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Abstract 

Apart from its traditional role in anti-infectious and anti-neoplastic defense, the immune system has been recently 

implicated in regulating systemic metabolic balance. Likewise, several metabolic processes were also engaged in the 

maintenance of immune homeostasis. Given the importance of this immune-metabolic alignment in promoting “metabolic 

health” and its fundamental role in endorsing appropriate adaptations to the ever changing environmental setup in a 

host, we highlight the current understanding of this immune-metabolic cross-talk and illustrate the role of the gut 

microbiota, diet and host genetic and epigenetic factors in this immune-endocrine communication, opening up to future 

avenues of research and promising therapeutic approaches to diverse metabolic and inflammatory disorders. 
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Introduction 

     The entwined alliance between immunity and 
metabolism is considered very ancient and goes back to a 
few billion years ago when general practitioners 
considered infection a ground for metabolic pathologies 
[1]. With time, several studies have reinforced this 
immune-metabolic coalition. In the 1800s for instance, 
acute inflammatory diseases like meningitis were highly 
correlated with diabetes in humans [2]. During the 1900s, 
additional studies have associated obesity with 
hyperinsulemic-insulin resistant-diabetic patients, 

pointed out to the role of gram-negative bacterial 
lipopolysaccharides (LPS) in revoking the ability of 
insulin to induce glucose uptake in muscles, promoting 
insulin resistance in dogs, and showed that acute 
infections in humans is accompanied by a decrease in the 
ability of insulin to bind to its receptor on blood cells [3-
5]. These findings opened up to emerging venues relating 
obesity to insulin resistance and diabetes and underlined 
the occurrence of metabolic disorders in the context of 
infection. 
 
     Congruent to the role of the immune system in 
maintaining metabolic balance, it was marked that several 
metabolic processes are, in turn, involved in promoting 
immune homeostasis. The fact that the immune system 
cannot function under mal-nutritional circumstances and 
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that the activation of many immune pathways requires 
intense metabolic reprogramming of immune cells to 
meet their sufficient energy demands strengthens the 
existence of such an adjacent concordance between the 
host nutritional status and its immune system [6]. The 
transcription factor FOXO for example, a key regulator of 
metabolism, activates anti-microbial peptides (AMPs) 
production independent of any immunoregulatory 
pathway [7]. Similarly, in a high glucose milieu in human 
peritoneal mesothelial cells, the relative transcript 
expression of some Toll-like receptors (TLRs) has been 
detected and associated with fibrosis and inflammatory 
disorders [8]. In this context as well, a few studies suggest 
that the function of TLRs is actually metabolism-related 
[9]. The activation of some TLRs and the expression of 
target gene products is directly modulated by some 
macronutrient metabolites like saturated fatty acid [10]. 
Branched palmitic acid esters of hydroxy stearic acids, 
one class of endogenous lipid, regulates gut innate and 
adaptive immune responses in mice [11]. Indeed, the 
aforementioned role of some metabolites in orchestrating 
this immune-metabolic alignment discloses the important 
role of the commensal flora in this process as well. An 
overgrowth in the array of the intestinal microbiota, for 
instance, compromises host nutrition, promoting the 
activation of the host intestinal immune machinery to 
reduce the population of the commensal bacteria. This 
anticipated alignment doesn’t seem to be directed against 
the gut flora only, but could be also used by the host to 
fight off invading pathogens, especially that ingested 
nutrients often contain large numbers of bacteria, 
necessitating the presence of such a protective 
gastrointestinal-immune defensive strategy [12-14]. 
Interestingly, several studies have shown that the 
maintenance of the immune system homeostasis 
necessitates the existence of such an interaction between 
the gut microbiota and some immune receptors including 
TLRs [15]. 
 
     The intimate communication between these two 
outwardly disparate systems has mystified scientists for 
many years. One consideration overseeing this immune-
metabolic arrangement is the idea of competition over 
energy resources and the existing trade-off between 
metabolically conserving energy, on one hand, and 
draining energy by immune defensive mechanisms, on the 
other. 
 
