitter release 
and dendritic remodelling [262]. Mitochondrial 
dysfunction can result in certain clinical phenotypes such 
as developmental delay, hypotonia, ophthalmoplegia, 
muscle weakness, cardiomyopathy and lactacidosis [263] 
and affects mainly the highly oxidative tissues including 
brain, heart, muscle, kidney, as well as the metabolic 
systems playing a major role in diabetes, obesity, and in a 
range of neurodegenerative and neurodevelopment 
diseases [264]. Mitochondrial dysfunctions play a central 
role in the etiology of autism. Association between 
mitochondrial dysfunction and autism was first suggested 
over 20 years ago; [265] and it was hypothesized that 
individuals with autism may have an abnormality in 
carbohydrate metabolism, and autism may be a disorder 
due to impaired mitochondrial function and abnormal 
brain bioenergetics [266]. Mitochondrial dysfunction can 
result in the relative increase in the excitatory-to-
inhibitory ratio observed in autism [267]. Recent 
evidence has unveiled an alteration of mitochondrial 
aspartate/glutamate carrier 1 and calcium homeostasis 
and impairment in the mitochondrial electron transfer 
chain in the pathogenesis of autism [268]. Biomarkers of 
fatty acid elongation and desaturation, namely poly-
unsaturated long-chain fatty acids (PUFA) and/or 
saturated very long chain fatty acids (VLCFA) containing 
ethanolamine phospholipids, were significantly elevated 
in autism, as a consequence of impaired mitochondrial 
beta Oxidation [269]. Mitochondria have an important 
role in lipid metabolism, previous reports of 
abnormalities in lipid metabolism and lipid peroxidation 
in some individuals with autism could be due to 
mitochondrial dysfunction [270]. It was also reported 
that, brain region-specific deficit in the protein expression 
of ETC complexes (I, II, IV & V) in the cerebellum, and 

cortices from frontal and temporal regions of the children 
with autism [271]. 
 

Toxin Models of Autism 

     There has been growing interest in the possible 
involvement of a variety of environmental agents, such as 
chemical toxins and infectious agents which could act 
during critical periods of pre and early postnatal 
development [17]. These observations have led to the 
development of a number of animal models based on 
exposing rodents to thalidomide or valproic acid during 
the prenatal period [18]. One relatively new potential 
autism model is the propionic acid (PPA) rodent model 
developed in our laboratory [272,273]. In this model, it 
was hypothesize that PPA, and/or related enteric fatty 
acids, may be candidate environmental factors involved in 
the pathophysiology of some types of autism. 
 
Propionic Acid & Autism: Propionic acid (PPA) is a short 
chain fatty acid formed endogenously in the human body 
as an intermediate of fatty acid metabolism and a 
metabolic end product of enteric gut microbiota such as 
clostridia and propionibacteria [21,22]. Researchers have 
demonstrated that PPA intraventricularly infused to rats 
provides a suitable animal model to study autism. Being a 
weak organic acid, PPA exists in ionized and nonionized 
forms at physiological pH allowing it to readily cross lipid 
membranes, including the gut–blood and blood–brain 
barriers.PPA and other short-chain fatty acids (i.e. 
butyrate and acetate) [272,273], affect diverse 
physiological processes such as cell signaling, 
neurotransmitter synthesis and release, mitochondrial 
function, lipid metabolism, immune functions, gap 
junctional gating, and modulation of gene expression 
through DNA methylation and histone acetylation [274]. 
Initial studies using this rodent model revealed that 
repeated brief infusions of PPA into the lateral cerebral 
ventricles (i.e. AP 1.3 mm, ML 1.8 mm, DV 3.0 mm) of 
adult rats produced behavioral, biochemical, 
electrophysiological and neuropathological effects 
consistent with those seen in autism[275]. PPA through 
oxidative mechanisms inhibits Na+/K+ ATPase [29,30] 
and increases glutamate receptor sensitivity which can 
enhance neural depolarization leading to neural hyper 
excitability in brain regions linked to locomotor activity.  
 