     Taken together, all these observations and lines of 
evidence inspired ongoing studies to understand the 
immunological nature of a metabolic disease and the 
metabolic foundation of an immune poise. Our current 
understanding of the molecular and cellular factors 

involved in coordinating this immune/microbe-mediated 
metabolic equilibria and metabolic/immune-medicated 
microbial equilibria in normal and altered environments 
is still at its infancy. Here, we provide an overview of the 
principles of this immune-metabolic communication and 
portray the importance of the gut microbiome, diet, and 
host genetics and epigenetics in health and disease. 
 

Gut Microbiome in Immune-Metabolic 
Interactions 

     The microbial community of the gut includes 1014 
bacteria normally residing in the gastrointestinal tract 
[16]. This bacterial “factory” is in charge of a broad range 
of metabolic and biochemical processes required by its 
host. Several studies uncovered the importance of the gut 
microbiota in regulating nutrient absorption, weight loss 
and obesity through nutrient acquisition, energy 
harvesting, and the regulation of numerous host 
metabolic pathways [17]. Altered nutritional loads of 
either low or high caloric intake, for example, induce 
rapid changes in the bacterial composition of the gut 
microbiota and therefore cause relative variations in the 
stool energy in lean individuals [18]. The main metabolic 
functions of the gut flora include synthesis of 
micronutrients, catabolism of carcinogens and dietary 
toxins, assistance in absorbing minerals and electrolytes, 
and fermentation of complex-indigestible food 
constituents. This role of the gut microbiome in 
maintaining a balanced gastrointestinal function; 
however, is thought to be immune-related. It has been 
hypothesized that the inflammatory response observed in 
high-fat diet-induced metabolic syndrome is initiated by 
the LPS of gram-negative bacteria in the gut flora [19-21]. 
Along those lines, recent studies have explored the role of 
the gut microbiota in regulating TLRs-mediated insulin 
signaling. In one of those studies, it has been shown that 
mice deficient in the microbial pattern recognition 
receptor TLR5 display hyperphagia and obesity and 
exhibit various features of metabolic syndrome including 
hypercholesterolemia, hypertension, dysregulated 
interleukin-1β signaling, and insulin resistance [22]. 
Another study also showed that TLR2-deficient mice have 
an altered gut microbiota, with greater abundance of 
Firmicutes and less Actinobacteria of the genus 
Bifidobacterium, and develop glucose intolerance, insulin 
resistance, and obesity [23]. It has been also revealed that 
intestinal bacterial products serving as TLR 4 and 9 
agonists cause severe hepatic steatosis, inflammation, and 
obesity [24]. Captivatingly, recent data have pointed out 
to an important role of the gut microbiome in regulating 
type 1 diabetes [12]. These findings are intriguing and 
require supplementary studies like 16S rRNA sequencing, 
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whole genome metagenomics and metabolomics in 
metabolic diseases, accompanied by bioinformatics 
resources and large databases similar to those derived 
from the Human Microbiome Project to lead the way into 
a proper understanding of the role of the gut microbiota 
in a broad spectrum of metabolic disorders including 
diabetes, metabolic syndrome, and obesity. 
  

Diet in Immune-Metabolic Interactions 

     Nutrition impacts the activity of the immune system 
either directly by interacting with immune cell receptors 
or indirectly through modulating the metabolites of the 
gut microbiota. Commonly consumed food products 
containing Vitamins A, Vitamin D, and Indole 3-carbinol, 
for example, activate local hematopoietic cells and 
maintain the gut mucosal barrier integrity. Also, saturated 
and polyunsaturated fatty acids interact with the immune 
cells of the adipose tissues, modulating the immune 
system and exerting metabolic effects [25]. It has been 
well documented that nutrition levers the programmed 
development of the gut flora, and thereby affects the 
mucosal architect of the gut, its digestive function, 
immune tolerance, and various metabolic pathways, 
mainly those associated with conjugated bile acids and 
short chain fatty acids [26]. Dietary fat, Western-style 
diets, and even high-fat diets can disrupt co-regulated 
metabolic and inflammatory processes within the gut. 
This explains the aberrant profiles of the gut flora and the 
impaired immune status in patients suffering from 
obesity, diabetes, metabolic syndrome, non-alcoholic fatty 
liver disease, early dementia and Alzheimer. It is thought 
that the onset of those diseases associated with low-grade 
systemic infections partly originates from the gut and 
further spreads out and causes pathogenesis and 
accelerated aging in other organs including the liver, 
brain, and adipose tissues [26]. 
 