     Mitochondrial dysfunction has been well established to 
occur and play an important role in the pathogenesis of 
autism [8]. Preliminary magnetic resonance spectroscopy 
studies showed decreased synthesis of ATP and a 
disturbance of energy metabolism in the brain of 



                   Virology & Immunology Journal 

 

Mehan S. Clinical Therapeutic Strategies to Ameliorate the Mitochondrial ETC Complexes 
Dysfunctions in Autism: First Time from India. Virol Immunol J 2017, 1(5): 000125.  

   Copyright© Mehan S. 

 

            14 

individuals with autism.PPA is also capable of altering 
dopamine, serotonin, GABA and glutamate systems in  
 
 

amanner similar to that observed in autism [25-28]. 
 
 
 

 

Figure 4: Intraventricular injection of PPA inducing neurotoxic effect in mitochondrial respiratory chain (ETC). 
 
Valproic Acid, Thalidomide & Autism: Valproic acid or 
sodium valproate induced, is also a well established 
model for autism in rodents such as rats and mice, to 
evaluate exact pathophysiological mechanism and 
therapeutic drugs [276]. In some reports, administration 
of VPA on 12.5 day of gestation developed autism 
manifested by lowered body weight gain, impaired 
olfactory discrimination, reduced swim performance, 
delayed eye opening and behavioural aberrations such as 
decreased sensitivity to pain, increased locomotor activity 
in novel environment, associated with decreased 
exploratory activity, increased anxiety in elevated plus 
maze, decreased social explorations in both adolescence 
and adulthood period [277]. 
 
     However, Thalidomide, an anti-nausea drug used by 
pregnant women between 1957 and 1962 was shown to 

be linked to a marked increase in the incidence of autism 
in their offspring [278]. 
 

Cyclic Neucleotides 

     Cyclic nucleotides have been implicated as intracellular 
messengers mediating the action of several 
neurotransmitters in the central nervous system (CNS) 
[279]. In the normal physiological conditions, cyclic 
nucleotides regulates many biological processes such as 
cell growth and adhesion, energy homeostasis, neuronal 
signalling and muscle relaxation. The role played by cyclic 
nucleotides extends not only to the regulation of 
metabolic processes but also to cell morphology and 
differentiation [280]. Secondary messengers 
subsequently activate target enzyme Protein kinase A 
(PKA) that activate cyclic AMP responsive element binding 
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protein (CREB), to promote gene transcription which 
plays an important role in learning and memory function 
especially long term memory following new protein 
synthesis and nourishment of nervous system [281,282]. 
 
Cyclic AMP& Brain: cAMP (Cyclic Adenosine 
Monophosphate) an intracellular “second” messenger that 
is activated in response to certain hormones which are 
“first” messengers, such as epinephrine, because they 
cannot pass through the cell membrane. The balance of 
cAMP signaling is essential to multiple cellular processes, 
including immune function, growth, differentiation, gene 
expression and metabolism [283]. Phosphodiesterase 
(PDE) and adenylyl cyclase (AC), these are two apposite 
enzymes which regulates the activities of second 
messenger (cAMP) [284]. It was identified that AC as a 
source of cAMP inside mitochondria. Some evidence has 
suggesting that cAMP-mediated phosphorylation of 
mitochondrial enzymes plays a role in oxidative 
phosphorylation (OXPHOS) regulation and it is decreased 
by AC inhibition [284]. BDNF (brain derived neurotropic 
factor) is dependent on cAMP, it is regulates the 
expression of BDNF, that regulates neuronal survival 
[285]. Stimulation of the CREB/CRE transcriptional 
pathway in neurons depends on the activation of MAP 
kinase. The activation and nuclear translocation of MAP 
kinase is regulated by cAMP. It can be either pro-
apoptotic or anti-apoptotic [286,287]. cAMP regulating 
plasticity as well as maintaining the stability of synapses. 
Increasing the concentration of cAMP delays induced cell 
death. cAMP cascade modifies the neural connectivity and 
synaptic strength [288]. 
 
cAMP Response Element Binding Protein (CREB) & 
Brain: CREB is a 43 kDa basic/leucine zipper 
transcription factor, including activating transcription 
factor 1 (ATF1), ATF2 (also known as CREBP1), ATF3 and 
ATF4, which bind to cAMP-response-element (CRE) 
promoter sites on target genes. It is highly conserved and 
expressed in most tissue types [289,290]. The 
transcriptional activation of CREB is due to 
phosphorylation of serine 133 by a serine-threonine 
kinase. CREB regulates the expression of several genes 
involved in metabolism, signaling, proliferation, 
differentiation and survival [290]. It also regulates many 
aspects of neuronal functioning, including neuronal 
excitation, development and long-term synaptic plasticity 
[291-293]. CREB plays an important role in integrating 
intracellular cAMP and calcium signaling as well as 
responses to neurotrophic factors [294]. CREB may play a 
beneficial role in Rubinstein Taybi-syndrome (RTS), is a 
rare human genetic disorder characterized by mental 
retardation and physical abnormalities loss [295]. An 

NGF-mediated retrograde signal may increase expression 
of Bcl-2 through phosphorylation and activation of CREB. 
CREB and Bcl-2 are both necessary and sufficient for 
survival of sympathetic neurons, and CREB is a mediator 
of NGF-dependent gene transcription [296]. CREB is also 
plays a key role in regulating neuronal survival and 
differentiation in response to other neurotrophic factors 
BDNF, FGF and IGF-1 [296]. CREB is also crucial for 
memory formation. Synaptic restructuring, believed to be 
crucial for memory formation, seems to be dependent on 
CREB transcription [297]. Activation (phosphorylation) of 
CREB seems to be a crucial event in the neuronal growth 
and development and in cognitive functioning. Inhibition 
of the component of the cAMP/PKA/CREB pathway is 
known to suppress CREB phosphorylation [289]. CREB 
phosphorylation may be a pathological component in 
neurodegenerative disorders. It may play a role in 
Alzheimer’s and Hungtington’s disease. 
 
CREB Activation: The phosphorylation of CREB can be 
triggered by a variety of signaling processes, including an 
increase in intracellular Ca2via activation of voltage- or 
ligand-gated channels such as NMDA receptors, an 
increase in cAMP via activation of G protein coupled 
receptors or activation of receptor tyrosine kinase by 
growth factors. 
 

 

Figure 5: Activation of CREB. 
 
     The most common and best elucidated is the cAMP-
PKA pathway. Extracellular signals (ex: Hormones and 
neurotransmitters) activate heterotrimeric G-proteins, 
that directly stimulate AC, which can then catalyze the 
production of cAMP. cAMP then leads to the activation of 
PKA, which dissociates into active catalytic subunits 
which can diffuse into the nucleus and phosphorylated 
CREB [298, 299]. Additionally, growth factors can 
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stimulate their respective receptors, which can lead to 
stimulation of RAF and the downstream kinases RAS, MEK 
and ERK. Activated ERK can them stimulate RSK to 
translocate to the nucleus to phosphorylate CREB. 
Furthermore, intracellular Ca++ can stimulate the PKA 
pathway (through calmodulin) or activate members of the 
Calmodulin-dependent kinase family (CcamK) which can 
phosphorylate CREB directly. Once activated, CREB 
controls the transcription of various important genes 
[300]. 
 
Role of CREB in Neuronal Functioning: Despite 
expression of CREB in different tissues, it plays a key role 
in the functioning of the nervous system. CREB-
dependent expression of genes plays an important role in 
both the developing and mature nervous system. Three 
processes are involved in recovery of neural function: 
synaptic plasticity, neurogenesis and axon growth. The 
CREB and CRE-mediated system is important for all three 
processes. Target genes of CREB include many encoding 
metabolic enzymes, transcription factors, 
neurotransmitters, cell cycle-related proteins, cell 
survival-related molecules, growth factors, immune 
regulatory proteins and structural proteins [297]. 
 