Host Genetics and Epigenetics in Immune-
Metabolic Interactions 

     In addition to the gut microbiota and diet, the host 
genome is considered another intrinsic factor that 
contributes to the induction and maintenance of an 
immune-metabolic balance. Large scale genomic 
approaches have identified several genetic players 
involved in metabolic disorders, some of which are 
immune-related genes [26,27]. The immune cell-receptor 
CD44, for example, was shown to be implicated in type 2 
diabetes mellitus [28]. Likewise, other studies identified a 
significant link between single nucleotide polymorphisms 
(SNPs) and predisposing metabolic readouts associating 
IL6 variant rs7801406 with lower fasting insulin levels, 

and TNFA variant rs3039662 with elevated fasting insulin 
levels. Moreover, SNPs in TNFA and CRP genes were 
highly allied with variations in the serum HDL-C levels 
[29]. These findings not only unveil the important 
contribution of genetics to networking immunity and 
metabolism, but also present interesting settings to 
identify potential genetic biomarkers for the early 
detection of metabolic diseases. 
 
     Besides genetics, epigenetics also play an important 
role in regulating the cross-talk between immunity and 
metabolism, as it constitutes an important mechanistic 
link between the environmental cues and the host gene 
expression. Latest studies embarking upon epigenetic 
alterations in peripheral blood leukocytes in obese people 
identified changes in the methylation of two genes 
involved in modulating macrophages and T cells [30]. 
Likewise, methylation in TLR2 and TLR4 genes was 
correlated with the microbiota and associated with 
obesity [31]. A recent epigenome-wide-association study 
in obese people has elucidated methylation markers in 
genes related to inflammatory pathways including 
TNFRSF4, MAP3K2, and IL5RA [32]. Interestingly, another 
study suggested that hyperglycemia can alter the histone 
methylation landscape, eliciting epigenetic activation of 
inflammatory genes like NF-κB-p65 [33]. On a wider 
scale, increased global methylation levels in the natural 
killer cells of type 2 diabetic patients and in the B cells of 
obese and type 2 diabetic patients has been also detected 
[34]. 
 
     This global elevated methylation in the epigenetic plot 
of specific immune cells correlates with insulin resistance 
and greatly links functional modifications in immune cells 
to metabolic disorders. Recent studies have demonstrated 
that obesity can displace adipose tissue macrophages 
from an anti-inflammatory M2 stage to an opposing pro-
inflammatory M1-like stage, where DNA 
methyltransferase 3a and 3b carry out de novo 
methylation [35]. Remarkably, saturated fatty acid, a 
major feature of obesity, was shown to increase DNA 
methyltransferase 3b, resulting in M1 polarization, a 
trademark of adipose tissue in obesity and inflammation 
[36]. Interestingly, the gut microbiota, mainly through 
short chain fatty acids, was also shown to cause 
epigenetic alterations, affecting both immunity and 
metabolism. Short chain fatty acids inhibit histone 
deacetylase and therefore regulate the expression of 
immune-related genes, attenuating inflammation [37,38]. 
The importance of those microbe-derived compounds, 
including short chain fatty acids, falls in their ability to 
readily cross the placenta and get involved in epigenetic 
immune reprogramming and long-term metabolic 
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deregulation in the descendants of susceptible mothers 
[39]. Additional epigenetic mechanisms, associated with 
certain microbiome compositions, like methylation in the 
promoter region of genes involved in immunity and 
metabolism, has been also detected in diabetic and obese 
individuals [40-42]. 
 

Conclusion 

     Our emerging potentials of understanding the role of 
the gut microbiota, diet, and the host genetic and 
epigenetic factors in maintaining an adjacent mechanistic 
concordance between immunity and metabolism opens 
up for promising therapeutic approaches against a 
number of metabolic and inflammatory disorders. 
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