 

Figure 6: Role of CREB in neuronal functioning. 
 
     The whole information which is given above cAMP well 
implicated in cognitive functioning and the levels of this 
cyclic neucleotide can be raised through selective 
activation on enzyme AC [301]. There is least availability 
of selective activation of AC and among these; so far only 
limited reports suggest beneficial effects of FSK in various 
in-vitro& in-vivo preclinical studies. 
 

Forskolin (Coleus Forskohlii) 

     Coleus forskohlii known as phashanabedi (telugu) a 
medicinal plant found in the Indian subcontinent is widely 
used in the Indian system of medicine. Forskolin (FSK) 

(also known as Colonels) is labdane diterpene that is 
obtained from the tuberous roots of Coleus forskohlii 
which belonging to the family of Lamiaceae [302,303]. 
Coleus Forskohlii is one of the world’s most researched 
plant in which FSK is believed to be the plant’s most 
active constituent. C. forskohlii has been used as an 
important folk medicine in India. C. forskolii is a perennial 
herb and grows wild in arid and semi-arid regions of 
India, Nepal and Thailand; the roots have long been used 
in Ayurvedic medicine [304]. In traditional medicine, C. 
forskohlii is commonly used in different countries for 
various health disorders including cardiovascular 
diseases, hypertension, asthma, glaucoma and 
Alzheimer’s disease [305-308]. Its further use in 
promoting lean body mass, treating mood disorders and 
its anticancer activities is well known [309]. 
 
Medicinal Properties of Forskolin: Traditionally, the 
roots have been used as condiments in pickles, for 
preparation of pickles. Forskolin has positive effect 
against a wide range of conditions such as asthma, 
glaucoma, hypertension, hair loss, cancer, and obesity 
[310-314]. C. forskohlii extract (standardized to contain 
95% forskolin) is potentially useful in skin care 
formulations, particularly as a conditioning age. In 
traditional Indian systems of medicine, the roots of C. 
forskohlii are used as a tonic. Other therapeutically 
relevant properties include anthelmintic action and 
efficacy in the management of skin infections and 
eruptions. The plant is also used traditionally in 
veterinary practice [304]. Essential oil in tubers of this 
plant has potential uses in food flavouring industry and 
can be used as an antimicrobial agent and has very 
attractive and delicate odour with spicy note. A labdane 
diterpenoid is considered the active secondary metabolite 
because of its ability to activate the enzyme Adenyl 
cyclase (Ac) thereby increasing the intracellular level of 
cAMP and leading to various physiological effects [315]. 
FSK is shown to exert a 6-400 fold increase in levels of 
cAMP. Cyclic AMP is a “second messenger” hormone 
signalling system as its synthesis triggers the action of 
various hormones, enzymes and other biological activities 
that have profound effects on local cells, as well as 
systemic effects, in some instances, on the entire body 
[316]. FSK by passes the adrenoreceptors, increasing 
cAMP levels directly, thereby stimulating lipolysis. FSK 
has also been shown to counteract the decreased 
response of fat cells to epinephrine, associated with aging. 
FSK also accelerates lipolysis through the activation of 
hormone-sensitive lipase [317]. It is primarily via the 
increased synthesis of cyclic AMP that C. Forskohlii may 
exert its medicinal influences on a significant number of 
common health conditions. 
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S.No P’cological Activity Mechanism of action Ref.No 

1. Anti-Depressant 

FSK stimulated AC activity in rat brain and leads to enhancement of the 
coupling between stimulatory GTP-binding protein (G protein) and AC 

catalytic molecules 
318 

FSK stimulates AC and regulates brain-derived neurotrophic factor 
(BDNF) and TrkB expression in the rat brain 

319 

2. Anti-Alzheimer’s 

FSK induced a bipolar neuron-like cell morphology and it enables 
neurogenin-2 (Ngn2) to convert human fibroblasts into cholinergic 

neurons 
320 

Neuronal differentiation of adult rat neural progenitor cells (NCP’s) was 
achieved 

321 

3. Anti –cancer 

Restoration of PP2A activity with forskolin that inhibit Akt and ERK 
activity, block proliferation and induce caspase-dependent apoptosis in 

AML cell lines. 
322 

Forskolin inhibited the in-vivo leukemogenesis of imatinib sensitive and 
resistant BCR/ABL+ 32Dcl3 cells in mice 

323 

4. Antispasmodic activity increase of cAMP inhibit cramping or smooth muscle contraction 324 

5. Anti-Glaucoma 

Stimulates Adenylate cyclase which stimulates the ciliary epithelium to 
produce cyclic adenosine monophosphate (cAMP) that results in 

decreased aqueous humor inflow there by decrease in IOP 
325 

Reduction of intra ocular pressure 326 

6. 

Cardio protective 
It reduces diastolic blood pressure without increasing myocardial oxygen 

consumption. 
327 

Amelioration of  
Mitochondrial dysfunction in 

cardiomyopathy 

Reduction of INa (cardiac Na+ current) and overproduction of 
mitochondrial ROS in deoxycorticosterone acetate (DOCA) mouse 

myocytes by activating PKA and PKC 
328 

8 Anti-Asthmatic 
Forskolin activation of cAMP inhibits human basophil and mast cell 

degranulation, resulting in subsequent bronchodilation 
329 

7. Anti-Psoriasis 

Decreased cGMP levels that are associated with cell proliferation and thus 
decrease cell divison. 

330 

Normalizing the cAMP /cGMP ratio. 331 

8. Hepatoprotective activity 

Repair of hepatic tissue damage, normalization of inflammatory hepatic 
and necrosis 

332 

Forskolin increases cAMP accumulation, and therefore stimulates lipolysis. 333 

9. Anti- inflammatory 

Reduction in the level of Interleukin-1β, 6 and 8 334 

Over-expression of Tank binding kinase1 (TBK1) reduced phosphorylation 
of Hormone sensitive lipase (HSL) in response to FSK 

335 

Inhibit mast cell degranulation 336 

10. Anti-Diabetic activity 

FSK predominantly decreased basal glucose in healthy rats and attenuated 
the severity of hyperglycemia in diabetic rats 

337 

FSK increase intracellular cAMP, which, together with the increase in ATP, 
enhance the priming of insulin granules 

338 
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11. 

Anti-platelet Aggregation 
Antagonizes the action of platelet-activating factor (PAF). Reduction in the 

extent of platelet aggregation 
339 

 
Induced a partialdeaggregation of ADP- or collagen-aggregated human 

platelets 
340 

12. 

Inhibition of human  
neutrophil degranulation 

cAMP mediated Phosphodiesterase inhibition. 341 

Anti-Histaminic activity 
Reduction in the histamine release from human basophiles and mast cells 
by modulating the release of mediators of the immediate hypersensitivity 

reaction, through activation of AC 
342 

13. Smooth muscle relaxant 

Increase both the cytosolic Ca2+ concentration and the cytosolic NO 
concentration ([NO]c) in the endothelial cells leads to cause vasodilatation 

343 

Increases uterine smooth muscle AC 344 

14. 

Hydrodynamic alterations in 
collecting tubule 

FSK resulted in increase in osmotic water flux and hydraulic conductivity 
of the rabbit cortical collecting tubule 

345 

Anti-cystic fibrosis FSK leads to cyst formation in culture media 346 

Table 1: Pharmacological action of FSK. 
 

FSK and Brain 

FSK Binding Sites: 3H-forskolin has, for example, been 
found to bind to both a high and a low affinity site in rat 
brain membranes and the capacity of the high affinity 
forskolin binding site has been shown to be increased by 
the activation of N-proteins by guanine nucleotides [345-
346]. High affinity [3H] FSK binding sites have been 
mapped autoradiographically in rat brain area such as 
caudate-putamen, nucleus accumbens, olfactory tubercle, 
giobus pallidus, substantia nigra and the hilus of the area 
dentata and exhibit a markedly heterogeneous 
distribution [347].  
 
Role of FSK in Brain: FSK may activate Ac by interacting 
with two sites, one which may be directly located on the 
cyclase molecule, and the other which is associated with 
OJ somehow formed by the interactions with the N, 
protein [338]. FSK, a commonly used activator of Ac, 
elevates the stimulation-induced release of several 
transmitters, such as acetylcholine, noradrenaline and 5-
hydrdoxytryptamine, from brain or synaptosomes and 
markedly increasing the rate of conversion of ATP to 
cyclic AMP [315,348]. FSK directly reduces certain K+-
potassium currents in addition to its action on Ac. cAMP 
could increase the apparent number of Na, K-ATPase sites 
by either direct or indirect mechanisms. cAMP could 
increase the number of Na, K-ATPase sites by increasing 
cell Na + or decreasing K + though there are reports of Na, 
K-ATPase stimulation that may be independent of cation 
changes. FSK elevates electrically evoked acetylcholine 
release in the hippocampus independently of Ac 
activation [349]. FSK appears to provide a new clue for 

elucidating the physiological role of cAMP in the synaptic 
transmission in the sympathetic ganglia. FSK exerts two 
opposite pharmacological actions at the synapse, i.e. a 
facilitation of transmitter release at the presynaptic site 
and a depressant action on nicotinic acetylcholine 
receptor at the postsynaptic site. FSK reduced the 
amplitude shock stimulation of preganglionic nerve. FSK 
induces a reversible AChR desensitization at the 
junctional and extra junctional regions in rat [350]. FSK, 
an activator of Ac, could increase transmitter release 
presynaptically in CA1 neurons. FSK directly stimulates 
Ac and thereby increases cyclic AMP activity, which is 
known to influence neurite outgrowth and membrane 
trafficking in neurons. Increased cyclic AMP activity may 
have multiple effects on cells including changing the 
direction of growing neurites and increasing the density 
of clathrin-coated pits and coated vesicles at plasma 
membranes coincident with an increased synthesis of 
clathrin light chain. The cAMP effectors system enhanced 
by FSK is involved in the release of dopamine from 
dopaminergic nerve endings in the neostriatum [351-
352]. FSK increased dopamine formation in rat striatal 
slices, rat striatal synaptosomes, rat hypothalamic 
synaptosomes and bovine retinal slices [353].  
 

Neuroprotective Action of FSK 

Fsk against Neuro-Inflammation: An increase in 
intracellular cAMP levels through FSK to play an 
important role in modulating the cytokine production. 
Intracellular cAMP has been reported to depress the 
accumulation of tumor necrosis factor (TNF-α) an mRNA 
by inhibiting the transcriptional processes. Elevation of 
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intracellular cAMP levels induced by PDE inhibitors, FSK, 
prostaglandin E2, or cell-permeable cAMP analogue also 
inhibited the secretion of IL-1b, whereas it increased IL-
1b mRNA levels from lipopolysaccharide-stimulated 
human monocytes. Although the regulatory modality of 
IL-8 production by cAMP is still unclear and depends on 
the cell type, enhanced cAMP appears to have favourable 
effects at least on airway cells by suppressing IL-8 
production [354,355]. Therefore, enhanced cAMP levels 
by have also FSK been recognized to reverse the increased 
pulmonary microvascular permeability associated with 
ischemia reperfusion [356]. 
 
Forskolin against Neuro-Oxidation: Oxidative stress 
may play a role in the development and clinical 
manifestations of autism. Both central and peripheral 
markers of oxidative stress have been reported in autism. 
Peripheral markers have included lipid peroxidation 
levels. Increases in these markers correlated with loss of 
previously acquired language skills in autism. 
Furthermore, metabolic markers of oxidative stress have 
been identified including abnormal levels of metabolites 
signifying impaired methylation and increased oxidative 
stress in autism [357]. The oxidative stress in autism may 
be caused by an imbalance between the generation of ROS 
and the defence mechanism against ROS by antioxidants. 
An increase in reactive oxygen species (ROS) results in 
damage to proteins, DNA, and lipids. Specifically, the 
interaction between ROS and nitric oxide (NO) results in 
the nitration of tyrosine residues in proteins and can alter 
protein conformation and function [358]. Oxidative DNA 
damage is also considered to play an important role in the 
pathology of a number of diseases like Parkinson’s 
disease, tardive dyskinesia, metal intoxication syndromes, 
Down’s syndrome, and possibly also in schizophrenia, 
Huntington’s disease, and Alzheimer’s disease. Reactive 
oxygen species including superoxide (O2.–), hydroxyl 
(.OH), hydrogen peroxide (H2O2), singlet oxygen (1O2) and 
nitric oxide (NO•) can cause cellular injury when they are 
generated excessively or the enzymatic and nonenzymatic 
antioxidant defence systems are impaired [359]. 
 
     Moreover, FSK mediated cAMP/PKA/CREB activation 
were found to inhibit LPS- and cytokine-mediated 
production of NO as well as the expression of iNOS, 
whereas compounds (H-89 and (Rp)-cAMP) that decrease 
PKA activity stimulated the production of NO and the 
expression of iNOS in rat primary astrocytes [360-362]. 
 
Forskolin against Mitochondrial Dysfunctioning: The 
brain is strongly dependent on the ATP production of the 
cell energy-producing organelle, the mitochondrion. 
There is a large body of evidence involving mitochondrial 

dysfunctions in ASD. Palmieri and Persico, regarding ASD, 
oxidative phosphorylation (OXPHOS) in the 
mitochondrion requires at least 80 proteins, of which only 
13 are encoded by the mtDNA, while mitochondrial 
functioning has been estimated to need the participation 
of approximately 1500 nuclear genes [333]. 
Mitochondrial dysfunction is present in the brains of 
individuals with ASD and may play a role in its core 
cognitive and behavioral symptoms. Alternatively, 
mitochondria can be damaged by endogenous stressors 
associated with ASD such as elevated proinflammatory 
cytokines resulting from an activated immune system or 
other conditions associated with oxidative stress. 
Oxidative stress may be a key link between mitochondrial 
dysfunction and ASD as reactive oxygen species (ROS) 
generated from pro-oxidant environmental toxicants and 
activated immune cells can result in mitochondrial 
dysfunction. Excess production of free radicals or 
impaired antioxidant mechanisms may cause oxidative 
stress: impaired mitochondrial function then leads to 
further oxidative stress and a vicious negative cycle can 
ensue. Instead, abnormal functioning appears secondary 
to excessive Ca2+ levels. Mitochondrial dysfunctioning 
caused depletion of ATP, that further decrease the level of 
cAMP [353]. Forskolin, increase in intracellular cAMP, 
through the phosphorylation of CREB which perform 
neuroprotective functioning associate with mitochondrial 
dysfunctioning [363].  
 
Forskolin against Cognitive Dysfunction: Autistic brain 
which may reflect enhanced cortical plasticity which is 
defined as the process of microstructural construction of 
synapses occurring during development and the 
remodelling of these synapses during learning [364,365]. 
Enhanced synaptic plasticity triggers a regional 
reorganization of brain functions that account for both 
the unique aspects of autism and its variability [366]. 
Activation of cAMP/PKA has been mainly implicated in 
stimulating learning and memory. FSK activate 
cAMP/CREB in hippocampal region [367,368-394].  
 

Conclusion 

     Summarizing the whole information given above, FSK 
confirmed a versatile role in autism where it activates the 
AC/cAMP mediated PKA/CREB activation (Figure 7) 
Moreover, on other side FSK act as a co activator in brain 
that follows the GS pathway through the activation of D1 
receptor. There is least availability of selective AC 
activation and so far only limited reports suggest 
beneficial effect of FSK in neurodegeneration animal 
model.  
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Figure 7: Neuroprotective strategies & therapeutic implication of FSK through 
AC/cAMP/PKA/CREB pathway activation. 
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